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	 The penetration of renewable energy resources for distribution networks can significantly 
impact the security of power supply systems. To improve the penetration efficiency, a 
hierarchical optimization planning for a distributed generation (DG) network using the improved 
sand cat swarm optimization (ISCSO) is proposed to determine the optimal location and capacity 
of DG into the distribution network. Firstly, the sensor is used to collect data, and the ISCSO 
algorithm is used to construct a complex nonlinear DG planning problem, thus reducing the 
impact of DG uncertainty. Second, a DG hierarchical planning model is established to select the 
optimal location and capacity of DG access to the distribution network. Finally, in the classical 
test system, the effectiveness of the proposed model is verified by setting up multiple cases. The 
test results confirm that the total annual cost and power loss of the DG system can be reduced by 
13.1 and 40.5%, respectively. 

1.	 Introduction

	 The continuous growth of the world’s population has led to an increase in global energy 
consumption. Owing to limited fossil energy resources on Earth, this contradiction has 
significantly intensified in recent years.(1)  On the other hand, renewable energy is inexhaustible 
and easy to obtain, and causes little environmental pollution.(2)  The representative renewable 
energy power generation systems include wind turbine (WT) and photovoltaic (PV) cells.(3)  The 
penetration rate of renewable energy in the power grid is thus increasing.(4,5)  As a result, the 
distributed generation (DG) can provide a better solution for renewable energy sources in 
achieving sustainable development.(6–8)

	 DG is superior in terms of low carbon emission, flexible control, and low investment cost, but 
its grid-connected operation would increase the grid complexity and uncertainty.(9)  Planning in 
distribution networks reasonably can effectively improve the power-flow distribution and node 
voltage quality, and reduce network losses. In contrast, problems such as increased losses and 
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the decreased quality of voltage may occur from time to time. To consider the economy of the 
system and uncertainty in DG output, a DG planning model with an annual total cost should be 
established. The core content of DG planning research is mainly focused on two aspects: site 
selection and capacity determination.(10,11)  Classical methods for these aspects include particle 
swarm optimization (12) and the cuckoo algorithm.(13)  Uniyal and Sarangi (14) took into account 
the time-varying load of the distribution network. On the basis of enhancing a traditional whale 
optimization algorithm, an adaptive whale optimization algorithm was proposed to allocate DG 
to the actual distribution network. The feasibility was verified by the simulation analyses of 69-
node and 129-node systems. Compared with some previous approaches, the network loss in the 
system could be reduced more significantly. Sellami et al. (15) introduced an improved method to 
reasonably determine the capacity and location of DG, where it combined with the MOPSO 
algorithm and Matpower software toolbox. Ali et al. (16) improved the wild horse optimization 
algorithm for solving the DG planning problem using benchmark functions. Experiments 
showed that it could effectively improve the voltage distribution and therefore enhance the 
economy of the system in the complex DG configuration problem.
	 Cikan and Cikan (17) attempted to minimize the system loss using the balanced optimization 
algorithm integrated with DG to the 123-node distribution network, and the performance of the 
model was verified by comparative analysis. Gümüş et al. (18) proposed a stability index based 
on the Thevenin theorem, taking into consideration voltage deviation and network loss. The 
optimal DG allocation and sizing in distribution systems were verified using the 69-node and 
188-node systems. Gao et al. (19) developed a DG multi-objective programming model that 
described the spatial and temporal correlations of loads. By introducing the principle of 
economic consumption, Sun et al. (20) reported a DG planning model to reach a fast solution by 
measuring curtailing light and wind in the steady-state security region. The effectiveness of the 
proposed model was proved by the simulation performance. 

2.	 Model Description

2.1	 Sensor-based uncertainty handling

	 In this study, WT and PV were applied in DG systems. We assumed that both WT and PV 
units adopt constant power control, but the output power is random and intermittent. All data 
were collected from wind speed (21), temperature, and light sensors (22) during a one-year period 
of time. The K-means algorithm was used to select the application scenarios in each season.(23)  
Four scenarios were classified: spring, summer, autumn, and winter days. Finally, the typical 
wind speed and light intensity of each season can be converted into the output of WT and PV.
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2.2	 Objective function

	 The optimization goal is the total annual cost F.

	 total l om loss enF f f f f f= = + + + 	 (1)

2.2.1	 DG investment cost fl
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Here, n is the number of nodes in the system to be installed for DG, Pwt,i and Ppv,i are the rated 
capacities of WT and PV installed in the ith node, and cwt,l and cpv,l are the unit capacity 
investment costs of WT and PV, respectively. For the investment conversion ratio, α is the 
maximum number of years of distributed power operation.

2.2.2	 DG operating cost fom
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Here, Pwt,i,p and Ppv,i,p are the actual active power output of WT and PV installed using the ith 
node under scenario p, respectively. cwt,om and cpv,om are the operating costs required for WT and 
PV to emit unit power, respectively. np is the number of simulated scenarios and tp is the number 
of running days in scenario p.

2.2.3	 Power purchase cost from superior power grid Cen
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Here, Pen,p,t. and dp,t  are the active power and real-time electricity price purchased from the 
superior power grid at time t of scenario p, respectively.

2.2.4	 Network loss cost floss
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Here, Ploss,p represents the total active power loss under scenario p and closs is the cost of active 
power loss per unit of electricity.
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2.3	 Objective function

2.3.1	 DG installed capacity constraints
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Here, Pi,DG,max represents the maximum capacity of DG installed at node i, and Pi,wt,max and 
Pi,pv,max represent the maximum capacities of WT and PV at node i, respectively.

2.3.2	 Node voltage constraints 

	 , , xi min i i maU U U≤ ≤ 	 (7)

Here, Ui is the voltage at node i. Ui,min and Ui,max are the minimum and maximum node voltages, 
respectively.

2.3.3	 Power balance constraints
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Here, Pi,p and Qi,p represent the active power and reactive power flowing into node i at scenario 
p, respectively. Ui,p and Uj,p denote the voltage amplitudes of nodes i and j at scenario p, 
respectively. Gij and Bij represent the real and imaginary parts of the admittance between nodes 
i and j, respectively, and φij,p represents the impedance angle.

2.3.4	 DG operation constraints 
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Here, the types of DG are WT and PV, and , ,
DG

i p maxP  is the upper limit of the active power output of 
DG installed in scenario p at node i. ,i DGδ  and ,

DG
i maxδ  are the active power reduction rate of DG and 

its maximum value, respectively.
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2.4	 Model transformation

	 On the basis of the principle of hierarchical coordination, the optimal planning scheme of DG 
was selected, and the total operation cost of DG in one year was considered. The layered model 
architecture is shown in Fig. 1, where the upper and lower layers have independent objective 
functions and constraints. The upper layer is used to determine the type, location, and capacity 
of DG. The optimization objective is the total annual cost, and the constraints are the installation 
capacity and permeability constraints of DG. The lower layer is the optimization subproblem of 
the distribution network in each scenario. The objective function is the total operating cost of 
DG, where the constraints are system, power flow, and DG operation constraints. The upper 
layer transfers the planning scheme of DG to the lower layer. After receiving the scheme, the 
lower layer calculates the total operation cost of DG, transmits the calculation results to the 
upper layer, where these results are used to calculate the objective function of the upper layer, 
and iterates to the maximum number of iterations. The above process is repeated until the 
maximum number of iterations is reached.

3.	 Sand Cat Swarm Optimization Algorithm (SCSO) and Its Improvement

3.1	 Sand cat swarm optimization (SCSO) algorithm

	 In this study, the initialization method combining tent mapping and the Sobol sequence is 
applied to generate a more evenly distributed initial solution, which can considerably increase 
the performance and optimization speed of the algorithm. Then, we add the adaptive factor to 

Fig. 1.	 Layered model architecture.
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the update formula of the SCSO algorithm. The value of the adaptive factor can change with the 
iteration, so that the performance of the algorithm can be improved and the optimal solution can 
be found more rapidly.
	 In SCSO, the position of each sand cat represents a candidate solution to the problem. The 
strategy of searching for prey simulates the sand cat’s search for prey, which mainly relies on its 
sensitive hearing and ability to perceive low-frequency sounds. The sand cat’s location update 
formula is 

	
2 ,M c

G M
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Iter Iter
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= −  + 
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where rG is a low-frequency sensing parameter. Ra is a random number between 0 and 1. LM is 
the parameter for simulating the hearing of sand cats, where Iterc and Itermax are the current and 
maximal iterations, respectively. RJ is the parameter for determining the two-stage switching 
between searching prey and attacking prey. ( )cP t



 is the best position of the sand cat and ( )bP t


 is 
the position of a random sand cat at the current number of iterations. 
	 After searching for prey, the sand cat approaches the prey using its sensitive hearing. The 
position update formula of the sand cat attacking prey is expressed as
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	 By combining the two stages, the formula for simulating the predation process of sand cats is 
expressed as 
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3.2	 Improved sand cat swarm optimization (ISCSO) algorithm

3.2.1	 Improvement of population position initialization

	 The distribution of the initial population generated by the SCSO algorithm is uneven and 
random. It combines tent mapping and Sobol sequence methods to perform the algorithm 
initialization process. Its form is expressed as 
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where μ is the boundary constant with the value of 0.3.

3.2.2	 Dynamic self-adaptive factor

	 The adaptive factor is introduced into the position update formula of the sand cat. The global 
search ability of the algorithm is enhanced by the large weight in the early iteration, and the 
convergence speed is improved. The factor gradually decreases with the iteration, enhancing the 
algorithm’s search ability and the accuracy of the solution. The weight formula is expressed as 
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	 The position update formula of the sand cat after introducing the adaptive factor w1 is 
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	 When |RJ| ≤ 1, ISCSO uses the search position formula to update the position in the search 
phase; when |RJ| > 1, ISCSO is in the development phase, and the formula is applied to update 
the location.

3.2.3	 Whale fall variation

	 The whale fall of the BWO algorithm simulates the death of individuals in the beluga whale 
population. The whale fall can remove the worst individuals in the population and generate an 
individual at a random position to maintain the balance of the number of individuals in the 
population. The whale fall is introduced as a population variation to SCSO to escape the local 
optimum. It is expressed as
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where r1, r2, and r3 are random numbers, rP


 is the position of a random sand cat, Ps is the step 
size of variation, ub and lb are the bounds of the variable, and ρf is the probability of variation. 

3.3	 Performance analysis of ISCSO algorithm

	 In this study, three measures were used to improve the SCSO algorithm, and the ISCSO 
algorithm was thus derived. Four benchmark functions including the single-peak and multipeak 
test functions were selected for the performance test, as shown in Table 1.
	 The test results using Matlab R2021b in the F1–F4 test are shown in Table 2. The number of 
iterations of each optimization algorithm is set as 500 times, and the number of populations is set 
as 30. Also, each test function runs 20 times. In the test results of unimodal test functions, the 
test results of the ISCSO algorithm are superior to those of the SCSO, PSO, GWO, and WOA 
algorithms, confirming the best optimization effect. In addition, its average and optimal values 
are closest to the optimal value of the test function. Also, the standard deviation of ISCSO in the 
results of the unimodal test function is the smallest, indicating the highest stability. 

4.	 Case Analysis

	 The curves of wind speed and light intensity in four seasons obtained by K-means clustering 
are shown in Fig. 2. The wind speed and light intensity change with time. The difference 
between the wind speed and the light intensity in different seasons is obvious. The wind speed in 
winter and spring is higher, and the light intensity in spring and summer is higher.
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Benchmark test functions.
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Fig. 2.	 (Color online) Seasonal wind speed and light intensity curve. (a) Intensity of illumination and (b) wind 
speed.

Table 2
Test results of benchmark functions.
Function Algorithm Average Std Best fitness Worst fitness

F(x1)

ISCSO 1.3972E−165 0 2.9254E−168 5.3965E−165
SCSO 1.3989E−113 3.1252E−113 4.2559E−119 6.9896E−113
WOA 2.3949E−70 3.8502E−70 1.6288E−72 9.2178E−70
PSO 0.0212 0.0199 0.0065 0.5580

F(x2)

ISCSO 3.5881E−85 7.8830E−85 2.0255E−89 1.7688E−84
SCSO 5.1038E−61 1.0130E−60 1.0416E−64 2.3202E−60
WOA 6.0277E−53 3.0600E−52 3.7024E−60 1.6876E−51
PSO 16.4324 0.9043 14.7342 18.3365

F(x3)

ISCSO 8.2961E−04 7.2222E−04 9.0405E−05 0.0018
SCSO 2.4993 0.1309 2.3041 2.6329
WOA 1.7073E+04 1.3726E+04 0.0135E+04 3.5566E+04
PSO 2.1618 0.5057 1.4054 2.7595

F(x4)

ISCSO 0.4185E−03 0.0972E−03 0.3076E−03 0.5211E−03
SCSO 0.0007 0.0005 0.0003 0.0013
WOA 0.7092E−03 0.0337E−03 0.6717E−03 0.7489E−03
PSO 0.0011 3.2163E−04 8.2751E−04 0.0016

(a)

(b)
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	 In this study, the IEEE33 system was selected to test the system. The total load of the system 
is 3715 + j2350 KVA. The reference voltage of the system is 12.66 kV, and other parameters are 
the default parameters of the IEEE33 system. The types of DG are WT and PV. Table 3 shows 
some parameters of WT and PV. The candidate access nodes of the WT access system are 12, 17, 
and 26, and the candidate access nodes of PV are 3, 7, and 28. The maximum DG capacities of 
the total system and the single node connected to the distribution network are 1800 and 800 kW, 
respectively.
	 A variety of algorithms, that is, the PSO, SCSO, and WOA algorithms, are selected for 
comparison with the ISCSO algorithm. The number of individuals in all algorithms is set to 50, 
and the number of iterations is 100. The iterative curves for the different algorithms are shown in 
Fig. 3.
	 The results obtained with the four algorithms are shown in Table 4 and reveal that the 
proposed ISCSO has the highest accuracy. Also, both the total annual cost and the objective 
function value are the smallest, presenting the highest economy.

Fig. 3.	 (Color online) Convergence curves for different algorithms.

Table 4
Running results of different algorithms.
Algorithm {WT}bus (kW) {PV}bus (kW) Cost ($)
PSO {759}12{240}17 {317}7{470}28 1.191E−06
SCSO {203}12{795}17 {800}28 1.2064E−06
WOA {692}12{251}17 {508}7{348}28 1.192E−06
ISCSO {654}12{345}17 {800}28 1.190E−06

Table3
Parameters of DGs.

WT PV
Investment cost ($/kWh) 855.9 966.3
Operating and maintenance cost ($/kWh) 0.03 0.03
Maximum useful life (year) 20 20
Present value coefficient 0.06 0.06
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Table 5
Operation results for the two cases.
Case {WT}bus (kW) {PV}bus (kW) ftotal ($)
Case 1 — — 1.37E−06
Case 2 {654}13{345}17 {800}27 1.19E−06

Table 6
Cost components of the two cases.

Case Cost ($)
Cl Com Cen Closs

Case 1 — — 1.31 E−06 6.55 E−04
Case 2 7.45 E−04 2.05 E−05 8.71 E−05 3.92 E−04

Fig. 4.	 (Color online) Total voltage deviation for the summer scenario in the two cases.

	 The IEEE33 system is evaluated from the economic viewpoint, and the DG is planned. The 
smaller the annual comprehensive cost, the higher the economic benefit of the system. Two 
scenarios are set up to verify the effectiveness of the proposed model through comparative 
experiments. 
Case 1: The initial system has no DG installed.
Case 2: The proposed model is used to install DG into the system.
	 The optimization results for the two scenarios are shown in Table 5. Compared with the 
initial Case 1, the total annual cost of Case 2 is reduced by 13.1%. The details of the cost of each 
case are shown in Table 6. In Case 1, most of the cost is that for purchasing electricity. In Case 2, 
the distribution network with DG shows increases in both investment and operation costs. On 
the other hand, the cost of purchasing electricity is considerably reduced by 33.5%, and the cost 
of active power loss is reduced by 40.2%.
	 Figure 4 shows the total voltage deviation in each node within one day in the summer 
scenario. Most of the node voltage deviations in Case 1 are large and some even exceed the limit. 
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Fig. 6.	 (Color online) Three-dimensional voltage distribution in the two cases. (a) Case 1 and (b) case 2.

(a) (b)

Fig. 5.	 (Color online) 24 h power loss in the two cases.

In Case 2, DG is installed so the total voltage deviation in most nodes decreases significantly. 
Figure 5 shows the 24 h active power loss in the summer scenario. Compared with the initial 
state without DG, the network loss in Case 2 is reduced every hour. In particular, between 8 and 
17 h, the network loss is about half that without DG.
	 Three-dimensional diagrams of typical daily voltage distributions under various scenarios in 
summer are shown in Fig. 6. In Case 1, the voltage fluctuation is large and the overall power 
level is low. In Case 2, the difference between the highest and lowest node voltages is very small, 
and only a small part of the node voltage deviation exceeds the limit. 
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5.	 Conclusions

	 In this study, a DG hierarchical planning model using ISCSO has been well established under 
wind and solar uncertainties. The major contributions of this study are as follows. 
(1)	The IEEE33 example verifies that the proposed model can effectively determine the scheme 

of DG access to the distribution network, significantly improve the system economy and 
power efficiency, and thus reduce network loss. 

(2)	By combining the initialization process, adaptive weight, and whale drop mutation, the 
ISCSO algorithm presents an excellent performance in convergence speed and accuracy 
compared with the other classical algorithms

(3)	In the IEEE33 test system, the total annual cost is reduced by 13.1%, and the active network 
loss is reduced by 40.5%. This implies that the voltage deviation and network loss are 
reduced, thus ensuring the system voltage stability.

	 This study was focused on economic indicators without considering the impact of reactive 
power and voltage deviation. The issues regarding reactive power and voltage are proposed as 
topics of future work on the DG hierarchical planning model. In the future research, the voltage 
deviation can be used as one of the objective functions of the model to improve the power quality 
of the system. Additionally, the grid-connected distributed power supply may suffer from an 
island effect. Anti-islanding protection approaches can be developed and applied to the grid-
connected line. Moreover, the suppression of the harmonic current generated in distributed 
generation networks might be another topic of future studies.
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