
3609Sensors and Materials, Vol. 36, No. 8 (2024) 3609–3624
MYU Tokyo

S & M 3753

*Corresponding author: e-mail: hclin@ncut.edu.tw
https://doi.org/10.18494/SAM4809

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Sensor-data-based Photovoltaic Power Prediction Using Support 
Vector Machine Optimized by Improved Dragonfly Algorithm 

Jincai Niu,1,2 Yu Tang,1,2 and Hsiung-Cheng Lin3*

1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,
Tianjin 300401, China

2Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, 
Hebei University of Technology, Tianjin 300130, China

3Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan

(Received November 26, 2023; accepted April 15, 2024)

Keywords:	 new energy, photovoltaic system, power prediction, intelligent algorithm, support vector 
machine, economic dispatch

	 A large-scale integration of photovoltaic (PV) systems can degrade the stability of the power 
grid. Therefore, it is important to accurately predict the short-term output power generated from 
PV systems to achieve better grid power distribution and allocation. For this reason, a short-term 
PV power prediction model that uses the data collected from temperature sensors, irradiance 
sensors, and other relevant sensors was proposed, in which an improved dragonfly algorithm 
(IDA) was applied to optimize the support vector machine (SVM). First, the output power curves 
of PV systems under sunny, cloudy, and rainy conditions were analyzed to determine the input 
variables of the prediction model, which included temperature, relative humidity, and solar 
radiation intensity. Second, the original dragonfly algorithm in the optimization process was 
improved, and then, this IDA was utilized to optimize the parameters of SVM, enhancing the 
predictive capability of the model. Finally, the IDA-optimized SVM (IDA-SVM) model was 
applied to predict the PV output power. Test performance results demonstrated that the average 
absolute percentage errors of IDA-SVM were 2.42, 5.96, and 7.44% for sunny, cloudy, and rainy 
days, respectively, outperforming other comparative models. The performance results showed 
that the proposed model can not only improve the stability of PV integration, but also effectively 
increase the penetration rate of PV energy and enhance the reliability of power system operation.

1.	 Introduction

	 Renewable energy systems are increasingly being applied worldwide, with solar energy being 
considered a major renewable energy resource.(1,2) However, the photovoltaic (PV) output power 
is strongly related to weather conditions; thus, it is very uncertain and nonstationary.(3,4) To solve 
this problem, it is crucial to accurately predict the PV power generation.(5) Sharadga et al.(6) 
introduced several time series prediction methods, including statistical and artificial intelligence 
methods for PV power prediction. Alsharif et al.(7) proposed a seasonal autoregressive integrated 
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moving average (SARIMA) model for predicting daily and monthly solar radiations in Seoul, 
Korea. The results showed that the model exhibited a good fit. However, it was only better when 
applied in ultrashort-term prediction. To improve the performance of the time series method in 
longer prediction periods, Ren et al.(8) combined SARIMA and support vector machine (SVM) 
to build a new hybrid prediction model that outperformed SARIMA and SVM alone.
	 Recently, machine learning algorithms have been widely used owing to their simplicity of 
operation and ability to deal with nonlinear problems.(9) Common machine-learning-based 
forecasting models mainly include the artificial neural network (ANN), grey theory, and SVM. 
Among them, grey theory requires that the initial data sequence satisfies the law of exponential 
growth, and a very fast sequence change will also lead to a decline in fitting ability. Therefore, 
grey theory cannot fully adapt to the PV output affected by changeable weather, so it is not 
practical in PV power prediction.(6) Neural network models in specific cases can attain a high 
prediction accuracy, but traditional ANNs are affected by their own weights and parameter 
selection and thus likely produce large errors. Moreover, the model used for a neural network 
structure containing multiple hidden layers requires a massive amount of training data, 
increasing its complexity and training time and reducing its convergence speed.(7) Bouzerdoum 
et al.(10) presented a hybrid framework of a prediction model and uncertainty evaluation based 
on Gaussian process regression and the Kalman filter. The results showed that their prediction 
accuracy was higher than those of some existing methods. Theocharides et al.(11) proposed a PV 
power generation forecasting model optimized by differential evolution and particle swarm 
optimization (PSO). Their results demonstrated that the approach is more efficient and accurate 
than a traditional method. Faris et al.(12) proposed a hybrid prediction model based on the radial 
basis neural network and gray prediction algorithm for PV output power prediction for different 
seasons. The results showed that it has a higher prediction ability than the original prediction 
models. In addition, the learning machine model such as SVM can converge quickly. However, 
the fitting ability for time-series data is not high, and the model parameter search lacks 
robustness.(13) Moreover, the computational performance of SVM is highly dependent on the 
model kernel function.(14) Therefore, there is a need to continuously improve or explore new 
algorithms to realize more accurate predictions.
	 Meng et al.(15) combined wavelet transform, PSO, and SVM for a short-term PV power 
forecast. In the proposed model, wavelets were used to process the training data and PSO was 
used to optimize the parameters of SVM. Seyedmahmoudian et al.(16) divided the weather data 
into specific categories by means of fuzzy inference, and then, used the SVM model for each 
category of weather for prediction. The prediction results proved that SVM has a good effect on 
different types of weather. Jaziri et al.(17) adopted least-squares SVM and analyzed the system 
efficiency of solar air heaters. The performance of the SVM model was improved, but the 
prediction results remained poor owing to its own shortcomings. 
	 The structure of the remaining sections is as follows. In Sect. 2, we introduce the principle of 
SVM and propose the improved dragonfly algorithm (IDA). In Sect. 3, we analyze the factors 
affecting PV power and determine the inputs and outputs of the PV power prediction model. In 
Sect. 4, we test and validate the IDA and IDA-optimized SVM (IDA-SVM) model. In Sect. 5, we 
present the conclusions of this study.
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2.	 PV Output Power Prediction Model Based on Sensor Data

2.1	 SVM model

	 We first outline the SVM model used for optimization in this study. SVM can map low-
dimensional samples into a higher dimensional space Rn to better solve classification and 
nonlinear regression problems.
	 The functional relationship of SVM is expressed as

	 ( ) Ty x x bω= + ,	 (1)

where y(x) is the predicted value corresponding to x, b is the bias term, and ω is the weight 
coefficient.
	 SVM is used to minimize the error between y(x) and the actual value. To strengthen the SVM 
generalization ability during the model process, the objective function and constraint conditions 
are respectively defined as 
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where ξi is the relaxation factor; C is the penalty factor, which constrains ξi; xi and yi are the 
inputs and outputs of the model training samples, respectively; i ∈ [1, 2,..., n], where n is the 
number of samples.
	 We consider the effects of factors such as temperature and radiance on PV power. Therefore, 
a kernel function is added to the SVM regression equation, as follows:

	 ( ) ( )
1

,
n

i i i
i

y x y K x x bα
=

= +∑ ,	 (4)

where αi is the Lagrange multiplier introduced to solve eq. (2); K(x, xi) is the kernel function, K(x, 
xi) = φ(x) ∙ φ(xi); and φ(x) is the mapping function of data from low-dimensional space to high-
dimensional space.
	 In this study, the radial basis function (RBF) is selected as the kernel function. Accordingly, 
it is expressed as



3612	 Sensors and Materials, Vol. 36, No. 8 (2024)

	 ( ) 2, exp i
i

x x
K x x

δ
 −

= − 
 

,	 (5)

where δ > 0 is the bandwidth of RBF.
	 In SVM, the kernel function parameter δ and the penalty factor C are randomly selected, 
which can affect the predictive performance of SVM. In this study, we optimize the selection of 
values (C, δ) in SVM by using the dragonfly algorithm (DA). DA is used to determine the 
performance parameter combination of SVM to maximize the predictive performance.

2.2	 IDA

	 DA is a swarm intelligence algorithm that simulates the swarm behavior of dragonflies in 
nature.(13) In this study, adaptive factors and differential variation strategies are introduced into 
DA to improve its performance. IDA is as follows.

2.2.1	 Adaptive factor

	 The adaptive factor ct is added to DA to enhance its search capability and expressed as

	 1
1t nc

e−=
+

,	 (6)

where n is the relative rate of change, which is defined as

	 i best

best

F F
n

F
−

= .	 (7)

Here, Fbest is the best fitness value in the current iteration and Fi is the objective function value 
of the ith dragonfly.
	 Accordingly, the updating of dragonfly positions in static group behavior is expressed as

	 1 1t t t tY c Y Y+ += + ∆ .	 (8)

	 The equation for updating the position of a dragonfly in dynamic group behavior is expressed 
as 

	 ( )1 't t t tY c Y Le vy dim Y+ = + × ,	 (9)

where t is the number of iterations; Yt and Yt+1 are the positions of the dragonfly at the tth and 
(t + 1)th iterations, respectively; and dim is the dimension of the position vector. The 
mathematical expression for Le'vy flight is expressed as
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where r1 and r2 are random numbers that belong to [0, 1] and β is a constant with a value of 1.5. 
The expression of σ is shown as 
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where T(x) = (x − 1)!.

2.2.2	 Differential variation strategy

	 The differential variation strategy is introduced to DA; it includes three operations, namely, 
the generation of variant individuals, crossover operation, and merit selection operation.
	 First, three different populations of individuals, Yk, Y1, and Y2, are randomly selected, and the 
position of Yk is updated.

	 ( )1 2k bestY Y Y Yµ= + ⋅ − 	 (12)

Ybest is the position of the optimal individual and μ is the differential variance factor, which is 
expressed as

	 ( ) k best
l u l

worst best

F F
F F

µ µ µ µ
−

= + − ×
−

,	 (13)

where μu and μl are the maximum (0.9) and minimum (0.1) values of μ, and Fbest and Fworst are 
the best and worst fitness values, respectively.
	 Next, the crossover operation is performed on mutated populations with a crossover factor of 
pCR, which is calculated as

	 ( )( )1 1 0,1
2

pCR rand= × + ,	 (14)

where pCR is a random number between 0 and 1. In the crossover operation, a number r between 
0 and 1 is randomly generated. If r is greater than pCR, the individual before the crossover is 
replaced by the individual after the crossover, and if vice versa, the position of the individual 
remains unchanged. After the crossover operation, the fitness value of the new population is 
calculated to finally determine the best dragonfly position.
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3.	 Analysis of Factors Affecting PV Power 

	 In this study, the PV output power under sunny, cloudy, and rainy days was selected to test 
the proposed model on the basis of the historical data of the DKASC PV plant in Australia in 
2016. The PV output power curves under three different weather conditions between 8:00 and 
17:55 recorded every 5 min are plotted in Fig. 1.
	 From Fig. 1, it can be seen that the PV output power curve on sunny days is smooth and 
reaches the maximum at 12:00–13:00. On rainy days, the overall solar radiation intensity is 
lower than other days such that the PV output power is lower. Under cloudy weather, the light 
intensity shows a similar trend to that on a sunny day, but the PV output power is more volatile. 
In reality, many external environmental factors also affect PV power, including temperature, 
solar radiation intensity, and the relative humidity of air. Figure 2 shows the plots of PV output 
power with temperature, solar radiation intensity, and relative humidity. 
	 Figure 2(a) indicates a low correlation between temperature and output power. Figure 2(b) 
indicates a negative correlation between PV power and relative humidity. Figure 2(c) indicates a 
high correlation between solar radiation intensity and output power.

4.	 Test and Outcome Analysis

4.1	 Test functions

	 Five classical functions in Table 1 were chosen to verify the convergence ability of IDA, 
where F1 and F2 are single-peaked functions, and F3, F4, and F5 are multipeaked functions. The 
PSO, optimal foraging algorithm (OFA), gray wolf optimization (GWO), DA, and IDA were 
selected to test the functions. All algorithms were carried out using MATLAB 2021a with a 
maximum of 30 iterations. c1 and c2 of PSO were set to 0.72. The constant factor β in DA and 
IDA was set to 1.5. The cross factor in IDA was set to 0.6. The mean and standard deviation of 

Fig. 1.	 (Color online) PV output power curves under different weather situations.
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the results of 30 tests were used as performance indicators. The statistical results are shown in 
Table 2.
	 The results reveal that the optimal solution provided by IDA is better than those given by the 
other algorithms and achieves the highest accuracy. Simultaneously, it has the lowest standard 
deviation and average. In particular, the standard deviation of IDA in F3 and F5 reaches 0, and in 
F1, F2, and F4, the standard deviation is the smallest. It is proved that the proposed method has 
good optimization stability.

Fig. 2.	 (Color online) Correlation curves between three meteorological factors and PV power. (a) Correlation 
between temperature and PV power. (b) Correlation between relative humidity and PV power. (c) Correlation 
between radiation intensity and PV power.
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4.2	 Implementation of IDA-SVM prediction model

	 The flowchart of the IDA-SVM prediction model is shown in Fig. 3.
(1)	�Obtain the PV prediction dataset based on sensor data, including radiation intensity, 

temperature, relative humidity, and PV output power.
(2)	�Normalize PV data and divide them into testing and training data.
(3)	�Set parameters: the max-iteration is 30, the population is 30, the dimension is 2, the range of 

the penalty factor C is [0.1, 1200], and the range of the function parameter δ is [0.01, 100]. 
Other parameters have default values.

(4)	�IDA starts iterative optimization using the training dataset, where the root mean square error 
(RMSE) is selected as the objective function for optimization. 

(5)	�Judge whether IDA has reached optimal convergence. If yes, the optimal output is obtained 
as the individual position d(d1, d2) at this time; if not, continue to proceed with optimization.

(6)	�The optimal individual position d(d1, d2) corresponds to (C, δ) in SVM.
(7)	�IDA-SVM is used to predict the testing data to obtain the output.

4.3	 Model evaluation

	 The data obtained on January 21 (sunny day), February 26 (cloudy day), and March 29 (rainy 
day) from the DKASC PV plant in Australia were used for testing the model. The data from a 
period of 10 days before the date of collection of the test data were used for the training process. 
RMSE, mean absolute percentage error (MAPE), mean absolute error (MAE), the maximum 
value of absolute error (AEmax), and the maximum value of relative error (REmax) were chosen to 
evaluate the model performance. They are expressed as follows.

	 ( )21 100%
M

pre re
i

RMSE P P
M

= − ×∑ 	 (15)

Table 2
Test results of PSO, OFA, GWO, DA, and IDA.
F Statistical values PSO OFA GWO DA IDA

F1
Average value 0.24 5.20 × 103 9.27E × 10−9 1.44 × 103 1.27 × 10−35

Standard deviation 0.16 3.86 × 103 6.40E × 10−9 405.70 3.73 × 10−35

F2
Average value 1.44 1.05 × 105 5.52 × 10−6 17.24 4.10 × 10−19

Standard deviation 0.54 1.02 × 105 2.82 × 10−6 2.36 1.03 × 10−18

F3
Average value 95.06 268.13 11.22 164.26 0
Standard deviation 29.30 180.60 7.06 19.26 0

F4
Average value 1.26 × 10−4 5.60 2.04 × 10−11 5.74 4.68 × 10−15

Standard deviation 8.74 × 10−5 3.22 1.91 × 10−11 1.05 1.30 × 10−15

F5
Average value 6.51 50.06 1.54E × 10−2 14.23 0
Standard deviation 2.91 40.20 2.11 × 10−2 3.81 0
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Fig. 3.	 (Color online) Flowchart of IDA-SVM prediction model.
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Here, M is the total number of samples, Ppre is the predicted PV output power, and Pre is the true 
value. In addition, to evaluate the computational complexity of the model, the time t (s) was 
selected in this study.

4.3.1	 Case 1: On sunny days

	 Dragonfly Algorithm optimized Support Vector Machine (DA-SVM), Optimal Foraging 
Algorithm optimized Support Vector Machine (OFA-SVM), SVM, and backpropagation 
algorithm (BP) models were used for comparison, where BP is a multilayer feedforward neural 
network with error backpropagation and signal forward propagation. On sunny days, the 
historical PV power data obtained from January 10 to 20 were selected for training the model, 
and the data from January 21 were used for prediction. The prediction results are shown in Fig. 
4.
	 From Fig. 4, the PV output power curves from all algorithms indicate a smooth rising trend 
from 8:00 to 13:00 and a smooth falling trend from 13:00 to 15:55. Among them, the prediction 
curve of IDA-SVM is most consistent with the actual curve. In the time period of 8:00–14:00, 
the curves of OFA-SVM, BP, and SVM clearly deviated from the actual output, but only SVM 

8:00 10:00 12:00 14:00 16:00

Time

1

2

3

4

5

1

2

3

Po
w

er
 o

ut
pu

t /
 k

W

Actual value

IDA-SVM

DA-SVM

OFA-SVM

SVM

BP

Fig. 4.	 (Color online) Prediction results of five algorithms on sunny days.
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has a significant fluctuation. After 14:00, all the models fit the actual PV output curve. In this 
study, absolute error (AE), relative error (RE), MAE, MAPE, and RMSE were selected to evaluate 
the effectiveness of prediction performance. Prediction errors based on the above evaluation 
tools are shown in Table 3, and RE curves are shown in Fig. 5.
	 As shown in Table 3, the MAE values of IDA-SVM decreased by 24.49, 72.52, 62.42, and 
58.84% compared with those of DA-SVM, OFA-SVM, BP, and SVM, respectively. The MAPE 
values of IDA-SVM decreased by 0.65, 4.06, 2.27, and 2.8% compared with those of DA-SVM, 
OFA-SVM, BP, and SVM, respectively. The RMSE values of IDA-SVM decreased by 2.08, 
32.47, 10.41, and 10.17% compared with those of DA-SVM, OFA-SVM, BP, and SVM, 
respectively. However, the IDA-SVM prediction required the longest computational time among 
all the algorithms.
	 In Fig. 5, the IDA-SVM model presents the smallest RE and the smoothest curve among the 
five models. DA-SVM is poorer than IDA-SVM and OFA-SVM. BP and SVM have large REs in 
most periods of time. The RE of IDA-SVM decreases steadily from 8:00 to 10:00 and shows only 
a slight fluctuation close to 0 after 10:00. The trend of the DA-SVM curve is the same as that of 
the IDA-SVM curve, but RE is larger. Although the REs of OFA-SVM, BP, and SVM decrease 
rapidly before 9:00, they show a significant fluctuation after 9:00.

Table 3
Prediction errors on sunny days.
Model AEmax MAE REmax (%) MAPE (%) RMSE (%) t (s)
IDA-SVM 0.2440 0.0552 21.94 2.42 8.04 234.09
DA-SVM 0.2862 0.0731 25.57 3.07 10.12 71.52
OFA-SVM 0.4656 0.2009 41.86 6.48 40.51 35.68
BP 0.4513 0.1469 19.92 4.69 18.45 1.86
SVM 0.4920 0.1341 43.15 4.60 18.21 0.51
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Fig. 5.	 (Color online) RE curves on sunny days.
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4.3.2	 Case 2: On cloudy days

	 On cloudy days, the historical PV output data from February 15 to 25 were selected for the 
training process, and the data from Feb. 26 were used for prediction. The prediction results on 
cloudy days are shown in Fig. 6.
	 Figure 6 shows that under cloudy weather, the light intensity changes rapidly. Compared with 
the other model curves, the IDA-SVM prediction model curve shows a better result, maintaining 
almost the same value as the actual curve in most of the time periods except around 14:00. The 
error values are shown in Table 4, and the RE curves are shown in Fig. 7. 
	 As seen in Table 4, the MAE values of IDA-SVM decreased by 38.48, 32.37, 9.43, and 33.30% 
compared with those of DA-SVM, OFA-SVM, BP, and SVM, respectively. The MAPE values of 
IDA-SVM decreased by 7.45, 4.24, 0.82, and 5.86% compared with those of DA-SVM, OFA-
SVM, BP, and SVM, respectively. The RMSE values of IDA-SVM decreased by 8.11, 15.51, 0.39, 
and 4.01% compared with those of DA-SVM, OFA-SVM, BP, and SVM, respectively. In the 
prediction results, the AEmax values of IDA-SVM and DA-SVM are slightly higher than those of 

Fig. 6.	 (Color online) Prediction results of five models on cloudy days.
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Table 4
Prediction errors of five models on cloudy days.
Model AEmax MAE REmax (%) MAPE (%) RMSE (%) t (s)
IDA-SVM 0.7487 0.1402 23.12 5.96 20.68 258.07
DA-SVM 0.9050 0.2279 91.51 13.41 28.79 157.33
OFA-SVM 0.6415 0.2073 52.35 10.20 36.19 116.05
BP 0.6692 0.1548 27.68 6.78 21.07 1.24
SVM 0.6599 0.2102 87.36 11.82 24.69 0.44
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the other models. Nevertheless, in general, IDA-SVM has the smallest error and confirms a 
higher prediction performance.
	 Figure 7 shows that the error curves for all five models show similar trends. RE increased 
initially and then decreased abruptly from 8:00 to 9:00. After 10:00, all REs reached a lower 
level relative to 0. Among them, the IDA-SVM model has less fluctuation. On the other hand, 
the RE of the DA-SVM prediction reached a high level before 10:00 and subsequently decreased. 
However, the REs of OFA-SVM, BP, and SVM models remained high at most times.

4.3.3	 Case 3: On rainy days

	 On rainy days, the historical PV output data obtained from March 19 to 28 were selected for 
training, and the data from March 29 were selected for prediction. The prediction results 
obtained using five models on rainy days are shown in Fig. 8. It is found that the IDA-SVM 
model prediction curve is closest to the actual curve, and the OFA-SVM model has the worst 
prediction effect owing to a significant deviation at most times. 
	 In Table 5, the MAE values of IDA-SVM decreased by 0.0113, 0.0456, 0.049, and 0.0509 
compared with those of DA-SVM, OFA-SVM, BP, and SVM, respectively. The MAPE values of 
IDA-SVM decreased by 1.37, 7.68, 8.06, and 9.95% compared with those of DA-SVM, OFA-
SVM, BP, and SVM, respectively. The RMSE values of IDA-SVM decreased by 0.97, 18.28, 5.19, 
and 5.6% compared with those of DA-SVM, OFA-SVM, BP, and SVM, respectively. IDA-SVM 
yields the best results for all five indicators, which is consistent with the results shown in Fig. 9.
	 In Fig. 9, the RE of IDA-SVM is less than those of the other four models at most times. At the 
beginning, the REs of OFA-SVM and SVM were large, and those of DA-SVM and IDA-SVM 

Fig. 7.	 (Color online) RE curves of five models on cloudy days.
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Fig. 8.	 (Color online) Prediction results of five models on rainy days.

Table 5
Prediction errors of five models on rainy days.
Model AEmax MAE REmax (%) MAPE (%) RMSE (%) t (s)
IDA-SVM 0.5877 0.0772 39.40 7.44 11.32 227.46
DA-SVM 0.6080 0.0885 45.74 8.81 12.29 90.77
OFA-SVM 0.7452 0.1228 138.82 15.12 29.60 50.04
BP 0.7231 0.1262 65.74 15.50 16.51 1.30
SVM 0.6113 0.1281 158.92 17.39 16.92 0.53
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Fig. 9.	 (Color online) RE curves of five models on rainy days.
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were small. On the other hand, OFA-SVM and SVM had sharp fluctuations at 8:00–10:00 and 
13:00, indicating poor performance. Although the RE of IDA-SVM initially was higher than that 
of DA-SVM, it was almost close to 0 at most other times. 

5.	 Conclusions

	 For the integrated energy system or microgrid with PV power generation, the formulation of 
its dispatching strategy based on accurate power prediction needs to be addressed. In this study, 
the short-term PV power prediction method based on the IDA-SVM model achieved a higher 
prediction ability under different weather conditions than DA-SVM, OFA-SVM, SVM, and BP 
approaches. The test results verify that the IDA-SVM model can effectively improve the 
accuracy in short-term PV power prediction and thus enable the acceptance of PV energy in the 
power grid. However, the running time of the IDA-SVM model is slightly longer than those of 
the other existing models in obtaining prediction results with higher precision. Nevertheless, in 
practice, with the effect of considerably improving the prediction accuracy, the running time 
using the IDA-SVM model is satisfactory for prediction for the next 1–2 days. It can be 
concluded that the IDA-SVM model provides the best solution for PV output power prediction 
regardless of weather conditions.
	 The proposed short-term PV power prediction model can not only improve the operational 
efficiency of PV power generation systems, but also provide a crucial guideline for the 
development of intelligent energy management systems, further promoting the application and 
popularization of clean energy. The use of samples of these three weather conditions enables the 
model to gain a deeper understanding of the trends in PV power generation under different 
meteorological backgrounds. This training method can allow the model to more comprehensively 
adapt to diverse weather conditions, thereby improving its prediction accuracy under unknown 
weather conditions.
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