
3743Sensors and Materials, Vol. 36, No. 9 (2024) 3743–3755
MYU Tokyo

S & M 3763

*Corresponding author: e-mail: huangcc@nkust.edu.tw
**Corresponding author: e-mail: chiccocl@gmail.com
†These authors contributed equally to this work.
https://doi.org/10.18494/SAM4853 ISSN 0914-4935 © MYU K.K.

https://myukk.org/

Exploring Learning Strategies for Training Deep Neural Networks
Using Multiple Graphics Processing Units

Nien-Tsu Hu,1† Ching-Chien Huang,2†* Chih-Chieh Mo,2 and Chien-Lin Huang3**

1Graduate Institute of Automation Technology, National Taipei University of Technology,
1, Sec. 3, Zhongxiao E. Rd., Taipei City 10608, Taiwan (R.O.C.)

2Department of Mechanical Engineering, National Kaohsiung University of Science and Technology,
No. 415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807618, Taiwan (R.O.C.)

3Babelcast.com, Portland, OR 97209, USA

(Received January 7, 2024; accepted February 28, 2024)

Keywords: learning strategy, multiple GPUs, minibatch, learning rate, deep neural networks, speech
recognition

 Neural network algorithms are becoming more commonly used to model big data, such as
images and speech. Although they often offer superior performance, they require more training
time than traditional approaches. Graphics processing units (GPUs) are an excellent solution for
reducing training time. The use of multiple GPUs, in addition to a single GPU, can further
improve computing power. Training DNNs with algorithm and computer hardware support can
be challenging when selecting an appropriate learning strategy. In this work, we investigate
various learning strategies for training DNNs using multiple GPUs. Experimental data show that
using six GPUs with the suggested approach results in a speed boost of approximately four times
that of using a single GPU. Moreover, the precision of the suggested method using six GPUs is
similar to that of using a single GPU.

1. Introduction

 Recent advancements in algorithms and computer hardware have enabled the training of
DNNs using large datasets for tasks such as speech recognition, text analysis, and image
classification. For instance, convolutional neural networks can effectively categorize images into
high-level object concepts.(1–3) Automated image description has attracted significant research
interest in the realm of multimedia. Many methods utilize convolutional neural networks (CNNs)
to extract visual data for representing an image’s content. The visual data are subsequently
transmitted to recurrent neural networks to generate natural language.(1) An automated
evaluation system utilizing deep learning and natural language processing techniques is being
proposed.(2) The recommended method involves using a reliable optical character recognition
(OCR) model to extract text from image files, and is known for its superior accuracy and
efficiency. In addition, natural language processing techniques such as Bidirectional Encoder

http://
http://
http://

3744 Sensors and Materials, Vol. 36, No. 9 (2024)

Representations from Transformers (BERT) and Generative Pretrained Transformer 3 (GPT-3)(3)
are used to extract keywords and summarize lengthy responses concisely. GPT-3, an
autoregressive language model with 175 billion parameters, has been tested for performance in
the few-shot setting. The application of GPT-3 does not require gradient updating or fine-tuning,
only task specification and a minimal amount of demonstration via textual interaction with the
model. Speech recognition applications commonly use feedforward and recurrent neural
networks.(4–11) The speech recognition system utilizes two types of acoustic feature and three
types of acoustic model(4) to improve accuracy and recognition. The system consists of six
subsystems, each employing distinct acoustic features and models. Extracting features is
essential for estimating numerical representation from speech samples. The Mel-frequency
cepstral coefficient (MFCC) is a widely used feature in speech recognition applications. The
second acoustic feature is an analysis known as perceptual linear prediction cepstrum. A DNN
(DNN) is a type of feedforward artificial neural network that has multiple hidden layers located
between its input and output. DNNs are trained with cross-entropy and subsequently trained for
sequence discrimination based on a state-level minimum Bayesian risk criterion. The subspace
Gaussian mixture model provides a succinct representation of a large collection of Gaussian
mixture models. We maximized the auxiliary function during the M-steps of the expectation-
maximization algorithm estimation of the hidden Markov model parameters with the training of
maximum mutual information. Acoustic and articulatory features are deeply embedded and
combined to identify speakers.(8) First, a universal background model, created using CNNs, is
employed in generating acoustic feature (AC) embeddings. As articulatory features (AF) are
significant phonological properties in speech production, a multilayer perceptron-based model is
constructed to extract AF embeddings. The extracted AC and AF embedding information was
concatenated into a combined feature vector for speaker recognition using a fully connected
neural network. Previous research suggests that speaker characterization can be achieved
through four different data augmentation techniques used with time delay neural networks and

Nomenclature
a Synapse weight
b Bias value
lr Learning rate
θ Gain/threshold
AC Acoustic feature
AF Articulatory feature
BERT Bidirectional encoder representations from transformers
CPU Central processing unit
CNTK Microsoft cognitive toolkit
CNN Convolutional neural network
DNN Deep neural network
GPU Graphics processing unit
GPT-3 Generative pretrained transformer 3
LSTM Long short-term memory neural network
ReLU Rectified linear unit
SGD Stochastic gradient descent
TDNN Time delay neural network
Tanh Hyperbolic tangent

Sensors and Materials, Vol. 36, No. 9 (2024) 3745

long short-term memory neural networks (TDNN-LSTM).(11) The suggested data augmentation
aims to increase the amount and diversity of the training data by incorporating various
techniques such as introducing speed perturbations, volume perturbations, room impulse
responses, and additive noises. The idea of speaker embedding based on TDNN-LSTM is more
efficient in capturing temporal information in speaker speech than traditional TDNN-based
x-vectors. In terms of computer hardware, computing on a graphics processing unit (GPU) can
significantly reduce the training time when training neural networks compared with that on a
conventional central processing unit (CPU).(12–15) GPUs are commonly utilized to train and
operate neural networks. Some of the techniques can significantly reduce the computational cost
on contemporary x86 CPUs.(12) Speech recognition can exemplify the development of a hybrid
hidden Markov model and neural network system, demonstrating a 10-fold acceleration over an
unoptimized baseline and a fourfold augmentation over an aggressively optimized floating-point
baseline with no reduction in accuracy. The techniques described extend readily to neural
network training and offer feasible and productive alternatives for the employment of specialized
and dedicated hardware. Deep belief networks, an important and fundamental branch of
profound learning models, have demonstrated successful implementation in numerous fields of
machine learning and pattern recognition, including computer vision and speech recognition.
Training neural networks with billions of parameters poses a significant computational challenge
to modern CPU architecture. Several studies have demonstrated the benefits of pretraining
neural networks on GPUs to achieve efficient implementations. A high-performing and efficient
neural network is implemented on the GPU, encompassing the pretraining and fine-tuning
procedures.(13) Experimental results demonstrate that the GPU (NVIDIA Tesla K40c) delivers
up to 22 speedups in the pretraining process and 33 speedups in the fine-tuning process
compared with traditional CPU (Intel Core i7-4790K) implementations. However, the algorithm
proposed affords superior performance compared with the OpenBLAS library on the CPU and
the CUBLAS library on the GPU. Additionally, the proposed approaches can facilitate the
acceleration of the training procedure, transitioning from using a solitary GPU to multiple
GPUs. Two frameworks are employed to execute the training of multiple GPUs, comprising data
parallelism and model parallelism.(16,17) The prevalence of the high concurrency and throughput
of GPUs makes them a popular tool for researchers to optimize distributed parallel computing
architectures. With the advancement in processor architecture, GPUs enable the execution of
multiple kernels simultaneously via stream queues. However, current research has not given
thorough consideration to optimizing concurrent streams and kernel block sizes, taking into
account the different hardware characteristics and kernel properties in distributed architectures.
Inadequate stream concurrency and kernel block size configuration may result in longer
execution periods and the inefficient use of computing resources while running the application.
Therefore, in a distributed heterogeneous environment, we suggest a co-concurrency mechanism
with multiple GPUs and streams to adjust the number of concurrent streams and explore the
ideal block size in the scheduling of tasks.(17) On the basis of the resources occupied during
concurrent stream scheduling and startup overhead, we propose a resource-aware concurrent
stream adaptive mechanism capable of dynamically adjusting the number of streams.

3746 Sensors and Materials, Vol. 36, No. 9 (2024)

 During the parallel processing of data, each minibatch is split over multiple GPUs.(18,19) Each
GPU computes a subgradient on its own sub-minibatch. Subgradients serve as the foundation for
neural network weight updates, which necessitate synchronization across all GPUs.(20) Model
parallelism is a feasible alternative to data parallelism, enabling the distribution of models across
numerous GPUs.(21,22) The input data can be parallelized across layers in neural networks.(23)
For instance, each GPU processes one or more consecutive layers, allowing data to flow up and
down through the layers between GPUs. The gradients only become available at a delay of
minibatches, which depends on the layers.(19)

 In this study, we focus on parallelization in a data-parallel fashion. Multiple GPUs are used to
train neural networks for speech recognition. In recent years, open source has become a popular
topic for sharing and improving related technologies with the community. For example: open
source is crucial to artificial intelligence, and platforms such as TensorFlow and PyTorch provide
powerful tools for machine learning research and development. In addition, blockchain
technology is also based on open source. There are several open source projects that involve
using multiple GPUs to train neural networks. For example, Facebook releases fbcunn libraries
in Torch, Twitter shares with the distributed learning(24) (torch-distlearn) package in Torch,
Microsoft opens their source of the Microsoft Cognitive Toolkit (CNTK) in C++, and Google

also provides Tensorflow in Python and C++ for distributed learning. Their design (e.g.
Facebook, Twitter, Microsoft, etc.) considerations aim to strike a balance between computational
efficiency and versatility. Each toolkit presents distinct advantages. TensorFlow offers a Python
interface that is accessible to users. CNTK offers efficient distributed computational
performance. Torch uses Lua programming language. In this study, evaluations were conducted
using the torch-distlearn toolkit including torch-dataset (controls inputs/outputs), torch-ipc
(manages GPU communications), torch-autograd (computes gradients), and torch-thrift. This
package provides an easy and modular way to build simple or complex neural networks using
Torch.
 In Sect. 2, the proposed approaches are used to explore the learning strategy for training
DNNs using multiple GPUs. In Sect. 3, we show experiments in detail. This paper concludes
with a summary of the findings in Sect. 4.

2. Proposed Methods

 Neural networks may be perceived as directed graphs with weights, whereby neurons act as
nodes and the directed edges (with weights) act as connections between input and output
neurons.(25,26) Neural networks can be classified into two categories on the basis of distinct
connection patterns: feedforward and recurrent networks.(26–29) Feedback connections in
recurrent networks cause loops, whereas loops do not occur in feedforward networks,(30,31)
Neural networks are constructed utilizing backpropagation learning based on feedforward
architectures, consisting of input, hidden, and output layers.(32) A single artificial neuron
constitutes the fundamental element of neural networks.(33) The input x of the i-th layer with M
neurons is derived from the output y of the j-th layer with N neurons. The formulation is as
follows.

Sensors and Materials, Vol. 36, No. 9 (2024) 3747

 () ()j j i ji j
i

y f z f x a b= = × +∑ (1)

Here, aji denotes the synapse weight from node i to node j within the neural network and b
represents the bias value.

2.1 Distributed learning using multiple GPUs

 Algorithm 1 (Fig. 1) describes the pseudocode of a minibatch cycle in distributed learning
using multiple GPUs, a case of Twitter torch-distlearn in Torch. In Algorithm 1, AllReduceSGD
is used to quickly sum the gradients in a parallel computing paradigm.(34)
 Neural networks are often trained using the common error backpropagation technique. The
backpropagation technique is a stochastic gradient descent (SGD) method for minimizing the
squared error cost function, estimated as

 21 y d
2

E = −∑ , (2)

where y and d represent the desired and estimated output vectors, respectively. The basic
backpropagation algorithm is theoretically simple. With the algorithms of averaging gradients in
a parallel computing paradigm and distributed learning packages, we can reduce the training’s
time consumption. However, many practical issues need to be considered to learn neural
networks efficiently, including selections of activation functions, learning rate, and minibatch
size, as well as model parameter initialization. We explore these aspects of learning strategies
for training DNNs using multiple GPUs.(35)

Fig. 1. (Color online) Proposed algorithm in this study.

3748 Sensors and Materials, Vol. 36, No. 9 (2024)

2.2 Activation function

 To compute the neuron output y, it is necessary to apply the activation function f to the
weighted sum z of all the outputs of the previous layer. In general, the activation function f is
nonlinear and differentiable, mapping an M vector to an N vector with the idea of mapping any
real number [−∞,+∞] into a number within the range of [−1,1] or [0,1]. The common activation
function is the logistic function. For example, a standard Sigmoid function is defined as

 f z z
Sigmoid () / (exp)� � �1 1 , (3)

where z = x ∙ A + b. A represents the weight matrix, whereas b denotes the set of biases. The
tangent function (Tanh) is defined as

 f z z z z z
Tanh () (exp exp) / (exp exp)� � �� � . (4)

The Softplus function is defined as

 f z z
Softplus () ln exp� �� �1 . (5)

The rectified linear unit (ReLU) function is defined as

 f z zReLU () max ,� � �0 . (6)

 Nair and Hinton(36) proposed the ReLU nonlinear activation function, which they
demonstrated to be more effective than traditional methods and resulted in top-of-the-line
outcomes for deep learning. ReLU also indicates some benefits. For example, the implementation
in backpropagation is simple and less computationally intensive, allowing for the efficient
training of deeper neural networks. It seems that the activation function of ReLU is superior to
those of Tanh and Sigmoid.(37) However, ReLU yields zero gradient and does not train well when
the unit is zero. The activation function of ReLU may fall into 0% frame accuracy at an
unsuitable learning rate. No such issues arise when applying Tanh. As usual, the softmax
function is used in the last layer of DNNs.

2.3 Learning rate, minibatch, parameter initialization

 The learning rate controls how much of a change we make to the parameters of neural
networks. If the learning rate is excessively high, it can cause compromised convergence,
leading to a reduction in accuracy. On the flip side, if the learning rate is excessively low, the
parameters’ update becomes insignificant, impeding the training speed. Basically, we can

Sensors and Materials, Vol. 36, No. 9 (2024) 3749

choose the learning rate by (1) using a fixed learning rate such as 0.01 or 0.1, (2) or running it
until the accuracy of the validation set does not improve further within a couple of epochs, and
then we reduce the learning rate and continue training, (3) or commencing with a higher learning
rate and implementing a decay to decrease the learning rate after each minibatch.
 The selection of minibatch size would impact both outputs of convergence speed and the
resulting model. Sometimes we use variable minibatch sizes. For example, we could commence
with a smaller minibatch size and then a larger minibatch size.
 Since the DNN is a highly nonlinear model with nonconvex training criteria for its
parameters, the initial model parameters exert a considerable impact on the resulting model.(38)
One way is to randomly initialize the model parameters. The model parameters are randomly
initialized and the training samples are fed into the trainer in a random order. LeCun et al.
suggested that the layer weights should be initialized by drawing values from a Gaussian
distribution with zero mean and standard deviation.(39) In this study, we apply multilingual
information to build initial model parameters to train a DNN in the target language. Instead of
randomly initializing model parameters, we can use multilingual information to build initial
model parameters for better results, as will be shown in the experiments.

2.4 Learning strategy

 The combination of the learning rate, activation function, and minibatch size that affects the
learning behavior of training the DNNs using multiple GPUs is shown in Fig. 2. The explored
learning strategy starts with a small minibatch (256) in the first epoch and then in a subsequent
larger minibatch (epochs 2–10). We can choose a high initial learning rate if it does not oscillate
or diverge to find a better global minimum. The dynamic learning rate is used to halve the
learning rate when the fluctuation (accuracy between two epochs) on the development set is less
than a gain (θ < 0.6). An initial model is built using multilingual information(40,41) in the first
epoch including 304.4 h of Italian, 609.5 h of French, and 1063.4 h of English speech. Then, we
train neural networks for the specific language (English) using the initial multilingual model. In
this paper, we use the same random seed when generating the initial model to ensure that the
parameters are equal on all GPUs. For better generalization, the neural networks were trained by
early stopping on the corresponding development set per epoch. Our Torch/Lua codes are online
and available at https://github.com/chienlinhuang1116/torch-mgpu. Also, the learning strategy
was applied in the following experiments.

3. Experiments

 In this section, we describe the experimental setup and evaluate different numbers of GPUs,
activation functions, and minibatch sizes. For the real data, in-house English datasets were used
in the investigation. The simulated data were randomly generated data (vectors).

https://github.com/chienlinhuang1116/torch-mgpu

3750 Sensors and Materials, Vol. 36, No. 9 (2024)

3.1 Hardware and infrastructure

 All experiments were conducted on Torch 7, CUDA 7.5, and CentOS 6.7 infrastructure with
four NVIDIA Tesla K80 GPU cards. There are 4992 NVIDIA CUDA cores with a dual-GPU
design and 24 GB of GDDR5 memory per GPU card. In total, there are 8 GPUs in a single
machine. The CPU is Intel Xeon E5-2630 2.4 GHz with 32 cores. The host RAM is 256 GB in
total. The neural network has five hidden layers with a dimension of 2048 (the third layer has a
dimension of 60), an input dimension of 680, and an output dimension of 16765. This structure is
referred to as 680-2048-2048-60-2048-2048-16765 and is a type of bottleneck neural network.

3.2 Efficiency of multiple GPUs

 To know the raw computational efficiency of multiple GPUs, experiments were conducted
with different numbers of GPUs and minibatch sizes using the simulated data in Fig. 3. These
numbers showed the computation based on the number of samples per second (the higher the
better).
 The most effective minibatch size is 8192. The efficiency of multiple GPUs can be determined
by applying 2–6 GPUs. The most efficient computation is the combination of 6 GPUs and a
minibatch size of 8192 in data-parallel computation. It is almost 10 times faster than the setting
of the single GPU with a minibatch size of 256. The main advantages of distributed learning
using multiple GPUs are matrix computation (network input) and gradients (network structures).
 The GPU communication topology in the hardware configuration shown in Fig. 4 can be
verified before running distributed learning.(42) In our dual GPU server, there are four GPU
cards (groups), including GPU0/1, GPU2/3, GPU4/5, and GPU6/7. Because the system-on-a-chip

Fig. 2. (Color online) Learning strategy for training neural networks.

Sensors and Materials, Vol. 36, No. 9 (2024) 3751

showed the slowest connection between GPU0/1 and GPU2-7, there is no benefit when using 8
GPUs. Therefore, GPU0/1 was excluded from the evaluations of 1–6 GPUs.
 Actually, without considering multiple GPUs, we can easily speed up the training by using
the larger minibatch. However, there is a trade-off between minibatch size and frame accuracy.
Next, we discuss this relationship in detail.

Fig. 3. (Color online) The computational efficiency of multiple GPUs with different minibatch sizes based on the
number of samples per second.

Fig. 4. Setting of GPU cards and their topo matrix.

3752 Sensors and Materials, Vol. 36, No. 9 (2024)

3.3 Effects of activation function, minibatch size, and multiple GPUs on learning

 Efficiency and performance are both crucial when training DNNs. Neural networks, whether
feedforward or recurrent, are typically trained as frame-level classifiers for speech recognition.
In Table 1, we evaluated the time per epoch (in seconds) and frame accuracy (accuracy) with
different activation functions, minibatch sizes, and numbers of GPUs. Experiments were
conducted on 7.2 h of English real speech in 10 epochs. In this study, we used the same network
structure as described in Sect. 3.1. Under the same conditions and a fixed learning rate (0.01), the
activation function of ReLU outperformed those of Tanh, Softplus, and Sigmoid. Furthermore,
on the basis of the ReLU activation function, we tested the different minibatch sizes and multiple
GPUs, and observed the speedup expected from using the larger minibatch or multiple GPUs.
However, there is a trade-off between frame accuracy and time complexity. Usually, accuracy is
always slightly degraded when using multiple GPUs compared with a single GPU, regardless of
whether Torch, Tensorflow, or CNTK is used. To balance efficiency and accuracy, we must have
a good learning strategy.

3.4 Effects of learning strategy

 On the basis of the fixed learning rate, ReLU, the minibatch size of 256, and the single GPU,
the baseline in Table 2 was considered the best system in Table 1. We trained with more data,
and experiments were conducted on 1063.4 h of English real speech. The concept of big data
increased the frame accuracy from 31.8 to 41.7%, which was an absolute accuracy improvement

Table 1
Effects of activation function, minibatch size, and multiple GPUs on frame accuracy and time/epoch.
Activation Minibatch GPU Accuracy (%) Time (s) /Epoch
Sigmoid 256 1 10.1 -
Softplus 256 1 28.4 -
Tanh 256 1 31.2 -
ReLU 256 1 31.8 389.5
ReLU 256 4 27.2 304.1
ReLU 512 4 25.9 216.5
ReLU 512 6 24.9 176.1
ReLU 1024 6 21.1 126.8
ReLU 2048 6 18.4 91.3
ReLU 4096 6 17.7 78.4

Table 2
Improvements by using the proposed learning strategy using multiple GPUs.

Minibatch Accuracy (%) Hour (h) /Epoch
Baseline with 1 GPU 256 41.7 18.6

Our learning strategy
with 6 GPUs

512 46.1 8.4
1024 45.8 6.1
2048 45.4 4.3
4096 45.3 3.8

Sensors and Materials, Vol. 36, No. 9 (2024) 3753

of 9.9%. The elapsed time of the baseline was about 18.6 h per epoch. In this study, we explored
and focused on both efficiency and performance, including (1) small minibatch size, (2) dynamic
learning rate, and (3) multilingual initial models. To investigate in detail the performance under
various testing conditions, we summarized the improvements in Table 2 and showed that the
explored learning strategy provided a balance between frame accuracy and time complexity
when training DNNs using multiple GPUs.

4. Conclusions

 Our investigation focused on the learning strategy for training DNNs using multiple GPUs.
We discovered that while larger minibatches and multiple GPUs can speed up training, they can
also lead to the degradation of convergence rate or accuracy. Our approach can help improve
both training time and accuracy. To address this trade-off, we suggest starting with a small
minibatch, using multilingual initial models, and applying dynamic learning rates and the ReLU
activation function. These methods can improve network learning efficiency with multiple
GPUs. By combining six GPUs and distributed learning, we can train DNNs up to four times
faster than with a single GPU deep learning system. With the correct learning strategy, multiple
GPUs can achieve comparable accuracy to a single GPU. Our Torch/Lua codes are available on
GitHub to reproduce experimental results with multiple GPUs. In future work, we will explore
various neural network architectures and GPU frameworks.

Acknowledgments

 This work was supported in part by the National Science and Technology Council, Taiwan,
under program no. NSTC 112-2221-E-992-078.

References

 1 X. Li and S. Jiang: IEEE Trans. Multimedia 21 (2019) 2117. https://doi.org/10.1109/TMM.2019.2896516
 2 S. M. Chavan, M. S. Prerana, R. Bathula, S. Saikumar, and G. Dayalan: INOCON 2023 (2023) 1. https://doi.

org/10.1109/INOCON57975.2023.10101281
 3 T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A.

Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei: NeurIPS 2020 (2020) 1877. ht tps://dl.acm.org/doi /
abs/10.5555/3495724.3495883

 4 C.-L. Huang, P. Dixon, S. Matsuda, Y. Wu, X. Lu, M. Saiko, and C. Hori: IWSLT 2013 (2013) 1. https://
aclanthology.org/2013.iwslt-evaluation.6

 5 F. Seide, G. Li, and D. Yu: Interspeech 2011 (2011) 437. https://doi.org/10.21437/Interspeech.2011-169
 6 Q.-B. Hong, C.-H. Wu, H.-M. Wang, and C.-L. Huang: ICASSP 2020 (2020) 6849. https://doi.org/10.1109/

ICASSP40776.2020.9054350
 7 D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and S. Khudanpur: ICASSP 2019 (2019) 5796.

https://doi.org/10.1109/ICASSP.2019.8683760
 8 Q.-B. Hong, C.-H. Wu, H.-M. Wang, and C.-L. Huang: ICASSP 2020 (2020) 7589. https://doi.org/10.1109/

ICASSP40776.2020.9053640
 9 C.-L. Huang: Odyssey 2020 (2020) 423. https://doi.org/10.21437/Odyssey.2020-60
 10 C.-P. Chen, S.-Y. Zhang, C.-T. Yeh, J.-C. Wang, T. Wang, and C.-L. Huang: ICASSP 2019 (2019) 6211. https://

doi.org/10.1109/ICASSP.2019.8683185

https://doi.org/10.1109/TMM.2019.2896516
https://doi.org/10.1109/INOCON57975.2023.10101281
https://doi.org/10.1109/INOCON57975.2023.10101281
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://dl.acm.org/doi/abs/10.5555/3495724.3495883
https://aclanthology.org/2013.iwslt-evaluation.6
https://aclanthology.org/2013.iwslt-evaluation.6
https://doi.org/10.21437/Interspeech.2011-169
https://doi.org/10.1109/ICASSP40776.2020.9054350
https://doi.org/10.1109/ICASSP40776.2020.9054350
https://doi.org/10.1109/ICASSP.2019.8683760
https://doi.org/10.1109/ICASSP40776.2020.9053640
https://doi.org/10.1109/ICASSP40776.2020.9053640
https://doi.org/10.21437/Odyssey.2020-60
https://doi.org/10.1109/ICASSP.2019.8683185
https://doi.org/10.1109/ICASSP.2019.8683185

3754 Sensors and Materials, Vol. 36, No. 9 (2024)

 11 C.-L. Huang: ASRU 2019 (2019) 291. https://doi.org/10.1109/ASRU46091.2019.9003938
 12 V. Vanhoucke, A. Senior, and M. Z. Mao: NIPS 2011 (2011) 1. https://research.google/pubs/improving-the-

speed-of-neural-networks-on-cpus/
 13 T. Li, Y. Dou, J. Jiang, Y. Wang, and Q. Lv: IJCNN 2015 (2015) 1. https://doi.org/10.1109/IJCNN.2015.7280511
 14 B. Prihasto, Y.-X. Lin, L. Phuong, C.-L. Huang, and J.-C. Wang: ICASSP 2023 (2023) 1. https://doi.org/10.1109/

ICASSP49357.2023.10094995
 15 Y.-X. Lin, C.-H. Pai, L. Phuong, B. Prihasto, C.-L. Huang, and J.-C. Wang: ICASSP 2023 (2023) 1. https://doi.

org/10.1109/ICASSP49357.2023.10096027
 16 G. Guo, T.-W. Huang, and M. Wong: DATE 2023 (2023) 1. https://doi.org/10.23919/DATE56975.2023.10137050
 17 X. Zhang, Z. Tang, X. Zhang, and K. Li: IEEE Trans. Parallel Distrib. Syst. 33 (2022) 4935. https://doi.

org/10.1109/TPDS.2022.3208082
 18 Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney: ICLR 2019 (2019) 1. https://doi.org/10.48550/

arXiv.1810.01021
 19 N. Golmant, N. Vemuri, Z. Yao, V. Feinberg, A. Gholami, K. Rothauge, M. W. Mahoney, and J. Gonzalez:

ICLR2019 (2019) 1. https://doi.org/10.48550/arXiv.1811.12941
 20 M. A. Zinkevich, M. Weimer, A. Smola, and L. Li: NIPS 2010 (2010) 2595. https://dl.acm.org/

doi/10.5555/2997046.2997185
 21 J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. A. Ranzato, A. Senior, P.

Tucker, K. Yang, and A. Y. Ng: NIPS 2012 (2012) 1223. https://dl.acm.org/doi/10.5555/2999134.2999271
 22 F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu: ICASSP 2014 (2014) 235. https://doi.org/10.1109/

ICASSP.2014.6853593
 23 X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide: Interspeech 2012 (2012) 26. https://doi.org/10.21437/

Interspeech.2012-7
 24 T. N. Sainath, B. Kingsbury, B. Ramabhadran, P. Fousek, P. Novak, and A.-R. Mohamed: ASRU 2011 (2011)

30. https://doi.org/10.1109/ASRU.2011.6163900
 25 S. Bengio and Y. Bengio: IEEE Trans. Neural Networks 11 (2000) 550. https://doi.org/10.1109/72.846725
 26 J. Gu, C. Feng, H. Zhu, R. T. Chen, and D. Z. Pan: IEEE Trans. Circuits Syst. II Express Briefs 69 (2022) 2581.

https://doi.org/10.1109/TCSII.2022.3171170
 27 M. Gabella: IEEE Trans. Neural Networks Learn. Syst. 32 (2021) 3588. https://doi.org/10.1109/

TNNLS.2020.3015790
 28 P. Bell, J. Fainberg, O. Klejch, J. Li, S. Renals, and P. Swietojanski: IEEE Open J. Signal Process. 2 (2021) 33.

https://doi.org/10.1109/OJSP.2020.3045349
 29 B. Bahmei, E. Birmingham, and S. Arzanpour: IEEE Signal Process Lett. 29 (2022) 682. https://doi.

org/10.1109/LSP.2022.3150258
 30 J. Oruh, S. Viriri, and A. Adegun: IEEE Access 10 (2022) 30069. https://doi.org/10.1109/ACCESS.2022.3159339
 31 Z. Lu, V. Sindhwani, and T.N. Sainath: ICASSP 2016 (2016) 5960. https://doi.org/10.1109/ICASSP.2016.7472821
 32 Y. Li, R. Gault, and T. M. McGinnity: IEEE Trans. Neural Networks Learn. Syst. 33 (2022) 4851. https://doi.

org/10.1109/TNNLS.2021.3061432
 33 Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou: IEEE Trans. Neural Networks Learn. Syst. 33 (2022) 6999. https://

doi.org/10.1109/TNNLS.2021.3084827
 34 S. Zhang, A. Choromanska, and Y. LeCun: NIPS 2015 (2015) 1. https://doi.org/10.48550/arXiv.1412.6651
 35 H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin: J. Mach. Learn. Res. 10 (2009) 1. https://dl.acm.org/

doi/10.5555/1577069.1577070
 36 V. Nair and G. E. Hinton: ICML 2010 (2010) 807. https://dl.acm.org/doi/10.5555/3104322.3104425
 37 Z. Tüske, P. Golik, R. Schlüter, and H. Ney: Interspeech 2014 (2014) 106. https://doi.org/10.21437/

Interspeech.2014-22
 38 D. Yu and L. Deng: Automatic Speech Recognition. A Deep Learning Approach (Springer, Berlin, Heidelberg,

2015). Chap. 2.
 39 Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. Müller: Neural Networks: Tricks of The Trade (Springer, Berlin,

Heidelberg, 2012) Chap. 3. https://doi.org/10.1007/978-3-642-35289-8_3
 40 K. Azizah and W. Jatmiko: IEEE Access 10 (2022) 5895. https://doi.org/10.1109/ACCESS.2022.3141200
 41 A. Ghoshal, P. Swietojanski, and S. Renals: ICASSP 2013 (2013) 7319. https://doi.org/10.1109/

ICASSP.2013.6639084
 42 H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie, and E. P. Xing: USENIX ATC 2017

(2017) 181. https://dl.acm.org/doi/10.5555/3154690.3154708

https://doi.org/10.1109/ASRU46091.2019.9003938
https://research.google/pubs/improving-the-speed-of-neural-networks-on-cpus/
https://research.google/pubs/improving-the-speed-of-neural-networks-on-cpus/
https://doi.org/10.1109/IJCNN.2015.7280511
https://doi.org/10.1109/ICASSP49357.2023.10094995
https://doi.org/10.1109/ICASSP49357.2023.10094995
https://doi.org/10.1109/ICASSP49357.2023.10096027
https://doi.org/10.1109/ICASSP49357.2023.10096027
https://doi.org/10.23919/DATE56975.2023.10137050
https://doi.org/10.1109/TPDS.2022.3208082
https://doi.org/10.1109/TPDS.2022.3208082
https://doi.org/10.48550/arXiv.1810.01021
https://doi.org/10.48550/arXiv.1810.01021
https://doi.org/10.48550/arXiv.1811.12941
https://dl.acm.org/doi/10.5555/2997046.2997185
https://dl.acm.org/doi/10.5555/2997046.2997185
https://dl.acm.org/doi/10.5555/2999134.2999271
https://doi.org/10.1109/ICASSP.2014.6853593
https://doi.org/10.1109/ICASSP.2014.6853593
https://doi.org/10.21437/Interspeech.2012-7
https://doi.org/10.21437/Interspeech.2012-7
https://doi.org/10.1109/ASRU.2011.6163900
https://doi.org/10.1109/72.846725
https://doi.org/10.1109/TCSII.2022.3171170
https://doi.org/10.1109/TNNLS.2020.3015790
https://doi.org/10.1109/TNNLS.2020.3015790
https://doi.org/10.1109/OJSP.2020.3045349
https://doi.org/10.1109/LSP.2022.3150258
https://doi.org/10.1109/LSP.2022.3150258
https://doi.org/10.1109/ACCESS.2022.3159339
https://doi.org/10.1109/ICASSP.2016.7472821
https://doi.org/10.1109/TNNLS.2021.3061432
https://doi.org/10.1109/TNNLS.2021.3061432
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.48550/arXiv.1412.6651
https://dl.acm.org/doi/10.5555/1577069.1577070
https://dl.acm.org/doi/10.5555/1577069.1577070
https://dl.acm.org/doi/10.5555/3104322.3104425
https://doi.org/10.21437/Interspeech.2014-22
https://doi.org/10.21437/Interspeech.2014-22
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1109/ACCESS.2022.3141200
https://doi.org/10.1109/ICASSP.2013.6639084
https://doi.org/10.1109/ICASSP.2013.6639084
https://dl.acm.org/doi/10.5555/3154690.3154708

Sensors and Materials, Vol. 36, No. 9 (2024) 3755

About the Authors

 Nien-Tsu Hu received his M.S. degree from the Department of Electrical
Engineering, National Taiwan University of Science and Technology, Taipei,
Taiwan, R.O.C. in 2003, and his Ph.D. degree from the Department of
Electrical Engineering, National Cheng Kung University, Tainan, Taiwan,
R.O.C. in 2010. From 2011 to 2020, he was a researcher with the National
Chung-Shan Institute of Science and Technology, Taoyuan, Taiwan. Since
2023, he has been with the Graduate Institute of Automation Technology,
National Taipei University of Technology, Taipei, Taiwan, R.O.C., as an
assistant professor. His research interests include intelligent control, optimal
control, mechatronics, and system identifications. (nthu@ntut.edu.tw)

 Ching-Chien Huang received his Ph.D. degree in electronics engineering
from National Chiao-Tung University (NCTU), Hsinchu, Taiwan, in 2009.
From 2010 to 2012, he served as a principal engineer at Taiwan Semiconductor
Manufacturing Co. (TSMC). In 2012, he joined the Department of Research &
Development, China Steel Corporation (CSC), Kaohsiung, Taiwan, as a
research scientist. He is currently an assistant professor at the Department of
Mechanical Engineering, National Kaohsiung University of Science and
Technology (NKUST), Kaohsiung, Taiwan. He has published over 30 journal
papers and 10 patents. His research is focused on electric machine design and
magnetic materials. (huangcc@nkust.edu.tw)

 Chih-Chieh Mo received his M.S. degree in aeronautics and astronautics
from National Cheng Kung University (NCKU), Tainan, Taiwan, in 1994.
From 1996 to 2020, he served as a technical manager at HIMAG Magnetic
Co., Pingtung, Taiwan. In 2021, he joined the Department of Research &
Development, MagnPower Co., Pingtung, Taiwan, as a product manager. He is
currently the division head of the Production Department, Spin Sustainable
Energy Industry Corporation, Hsinchu Taiwan. He has published over 20
journal papers and 30 patents. His research is focused on electric machine
design and magnetic materials. (maxmo0525@gmail.com)

 Chien-Lin Huang specializes in multimodal interaction for human–computer
communications. He earned his Ph.D. degree in computer science and
information engineering from National Cheng Kung University. He has
worked in Taiwan, Singapore, Japan, China, and the United States for many
years. He has been involved in many machine learning projects and research
such as multilingual speech-to-speech translation, intelligent customer
service, online language learning, social robotics, autonomous vehicle, smart
home, and mobile applications. He has co-authored over 60 technical papers
and is an active member of speech and language communities.

 (chiccocl@gmail.com)

