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	 Neural network algorithms are becoming more commonly used to model big data, such as 
images and speech. Although they often offer superior performance, they require more training 
time than traditional approaches. Graphics processing units (GPUs) are an excellent solution for 
reducing training time. The use of multiple GPUs, in addition to a single GPU, can further 
improve computing power. Training DNNs with algorithm and computer hardware support can 
be challenging when selecting an appropriate learning strategy. In this work, we investigate 
various learning strategies for training DNNs using multiple GPUs. Experimental data show that 
using six GPUs with the suggested approach results in a speed boost of approximately four times 
that of using a single GPU. Moreover, the precision of the suggested method using six GPUs is 
similar to that of using a single GPU.

1.	 Introduction

	 Recent advancements in algorithms and computer hardware have enabled the training of 
DNNs using large datasets for tasks such as speech recognition, text analysis, and image 
classification. For instance, convolutional neural networks can effectively categorize images into 
high-level object concepts.(1–3) Automated image description has attracted significant research 
interest in the realm of multimedia. Many methods utilize convolutional neural networks (CNNs) 
to extract visual data for representing an image’s content. The visual data are subsequently 
transmitted to recurrent neural networks to generate natural language.(1) An automated 
evaluation system utilizing deep learning and natural language processing techniques is being 
proposed.(2) The recommended method involves using a reliable optical character recognition 
(OCR) model to extract text from image files, and is known for its superior accuracy and 
efficiency. In addition, natural language processing techniques such as Bidirectional Encoder 
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Representations from Transformers (BERT) and Generative Pretrained Transformer 3 (GPT-3)(3) 
are used to extract keywords and summarize lengthy responses concisely. GPT-3, an 
autoregressive language model with 175 billion parameters, has been tested for performance in 
the few-shot setting. The application of GPT-3 does not require gradient updating or fine-tuning, 
only task specification and a minimal amount of demonstration via textual interaction with the 
model. Speech recognition applications commonly use feedforward and recurrent neural 
networks.(4–11) The speech recognition system utilizes two types of acoustic feature and three 
types of acoustic model(4) to improve accuracy and recognition. The system consists of six 
subsystems, each employing distinct acoustic features and models. Extracting features is 
essential for estimating numerical representation from speech samples. The Mel-frequency 
cepstral coefficient (MFCC) is a widely used feature in speech recognition applications. The 
second acoustic feature is an analysis known as perceptual linear prediction cepstrum. A DNN 
(DNN) is a type of feedforward artificial neural network that has multiple hidden layers located 
between its input and output. DNNs are trained with cross-entropy and subsequently trained for 
sequence discrimination based on a state-level minimum Bayesian risk criterion. The subspace 
Gaussian mixture model provides a succinct representation of a large collection of Gaussian 
mixture models. We maximized the auxiliary function during the M-steps of the expectation-
maximization algorithm estimation of the hidden Markov model parameters with the training of 
maximum mutual information. Acoustic and articulatory features are deeply embedded and 
combined to identify speakers.(8) First, a universal background model, created using CNNs, is 
employed in generating acoustic feature (AC) embeddings. As articulatory features (AF) are 
significant phonological properties in speech production, a multilayer perceptron-based model is 
constructed to extract AF embeddings. The extracted AC and AF embedding information was 
concatenated into a combined feature vector for speaker recognition using a fully connected 
neural network. Previous research suggests that speaker characterization can be achieved 
through four different data augmentation techniques used with time delay neural networks and 

Nomenclature
a Synapse weight
b Bias value
lr Learning rate
θ Gain/threshold
AC Acoustic feature
AF Articulatory feature
BERT Bidirectional encoder representations from transformers
CPU Central processing unit
CNTK Microsoft cognitive toolkit
CNN Convolutional neural network
DNN Deep neural network
GPU Graphics processing unit
GPT-3 Generative pretrained transformer 3
LSTM Long short-term memory neural network
ReLU Rectified linear unit
SGD Stochastic gradient descent
TDNN Time delay neural network
Tanh Hyperbolic tangent
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long short-term memory neural networks (TDNN-LSTM).(11) The suggested data augmentation 
aims to increase the amount and diversity of the training data by incorporating various 
techniques such as introducing speed perturbations, volume perturbations, room impulse 
responses, and additive noises. The idea of speaker embedding based on TDNN-LSTM is more 
efficient in capturing temporal information in speaker speech than traditional TDNN-based 
x-vectors. In terms of computer hardware, computing on a graphics processing unit (GPU) can 
significantly reduce the training time when training neural networks compared with that on a 
conventional central processing unit (CPU).(12–15) GPUs are commonly utilized to train and 
operate neural networks. Some of the techniques can significantly reduce the computational cost 
on contemporary x86 CPUs.(12) Speech recognition can exemplify the development of a hybrid 
hidden Markov model and neural network system, demonstrating a 10-fold acceleration over an 
unoptimized baseline and a fourfold augmentation over an aggressively optimized floating-point 
baseline with no reduction in accuracy. The techniques described extend readily to neural 
network training and offer feasible and productive alternatives for the employment of specialized 
and dedicated hardware. Deep belief networks, an important and fundamental branch of 
profound learning models, have demonstrated successful implementation in numerous fields of 
machine learning and pattern recognition, including computer vision and speech recognition. 
Training neural networks with billions of parameters poses a significant computational challenge 
to modern CPU architecture. Several studies have demonstrated the benefits of pretraining 
neural networks on GPUs to achieve efficient implementations. A high-performing and efficient 
neural network is implemented on the GPU, encompassing the pretraining and fine-tuning 
procedures.(13) Experimental results demonstrate that the GPU (NVIDIA Tesla K40c) delivers 
up to 22 speedups in the pretraining process and 33 speedups in the fine-tuning process 
compared with traditional CPU (Intel Core i7-4790K) implementations. However, the algorithm 
proposed affords superior performance compared with the OpenBLAS library on the CPU and 
the CUBLAS library on the GPU. Additionally, the proposed approaches can facilitate the 
acceleration of the training procedure, transitioning from using a solitary GPU to multiple 
GPUs. Two frameworks are employed to execute the training of multiple GPUs, comprising data 
parallelism and model parallelism.(16,17) The prevalence of the high concurrency and throughput 
of GPUs makes them a popular tool for researchers to optimize distributed parallel computing 
architectures. With the advancement in processor architecture, GPUs enable the execution of 
multiple kernels simultaneously via stream queues. However, current research has not given 
thorough consideration to optimizing concurrent streams and kernel block sizes, taking into 
account the different hardware characteristics and kernel properties in distributed architectures. 
Inadequate stream concurrency and kernel block size configuration may result in longer 
execution periods and the inefficient use of computing resources while running the application. 
Therefore, in a distributed heterogeneous environment, we suggest a co-concurrency mechanism 
with multiple GPUs and streams to adjust the number of concurrent streams and explore the 
ideal block size in the scheduling of tasks.(17) On the basis of the resources occupied during 
concurrent stream scheduling and startup overhead, we propose a resource-aware concurrent 
stream adaptive mechanism capable of dynamically adjusting the number of streams.
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	 During the parallel processing of data, each minibatch is split over multiple GPUs.(18,19) Each 
GPU computes a subgradient on its own sub-minibatch. Subgradients serve as the foundation for 
neural network weight updates, which necessitate synchronization across all GPUs.(20) Model 
parallelism is a feasible alternative to data parallelism, enabling the distribution of models across 
numerous GPUs.(21,22)  The input data can be parallelized across layers in neural networks.(23) 
For instance, each GPU processes one or more consecutive layers, allowing data to flow up and 
down through the layers between GPUs. The gradients only become available at a delay of 
minibatches, which depends on the layers.(19)

	 In this study, we focus on parallelization in a data-parallel fashion. Multiple GPUs are used to 
train neural networks for speech recognition. In recent years, open source has become a popular 
topic for sharing and improving related technologies with the community. For example: open 
source is crucial to artificial intelligence, and platforms such as TensorFlow and PyTorch provide 
powerful tools for machine learning research and development. In addition, blockchain 
technology is also based on open source. There are several open source projects that involve 
using multiple GPUs to train neural networks. For example, Facebook releases fbcunn libraries 
in Torch, Twitter shares with the distributed learning(24) (torch-distlearn) package in Torch, 
Microsoft opens their source of the Microsoft Cognitive Toolkit (CNTK) in C++, and Google 

also provides Tensorflow in Python and C++ for  distributed learning. Their design (e.g. 
Facebook, Twitter, Microsoft, etc.) considerations aim to strike a balance between computational 
efficiency and versatility. Each toolkit presents distinct advantages. TensorFlow offers a Python 
interface that is accessible to users. CNTK offers efficient distributed computational 
performance. Torch uses Lua programming language. In this study, evaluations were conducted 
using the torch-distlearn toolkit including torch-dataset (controls inputs/outputs), torch-ipc 
(manages GPU communications), torch-autograd (computes gradients), and torch-thrift. This 
package provides an easy and modular way to build simple or complex neural networks using 
Torch.
	 In Sect. 2, the proposed approaches are used to explore the learning strategy for training 
DNNs using multiple GPUs. In Sect. 3, we show experiments in detail. This paper concludes 
with a summary of the findings in Sect. 4.

2.	 Proposed Methods

	 Neural networks may be perceived as directed graphs with weights, whereby neurons act as 
nodes and the directed edges (with weights) act as connections between input and output 
neurons.(25,26) Neural networks can be classified into two categories on the basis of distinct 
connection patterns: feedforward and recurrent networks.(26–29) Feedback connections in 
recurrent networks cause loops, whereas loops do not occur in feedforward networks,(30,31) 
Neural networks are constructed utilizing backpropagation learning based on feedforward 
architectures, consisting of input, hidden, and output layers.(32) A single artificial neuron 
constitutes the fundamental element of neural networks.(33) The input x of the i-th layer with M 
neurons is derived from the output y of the j-th layer with N neurons. The formulation is as 
follows.
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i

y f z f x a b= = × +∑ 	 (1)

Here, aji denotes the synapse weight from node i to node j within the neural network and b 
represents the bias value.

2.1	 Distributed learning using multiple GPUs

	 Algorithm 1 (Fig. 1) describes the pseudocode of a minibatch cycle in distributed learning 
using multiple GPUs, a case of Twitter torch-distlearn in Torch. In Algorithm 1, AllReduceSGD 
is used to quickly sum the gradients in a parallel computing paradigm.(34) 
	 Neural networks are often trained using the common error backpropagation technique. The 
backpropagation technique is a stochastic gradient descent (SGD) method for minimizing the 
squared error cost function, estimated as

	 21 y d
2

E = −∑ ,	 (2)

where y and d represent the desired and estimated output vectors, respectively. The basic 
backpropagation algorithm is theoretically simple. With the algorithms of averaging gradients in 
a parallel computing paradigm and distributed learning packages, we can reduce the training’s 
time consumption. However, many practical issues need to be considered to learn neural 
networks efficiently, including selections of activation functions, learning rate, and  minibatch 
size, as well as model parameter initialization. We explore these aspects of learning strategies 
for training DNNs using multiple GPUs.(35)

Fig. 1.	 (Color online) Proposed algorithm in this study.	
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2.2	 Activation function

	 To compute the neuron output y, it is necessary to apply the activation function f to the 
weighted sum z of all the outputs of the previous layer. In general, the activation function f is 
nonlinear and differentiable, mapping an M vector to an N vector with the idea of mapping any 
real number [−∞,+∞] into a number within the range of [−1,1] or [0,1]. The common activation 
function is the logistic function. For example, a standard Sigmoid function is defined as

	 f z z
Sigmoid ( ) / ( exp )� � �1 1 ,	 (3)

where z = x ∙ A + b. A represents the weight matrix, whereas b denotes the set of biases. The 
tangent function (Tanh) is defined as

	 f z z z z z
Tanh ( ) (exp exp ) / (exp exp )� � �� � .	 (4)

The Softplus function is defined as

	 f z z
Softplus ( ) ln exp� �� �1 .	 (5)

The rectified linear unit (ReLU) function is defined as

	 f z zReLU ( ) max ,� � �0 .	 (6)

	 Nair and Hinton(36) proposed the ReLU nonlinear activation function, which they 
demonstrated to be more effective than traditional methods and resulted in top-of-the-line 
outcomes for deep learning. ReLU also indicates some benefits. For example, the implementation 
in backpropagation is simple and less computationally intensive, allowing for the efficient 
training of deeper neural networks. It seems that the activation function of ReLU is superior to 
those of Tanh and Sigmoid.(37) However, ReLU yields zero gradient and does not train well when 
the unit is zero. The activation function of ReLU may fall into 0% frame accuracy at an 
unsuitable learning rate. No such issues arise when applying Tanh. As usual, the softmax 
function is used in the last layer of DNNs.

2.3	 Learning rate, minibatch, parameter initialization

	 The learning rate controls how much of a change we make to the parameters of neural 
networks. If the learning rate is excessively high, it can cause compromised convergence, 
leading to a reduction in accuracy. On the flip side, if the learning rate is excessively low, the 
parameters’ update becomes insignificant, impeding the training speed. Basically, we can 
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choose the learning rate by (1) using a fixed learning rate such as 0.01 or 0.1, (2) or running it 
until the accuracy of the validation set does not improve further within a couple of epochs, and 
then we reduce the learning rate and continue training, (3) or commencing with a higher learning 
rate and implementing a decay to decrease the learning rate after each minibatch.
	 The selection of minibatch size would impact both outputs of convergence speed and the 
resulting model. Sometimes we use variable minibatch sizes. For example, we could commence 
with a smaller minibatch size and then a larger minibatch size.
	 Since the DNN is a highly nonlinear model with nonconvex training criteria for its 
parameters, the initial model parameters exert a considerable impact on the resulting model.(38) 
One way is to randomly initialize the model parameters. The model parameters are randomly 
initialized and the training samples are fed into the trainer in a random order. LeCun et al. 
suggested that the layer weights should be initialized by drawing values from a Gaussian 
distribution with zero mean and standard deviation.(39) In this study, we apply multilingual 
information to build initial model parameters to train a DNN in the target language. Instead of 
randomly initializing model parameters, we can use multilingual information to build initial 
model parameters for better results, as will be shown in the experiments.

2.4	 Learning strategy

	 The combination of the learning rate, activation function, and minibatch size that affects the 
learning behavior of training the DNNs using multiple GPUs is shown in Fig. 2. The explored 
learning strategy starts with a small minibatch (256) in the first epoch and then in a subsequent 
larger minibatch (epochs 2–10). We can choose a high initial learning rate if it does not oscillate 
or diverge to find a better global minimum. The dynamic learning rate is used to halve the 
learning rate when the fluctuation (accuracy between two epochs) on the development set is less 
than a gain (θ < 0.6). An initial model is built using multilingual information(40,41) in the first 
epoch including 304.4 h of Italian, 609.5 h of French, and 1063.4 h of English speech. Then, we 
train neural networks for the specific language (English) using the initial multilingual model. In 
this paper, we use the same random seed when generating the initial model to ensure that the 
parameters are equal on all GPUs. For better generalization, the neural networks were trained by 
early stopping on the corresponding development set per epoch. Our Torch/Lua codes are online 
and available at https://github.com/chienlinhuang1116/torch-mgpu. Also, the learning strategy 
was applied in the following experiments.

3.	 Experiments

	 In this section, we describe the experimental setup and evaluate different numbers of GPUs, 
activation functions, and minibatch sizes. For the real data, in-house English datasets were used 
in the investigation. The simulated data were randomly generated data (vectors).

https://github.com/chienlinhuang1116/torch-mgpu
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3.1	 Hardware and infrastructure

	 All experiments were conducted on Torch 7, CUDA 7.5, and CentOS 6.7 infrastructure with 
four NVIDIA Tesla K80 GPU cards. There are 4992 NVIDIA CUDA cores with a dual-GPU 
design and 24 GB of GDDR5 memory per GPU card. In total, there are 8 GPUs in a single 
machine. The CPU is Intel Xeon E5-2630 2.4 GHz with 32 cores. The host RAM is 256 GB in 
total. The neural network has five hidden layers with a dimension of 2048 (the third layer has a 
dimension of 60), an input dimension of 680, and an output dimension of 16765. This structure is 
referred to as 680-2048-2048-60-2048-2048-16765 and is a type of bottleneck neural network.

3.2	 Efficiency of multiple GPUs

	 To know the raw computational efficiency of multiple GPUs, experiments were conducted 
with different numbers of GPUs and minibatch sizes using the simulated data in Fig. 3. These 
numbers showed the computation based on the number of samples per second (the higher the 
better). 
	 The most effective minibatch size is 8192. The efficiency of multiple GPUs can be determined 
by applying 2–6 GPUs. The most efficient computation is the combination of 6 GPUs and a 
minibatch size of 8192 in data-parallel computation. It is almost 10 times faster than the setting 
of the single GPU with a minibatch size of 256. The main advantages of distributed learning 
using multiple GPUs are matrix computation (network input) and gradients (network structures).
	 The GPU communication topology in the hardware configuration shown in Fig. 4 can be 
verified before running distributed learning.(42) In our dual GPU server, there are four GPU 
cards (groups), including GPU0/1, GPU2/3, GPU4/5, and GPU6/7. Because the system-on-a-chip 

Fig. 2.	 (Color online) Learning strategy for training neural networks.
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showed the slowest connection between GPU0/1 and GPU2-7, there is no benefit when using 8 
GPUs. Therefore, GPU0/1 was excluded from the evaluations of 1–6 GPUs.
	 Actually, without considering multiple GPUs, we can easily speed up the training by using 
the larger minibatch. However, there is a trade-off between minibatch size and frame accuracy. 
Next, we discuss this relationship in detail.

Fig. 3.	 (Color online) The computational efficiency of multiple GPUs with different minibatch sizes based on the 
number of samples per second.

Fig. 4.	 Setting of GPU cards and their topo matrix.
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3.3	 Effects of activation function, minibatch size, and multiple GPUs on learning

	 Efficiency and performance are both crucial when training DNNs. Neural networks, whether 
feedforward or recurrent, are typically trained as frame-level classifiers for speech recognition. 
In Table 1, we evaluated the time per epoch (in seconds) and frame accuracy (accuracy) with 
different activation functions, minibatch sizes, and numbers of GPUs. Experiments were 
conducted on 7.2 h of English real speech in 10 epochs. In this study, we used the same network 
structure as described in Sect. 3.1. Under the same conditions and a fixed learning rate (0.01), the 
activation function of ReLU outperformed those of Tanh, Softplus, and Sigmoid. Furthermore, 
on the basis of the ReLU activation function, we tested the different minibatch sizes and multiple 
GPUs, and observed the speedup expected from using the larger minibatch or multiple GPUs. 
However, there is a trade-off between frame accuracy and time complexity. Usually, accuracy is 
always slightly degraded when using multiple GPUs compared with a single GPU, regardless of 
whether Torch, Tensorflow, or CNTK is used. To balance efficiency and accuracy, we must have 
a good learning strategy.

3.4	 Effects of learning strategy

	 On the basis of the fixed learning rate, ReLU, the minibatch size of 256, and the single GPU, 
the baseline in Table 2 was considered the best system in Table 1. We trained with more data, 
and experiments were conducted on 1063.4 h of English real speech. The concept of big data 
increased the frame accuracy from 31.8 to 41.7%, which was an absolute accuracy improvement 

Table 1
Effects of activation function, minibatch size, and multiple GPUs on frame accuracy and time/epoch.
Activation Minibatch GPU Accuracy (%) Time (s) /Epoch
Sigmoid 256 1 10.1 -
Softplus 256 1 28.4 -
Tanh 256 1 31.2 -
ReLU 256 1 31.8 389.5
ReLU 256 4 27.2 304.1
ReLU 512 4 25.9 216.5
ReLU 512 6 24.9 176.1
ReLU 1024 6 21.1 126.8
ReLU 2048 6 18.4 91.3
ReLU 4096 6 17.7 78.4

Table 2
Improvements by using the proposed learning strategy using multiple GPUs.

Minibatch Accuracy (%) Hour (h) /Epoch
Baseline with 1 GPU 256 41.7 18.6

Our learning strategy
with 6 GPUs

512 46.1 8.4
1024 45.8 6.1
2048 45.4 4.3
4096 45.3 3.8
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of 9.9%. The elapsed time of the baseline was about 18.6 h per epoch. In this study, we explored 
and focused on both efficiency and performance, including (1) small minibatch size, (2) dynamic 
learning rate, and (3) multilingual initial models. To investigate in detail the performance under 
various testing conditions, we summarized the improvements in Table 2 and showed that the 
explored learning strategy provided a balance between frame accuracy and time complexity 
when training DNNs using multiple GPUs.

4.	 Conclusions

	 Our investigation focused on the learning strategy for training DNNs using multiple GPUs. 
We discovered that while larger minibatches and multiple GPUs can speed up training, they can 
also lead to the degradation of convergence rate or accuracy. Our approach can help improve 
both training time and accuracy. To address this trade-off, we suggest starting with a small 
minibatch, using multilingual initial models, and applying dynamic learning rates and the ReLU 
activation function. These methods can improve network learning efficiency with multiple 
GPUs. By combining six GPUs and distributed learning, we can train DNNs up to four times 
faster than with a single GPU deep learning system. With the correct learning strategy, multiple 
GPUs can achieve comparable accuracy to a single GPU. Our Torch/Lua codes are available on 
GitHub to reproduce experimental results with multiple GPUs. In future work, we will explore 
various neural network architectures and GPU frameworks.
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