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	 Because of changing consumer habits, manufacturing processes are shifting from mass 
production to small-batch production, which is making machining more complex and increasing 
demands for precision and stability. Machine tools, and thus machining accuracy, are affected by 
factors such as temperature and cutting load. Existing online estimation techniques often require 
the installation of additional sensors at specific locations, an approach that has cost and 
reliability issues, thus limiting industry’s acceptance of these techniques. In practice, most 
manufacturers rely on offline detection methods, meaning that machining accuracy deviations 
can take some time to detect. In this study, we developed a technology for monitoring the status 
of machine tools; this technology, rather than requiring the installation of sensors, uses servo 
sensor signals to estimate accuracy, diagnose faults, and make recommendations regarding 
cutting depth parameters. The proposed method leverages a small number of experiments 
combined with extensive finite element analysis to construct a big data database, followed by the 
sensitivity and regression analyses of the generated database to produce an estimation model that 
evaluates machine tool conditions through servo feedback. The results showed that using linear 
regression to estimate the machine tool’s status achieves good accuracy and that linear regression 
is easier to implement for real-time compensation. Ultimately, these results can enhance 
production efficiency and machining accuracy, as well as prevent unforeseen breakdowns.

1.	 Introduction

	 The machining industry is moving toward a digital smart production and manufacturing 
model. Machine manufacturers provide value-added services in their products, which are 
achieved through a wide range of software features such as conversational operation interfaces 
for shortening process preparation times, optimizing processes, or the utilization of Internet of 
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Things technologies to monitor equipment for pre-emptive maintenance. These features 
facilitate the realization of smart plants. Such value-adding software typically replaces human 
operations with sensors and communication technologies and thus enhances performance and 
lowers costs by reducing labor requirements. To enter or remain in high-end machine tool 
markets, machine tool manufacturers have changed their industry development strategies by 
shifting from the research and development mindset of the past, which focused on improving the 
specifications and performance of single machines, toward providing application-end solutions 
and after-sales service systems that meet customer needs and address actual problems in 
production.
	 For terminal processing plants, changes in consumer habits have led to a transition from mass 
production to small-batch production. Consequently, machining behaviors have grown 
increasingly complex. To respond to shortening product lifespans, the adaptability and stability 
demands in machining have become greater. The most competitive vendors are those who 
respond fastest to market demands. The selection of machining parameters through outdated 
practices such as the onsite staff’s trial and error results in large numbers of rejects, and the 
material and time costs do not support small-batch production. Machining businesses must find 
a way to automate their analysis of the machine state and adjust depth-of-cut parameters to 
ensure high product efficiency. Precision is a key indicator of the performance of machine tools, 
which can be compromised by factors such as temperature changes, the cutting load, and wear. 
Approximately 20% of the yearly operating costs of machining businesses go toward machine 
maintenance and repairs, and 50% of those expenses are spent on precision machine calibration. 
Therefore, given the current requirements for high precision and efficiency, the accuracy of 
machining equipment must be estimated and its faults diagnosed; the advance detection of 
abnormalities and the elimination of problems result in less machine downtime while improving 
machine utilization, efficiency, and production value. 
	 Two major components of a machine tool are its transmission shaft and rotating axis; their 
performance and precision determine the production efficiency and machining precision. As the 
total machining time performed by a machine increases, changes occur in the precision and 
health (backlash, precompression, and abnormalities) of the transmission shaft (straightness 
variation) and rotating axis (axial thermal elongation), compromising the precision of the 
machine. Moreover, an abnormality in one of these shafts that is not detected in time may lead to 
a considerable drop in machining quality, resulting in a massive number of defective products 
and even a shutdown. Some technologies that can detect the machine status in real time have 
been employed for precision compensation, fault diagnosis, and parameter recommendations, 
but these technologies require the installation of additional sensors in specific locations; in 
practice, mechanical designs or machining constraints often prevent the installation of such 
sensors, meaning that the desired physical measurements must instead be calculated indirectly. 
The cost and lifespan of sensors may also lower system reliability to such a degree that a 
machining business may be unable to tolerate; at this stage, most businesses rely on offline 
detection, preventing punctual adjustment when changes in precision are detected. Furthermore, 
even with regular shutdowns (e.g., once per month) for maintenance and repairs, a sudden 
malfunction that cannot be prevented or resolved in a timely fashion may occur. 
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	 The objective of the present study was to develop a technology for monitoring the condition 
of machine tools. This technology, rather than requiring the installation of additional sensors, 
uses servo sensor signals to estimate accuracy, diagnose faults, and make recommendations for 
cutting depth parameters. The proposed method involves the extensive finite element analysis of 
basic parameters obtained through experiments or mechanical designs, with this analysis being 
achieved through the simulation of the relationship between the inputs (such as the servo 
feedback signal) and outputs (temperature, abnormality, and torque) under various conditions 
(including environmental and movement conditions). A small number of sampling experiments 
were performed to evaluate the accuracy of the simulations and correct the simulation conditions 
to improve the fit of the simulation results to actual machine statuses. This facilitated the 
establishment of a big data database and estimation model. This estimation model evaluates the 
condition of machine tools by analyzing servo feedback signals—such as stator temperature, 
motor speed, motor current, and motor torque signals—to estimate the thermal displacement 
and component stress and thus diagnose faults. The proposed system can enhance production 
efficiency and machining accuracy and prevent unforeseen breakdowns and subsequent impacts 
on manufacturers’ production capacity and delivery time. Digital predictions based on servo 
feedback may be less accurate than sensor detections, and machines may deviate from the digital 
model over time, resulting in a decrease in prediction accuracy; however, the proposed approach 
overcomes the issues of an inability to install sensors owing to the spatial and design restrictions 
of machines and the possibility that sensor installation will compromise system reliability 
(sensors may fail) and increase costs. The digital model can be updated by comparing its results 
with actual machining results and then calibrating it to maintain high prediction accuracy. 
	 In the relevant literature, researchers have proposed various approaches to the autonomous 
care of machining equipment through accuracy estimation and fault diagnosis. Research on 
accuracy estimation has included the study of Kong,(1) who performed simulation experiments 
and optimized the thermal characteristics of a machine tool by establishing a heat transfer model 
that could be used as a foundation for enhancing machining precision. Ma et al.(2) measured the 
thermal errors of vertical machining centers by collecting experimental data and analyzing the 
impact of these errors on the machining output; their study offers a practical reference for 
optimizing the performance of vertical machining centers. Tangjitsitcharoen(3) compared the 
abilities of neural network and regression analysis models to predict the variation in the 
straightness of a transmission shaft during computer numeric control (CNC) turning and 
presented the advantages and limitations of applying machine learning techniques in 
manufacturing processes. Czerwinski et al.(4) utilized machine learning to monitor the current in 
a brushless DC motor and calculate its temperature changes, thereby achieving sensor-less 
temperature estimation. In research on fault diagnosis, Douglas et al.(5) proposed an algorithm 
that uses wavelets to analyze transient motor current characteristics and, for the transient 
operations of induction machines, applied the algorithm to detect and analyze abnormalities on 
the basis of waveform features. Kar and Mohanty(6) monitored gear vibrations by performing 
current signature analysis and wavelet transform; in addition to the monitoring of gear condition, 
their detailed waveform-transform-based analysis provided a reference for evaluating equipment 
health. Dambrauskas et al.(7) reported an approach for monitoring and diagnosing the condition 
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of bearings in induction motors; their approach, based on cloud services and artificial neural 
networks, integrates cloud computing with deep learning. Proposing an approach for speed and 
failure detection in brushless DC motors, Medeiros et al.(8) presented a novel approach for 
detecting speed and failures in brushless DC motors using chaos theory. Their proposed method 
leverages chaotic behavior to enhance the detection accuracy of both speed variations and motor 
failures. By employing a chaotic oscillator, the technique effectively identifies irregularities in 
the motor’s operation, which are indicative of potential failures. They demonstrated the method’s 
efficacy through extensive experimentation, showing significant improvements in detection 
precision. The results highlight the potential of chaos-based systems in industrial applications 
for the real-time monitoring and maintenance of brushless DC motors, ensuring greater 
reliability and operational efficiency. Medeiros et al.(8) employed the chaotic behaviors exhibited 
by a motor to monitor the motor’s reliability. Azeem et al.(9) have introduced an advanced AI 
feature called the AI Servo Monitor. This tool collects high-speed data related to machine tool 
feed and spindle control. It employs deep learning techniques on this data to display anomaly 
scores reflecting the current condition of machine components. During normal machine 
operation, the AI Servo Monitor uses motor torque data to train the model, identifying 
characteristics that indicate normal torque conditions. In real-time operation, the AI Servo 
Monitor compares incoming torque data with the normal state, calculating and displaying 
anomaly scores. This functionality enables machine tool operators to detect early signs of feed 
or spindle failures. By alerting operators to perform maintenance before any failures occur, the 
AI Servo Monitor helps enhance machine availability. Totu et al.(10) created the Intelligent 
Thermal Shield (ITS) system to tackle thermal displacement problems. This system utilizes 
sensors strategically placed in areas prone to thermal displacement to gather data. ITS 
compensates the rapid and dynamic thermal displacement occurring during axis rotation by 
analyzing surface displacement data in relation to the thermal response of the rotational speed. 
In contrast, for slower, more uniform thermal displacement due to environmental temperature 
changes, ITS uses temperature application formulas for compensation. By conducting 
experiments and observations, Totu et al. refined thermal displacement compensation using the 
collected sensor data, ensuring consistent and precise machining performance across different 
environmental conditions. Liang et al.(11) introduced a novel system for predicting thermal errors 
in heavy-duty CNC machines. This system employs long short-term memory (LSTM) networks 
and a fog–cloud architecture. The findings demonstrated that, compared with traditional 
methods, this new system reduces data transfer by 52.63% and enhances machining precision by 
46.53%. Gui et al.(12) explored the prediction and control of spindle system thermal errors, 
proposing a new mist–edge fog–cloud system (MEFCS). This system utilizes Bi-LSTM 
networks and cosine and sine gray wolf optimization (CSGWO) algorithms. The results indicated 
that the accuracy of tooth profile deviation improved from ISO level 5 to ISO level 3 with the 
implementation of the MEFCS. Guo et al.(13) investigated the spatiotemporal correlation of data 
in the static thermal deformation modeling of CNC machine tools using a hybrid CNN-LSTM 
model with spatiotemporal correlation (ST-CLSTM). The ST-CLSTM model demonstrates 
excellent prediction performance, robustness, and generalization ability. It surpasses other 
comparison models in terms of prediction accuracy, generalization, and robustness in three 
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different directions, as evidenced by thermal error studies conducted under various conditions, 
including varying spindle speeds and ambient temperatures. Kuo et al.(14) presented a method of 
autonomous optimization using a bidirectional gated recurrent unit (GRU) to accurately predict 
manufacturing errors. Their approach utilizes an optimized automatic logistic random generator 
time-varying acceleration coefficient particle swarm optimization (LRGTVAC-PSO) method to 
enhance a branch-structured bidirectional GRU neural network. The results indicated that the 
bidirectional GRU outperforms other optimized algorithms in terms of prediction accuracy, 
achieving a three-axis average accuracy of 0.945. This demonstrated the superior performance 
of their proposed method in time-related prediction tasks. Kuo et al.(15) employed advanced 
algorithms to predict the thermal displacement of machine tools. Their method utilizes an 
ensemble model that combines LSTM with a support vector machine (SVM). The experimental 
results indicate that the LSTM–SVM hybrid model outperforms other machine learning methods 
in prediction accuracy. Specifically, the prediction RMSEs were reduced to 2.13, 3.91, and 2.04, 
with an overall mean RMSE of 2.69. This performance surpasses those of the standalone LSTM 
and SVM models, which had mean RMSEs of 3.28 and 2.97, respectively. Liu et al.(16) 
investigated the relationship between spindle thermal errors and temperature fluctuations, 
aiming to develop a reliable and efficient spindle thermal displacement modeling method. They 
compared three modeling approaches: LSTM, multiple linear regression (MLR), and 
backpropagation neural network (BPNN). The results indicated that, particularly at high spindle 
rotation speeds, the ANN-based models (LSTM and BPNN) significantly outperformed the 
MLR method. Additionally, across all spindle operating conditions, the LSTM model showed a 
lower root mean square error (RMSE) than the BPNN model. The proposed spindle thermal 
error prediction technique was validated at spindle rotation speeds of 3000, 6000, and 9000 rpm. 
Liu et al.(17) conducted a study on spindle systems, focusing on thermal error modeling and 
compensation based on the error mechanisms of these systems. They employed the VMD-GW-
LSTM network, the VMD-LSTM network, and RNN for their methods. The results showed that 
the compensation rates for the VMD-GW-LSTM network model were 77.78% for two of the 
experimental setups and 75.00% for the third setup. Additionally, the VMD-GW-LSTM network 
model outperformed the VMD-LSTM network and RNN models in both prediction and 
compensation analyses. Nguyen et al.(18) focused on reducing thermal errors in workpieces by 
developing a thermal deformation prediction model using an artificial neural network 
specifically applied to a three-axis vertical CNC milling machine during cutting processes. 
Their method employs LSTM with Pearson’s correlation coefficients for feature selection. Their 
study results illustrated the effectiveness of a real-time error correction system when an LSTM 
neural network is used as the temperature error prediction model. During an 8 h cutting 
experiment, real-time error compensation significantly reduced thermal errors—from 7 to 3 µm 
on the X-axis, from 74 to 21 µm on the Y-axis, and from 64 to 20 µm on the Z-axis—thereby 
enhancing the precision of the workpiece dimensions. Zeng et al.(19) developed a method of 
predicting thermal error in machining using a sequence-to-sequence LSTM network with an 
attention mechanism (SQ-LSTMA) integrated into an edge cloud system. Their results indicated 
that the SQ-LSTMA model surpasses other networks such as BP, RNN, and standard LSTM in 
prediction accuracy and convergence rate, achieving an accuracy of 99.02%. Additionally, the 
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attention mechanism significantly reduces computation time, making SQ-LSTMA faster and 
more efficient than traditional methods. Ji et al.(20) presented a proactive anomaly detection 
framework for robot navigation using multisensor fusion. Their approach integrates data from 
various sensors to enhance the reliability and accuracy of anomaly detection during navigation 
tasks. Their results demonstrated that the proposed method effectively identifies potential 
anomalies before they impact the robot’s performance, thereby improving the safety and 
robustness of autonomous navigation systems. 
	 These papers offer various approaches and techniques for estimating the accuracy of and 
diagnosing faults in machine tools and their components. The techniques can be divided into 
two principal categories: those involving the direct acquisition of necessary physical quantities 
through the installation of additional sensors and those involving the use of sensorless 
technology based on current signals to determine heat generation and thus estimate temperature 
and motor efficiency. The strengths of both these categories were combined in our study. Our 
proposed approach is to employ existing sensors in a servo motor (including sensors for stator 
temperature, rotation speed, current, and torque) to estimate temperature, thermal deformation, 
and component stress conditions and to perform fault diagnoses; these actions will ultimately 
improve machining precision and prevent unforeseen failures. The proposed approach can 
enhance system reliability without requiring the installation of additional sensors and thus will 
reduce costs while providing a higher estimation accuracy than that offered by other sensorless 
prediction technologies. Our system meets the machining demands of the machine tools industry 
and can help manufacturers improve machining efficiency and accuracy while avoiding losses in 
production value owing to sudden failures.

2.	 Experimental Equipment and Methods

2.1	 Equipment for analysis and experiment

	 The thermal deformation of machine tools is mainly caused by environmental changes and 
the thermal expansion of structural materials owing to thermal energy. In this study, we 
conducted experiments combined with extensive finite element analysis to build a database and 
a model for estimating thermal deformation. Figure 1(a) is the schematic diagram of the 
experimental machine tool. The model of the machine tool is IT-25, which is a lathe structure 
and was developed and designed by the Industrial Technology Research Institute in Taiwan. 
Figure 1(b) shows a specifications table of the lathe machine.
	 The PT100 resistance temperature detector was used to measure the temperature changes, 
and the eddy current sensor AEC S-06 was used to measure the thermal deformations. The 
temperature changes and the thermal deformations of the lathe were recorded by GRAPHTEC’s 
GL820 data logger for subsequent analysis. Figure 2 shows the measurement equipment.

2.2	 Prediction methodology

	 Regression analysis is mainly used to analyze the relationship between one or more 
independent and dependent variables. The regression analysis can be divided into simple 
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Fig. 1.	 (Color online) The experimental machine tool: (a) IT-25 lathe and (b) specifications table of the lathe.

Fig. 2.	 (Color online) Measurement equipment: (a) signal recorder (GL820); (b) eddy current sensor; and (c) PT100.

(a) (b)

(c)

(a) (b)
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regression and multiple (or complex) regression. Simple regression is an analytical method with 
only one independent variable and one dependent variable in the regression equation to represent 
the relationship between the independent variable and the dependent variable. However, multiple 
regression is an analytical method that includes two or more independent variables in the 
regression equation, allowing for the understanding of the response levels or quantities of the 
dependent variables on the basis of the levels or quantities of the independent variables.
	 In this study, the room temperature was controlled in accordance with the spindle load and 
experimental conditions. Consequently, multiple regression was employed to determine the 
appropriate supply oil flow rate for the spindle under varying cooling demands. Multiple 
regression can be expressed as

	 y x x xt t t n nt t� � � ��� �� � � � �
0 1 1 2 2

,	 (1)

where yt is a dependent variable, xit are independent variables, β0 is a constant, β1 to βn are 
regression coefficients, and εt is the error. 
	 After performing the regression analysis, a regression equation was obtained, allowing the 
relationship between the dependent and independent variables to be determined. In this study, an 
F-test was then used to evaluate the prediction accuracy and significance of the developed 
regression equation. The following assumptions apply to the F-test:

	 H0： � � �
1 2

0� ��� �n

	 H1： �k � 0 (where 0 < <k p ), 	 (2)

where p represents the number of independent variables. The following statistical test quantity is 
adopted to evaluate the prediction and significance of the regression equation.

	 F MSR
MSE

* = 	 (3)

Here, MSR and MSE represent mean square regression and mean square error, respectively. If 
the significance level is set as α, the determination rule of significance is as shown below.
•	 If F* ≤ F (1 − α; p − 1, n − p), the significance does not exist. The assumption H0 is valid.
•	 If F* > F (1 − α; p − 1, n − p), the significance exists. The reliability of the regression equation 

can be accepted. The assumption H1 is valid.
	 F represents the critical value obtained from the F distribution table at a specific significance 
level α. The coefficient of multiple determination is used to represent the goodness of fit of the 
regression model and is defined as

	 R SSR
SST

SSE
SST

2
1� � � ,	 (4)
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where SSR, SSE, and SST represent the sum of squares for regression, the sum of squares for 
error, and the total tum of squares in statistics, respectively. The range of R2 is 0 ≤ R2 ≤ 1. The 
value of R2 indicates the strength of the relationship between the dependent and independent 
variables. A high R2 value suggests that the dependent variables can be accurately predicted 
from the independent variables in the regression equation. R2 is defined as the ratio of the 
variance explained by the regression model to the total variance of the dependent variable yi. A 
large R2 means that the regression model explains a greater proportion of the total variation.

2.3	 Simulation analysis and experiment

	 The commercial software ANSYS Fluent was employed to simulate the flow field, 
temperature distribution, and corresponding thermal deformations within the computational 
domain. In this study, the finite volume method and fluid–solid coupling calculations were 
utilized to model the flow field within the lathe structure, as well as the temperature distribution 
and associated thermal deformations. To ensure the uniformity of the flow field within the lathe 
structure, a low flow velocity was maintained, and the fluid in the flow field was assumed to be 
incompressible. For model simplification, the Navier–Stokes equations and the energy equation 
for a three-dimensional incompressible fluid are presented as follows:
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where Uj, T, and P are the averages of velocity, temperature, and pressure, respectively. Under 
the Boussinesq assumption, the buoyancy effect is considered, and β is the thermal expansion 
coefficient. With a turbulent closure model, the turbulent stress i ju u−  and turbulent heat flux 

jT u− ′  can be obtained as 
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where vt and Prt are the turbulent kinematic viscosity and turbulent Prandtl number, respectively. 
k is the kinetic turbulent energy, where 2 2 2 / 3x y zk u u u= + + , and δij is the Kronecker function. 
The turbulent closure problem is computed using the k-ε model, where the turbulent stress and 
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turbulent heat flux can be obtained using the kinetic turbulent energy and turbulent dissipation 
equations, respectively.
	 The conditions for simulation analysis are shown in Fig. 3. The power of the spindle motor 
measured using the power meter was 500 W. In the study, the heat generated by a hydraulic 
cylinder, turret, and the front and rear bearings were 68 ℃, 50 W, 138 W, and 120 W, 
respectively, as shown in Fig. 3(a). In Fig. 3(b), the air flow velocity in the environmental flow 
field measured by the flow meter was 8.2 m/s, and the air flow rate close to the spindle motor 
end was 0.3 m/s. The number of grids in the simulation analysis was approximately 12.7 million, 
as shown in Figs. 3(c) and 3(d).
	 The conditions of the experiments were based on the lathe usage status in the test. The 
experimental conditions are shown in Table 1 below.

(a) (b)

(c) (d)

Fig. 3.	 (Color online) Conditions for simulation analysis: (a) heat generated, (b) air velocity, (c) mesh, and (d) 
simulation.



Sensors and Materials, Vol. 36, No. 9 (2024)	 3827

2.4	 Equipment monitoring and accuracy estimation

	 The machining industry has already begun moving toward a digital smart production and 
manufacturing model, and manufacturers can add value to systems through a wide range of 
software services that replace human behaviors with sensors and communication technologies 
and thus enhance the performance and lower the costs by reducing the demand for labor. A 
system for monitoring the precision and condition of metal cutting equipment, which can 
effectively aid operators in diagnosing equipment condition and enhancing machining accuracy, 
was developed in this study. The modules of this system include transmission shaft and rotating 
axis condition detection functions, enabling the user to estimate and compensate for 
abnormalities, component stress, backlash, straightness, and axial thermal expansion without 
needing to install additional sensors. The machine tool controller is employed to acquire the 
servo feedback information necessary for digital estimation, thus overcoming the limitations of 
sensors and effectively lowering the barriers to entry for operators wanting to upgrade their 
machinery intelligence. The condition monitoring and precision self-care modules of the 
developed system perform immediate monitoring and failure prevention by capturing signals, 
computing features, and determining conditions on site and in real time. This enables the daily 
assessment of a machine’s condition during its warm-up, proactive maintenance scheduling, 
compensation for backlash, and real-time monitoring of temperature and thermal displacement 
(including rotating axis extension and transmission shaft straightness variations) during the 
machining process to maintain stable quality and prevent overheating failures. The three main 
functions of the proposed system are as follows.
•	 Precision Estimation and Compensation: The transmission shaft backlash, straightness 

variation, and thermal extension of the rotary shaft are estimated to assist the user in 
precision compensation and thereby maintain stable machining precision and reduce the 
machine warm-up time.

•	 Cutting Depth Parameter Assistance: Real-time estimates and displays of motor, bearing, and 
nut loads are provided, enabling the user to adjust the maximum cutting depth for rough 
machining on the basis of the degree of component stress, enhancing machining efficiency 
and maintaining machining quality.

•	 Prevention of Sudden Failures: The transmission and rotating axis temperature and 
abnormality estimation modules can be implemented to prevent overheating failures during 
machining and provide early warnings of abnormalities (indications of future failure even if 
the machine remains operational) to help the user schedule maintenance.

Table 1
Experimental conditions.

1 2 3

Experimental
test conditions

No operation
Room temp.+15 ℃
Constant temp. measurement
Spindle area/fan ON

Spindle operation/stop 8/2 h
Constant room temp.
Constant temp. measurement
Spindle area/fan ON

Spindle operation/stop 8/2 
hours
Room temp.+15 ℃
Constant temp. measurement
Spindle area/fan ON

Sensor Eddy current Eddy current Eddy current
PT100 PT100 PT100
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	 These modules do not require the installation of sensors in machines, which can be impossible 
because of the difficulty in placing sensors in older machines or other reasons, and instead draw 
upon feedback information from the machine tool controller to perform state monitoring, 
precision estimation, and compensation. The modules can help operators maintain consistent 
quality and reduce waste. The development of these modules began with the acquisition of basic 
component parameters through experiments or from the components’ mechanical designs. Input 
and output relationships were then simulated under various conditions (environmental and 
operational) using finite element analysis software. The extensive digital simulations were then 
sampled in several experiments in which the accuracy of the simulation analysis was evaluated, 
providing feedback regarding how the simulation conditions should be adjusted such that the 
simulation results would more closely match the actual state of the machinery. This process 
facilitated the creation of a large-scale database. Finally, the sensitivity analysis of the estimation 
targets (temperature, thermal displacement, rigidity, and health state) was performed using servo 
feedback information such as stator temperature, speed, current, and torque, and the results 
revealed the parameters that have the strongest impact for regression analysis. The predictive 
model was converted into mathematical polynomials suitable for real-time calculations. The 
transmission and rotating axis estimation technology developed in this study assumes that the 
transmission and rotating axis primarily comprise motors, bearings, and nuts. The first step in 
this study was the establishment of methods of estimating the condition of these three individual 
types of component; these methods were then integrated into the evaluation of the transmission 
and rotating axis.

3.	 Results and Discussion

3.1	 Motor state detection technology

	 In this section, we describe in detail the development of the motor state prediction technology. 
The process was as follows. First, the copper loss, iron loss, transient temperature, and efficiency 
(torque–rotational speed–efficiency relationship) of a motor were plotted in accordance with the 
mathematical relationship between electromagnetism and heat. Second, the plot was employed 
as the basis for establishing a technique for motor heat effect analysis; the motor efficiency plot 
was used to illustrate the efficiency for various rotational speeds and torques, enabling the 
calculation of the heat generated by the motor while it was in operational and the heat transmitted 
to the surroundings. Motor heat calculations can help operators protect their motor from 
overheating, which would otherwise cause thermal displacement in the screws and structure of 
the machine tool. The developed module for motov status self-detection was modeled as follows  
(as shown in Fig. 4).
1.	 	The basic parameters of the motor were acquired from the manufacturer or measured by the 

researchers. The current, voltage, resistance, and power factor (PF) under no-load and load 
conditions were then obtained using a power analyzer (a digital oscilloscopic power meter) 
and employed to establish a model of the motor. 

2.	 	Data were imported into ANSYS for analysis and to obtain theoretical curves for rotational 
speed, torque, and efficiency. 
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3.	 The data obtained by preexisting sensors—such as motor speed, motor current, and stator 
temperature data—were received through the controller and used as inputs to improve the 
prediction accuracy. 

4.	 	The servo motor temperature was estimated from the current, rotational speed, and stator 
temperature. During model verification, multipoint temperature sensors were installed on the 
outside of the motor to ensure the accuracy of the motor temperature simulation results and to 
provide feedback that could be used to correct the simulation conditions and improve the 
prediction accuracy. 

5.	 	During fault diagnosis, the ideal torque was reverse-calculated from the motor speed and 
compared with the measured torque. Abnormalities in the motor status were detected from 
the difference between the ideal and actual torques. The accuracy of the motor abnormality 
determinations made by the model was verified by adding an accelerometer to the motor. 

	 Once large amounts of simulation data had been acquired and the sampling verifications and 
revisions had been performed, the simulation and measured data were subjected to sensitivity 
analysis to evaluate the relationship between the servo feedback and the surface temperature of 
the motor flange. The five-axis machine tool developed by the Industrial Technology Research 
Institute’s Smart Machinery Technology Center was employed as the model of interest in this 
study. The results revealed that the surface temperature of the motor flange could be expressed 
as the following function of the stator temperature:

	 T C C TMotor ST ST stator� �
0 1 ,	 (7)

Fig. 4.	 (Color online) Motor status self-detection module: model construction process.
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where TMotor is the surface temperature of the motor flange, CSTi is the ith-order temperature 
constant of the motor stator in relation to the flange surface, and Tstator is the motor stator 
temperature. The relationship expressed in Eq. (1) is illustrated in Fig. 5.

3.2	 Bearing and nut status detection 

	 Most bearings and nuts on the market are not equipped with sensors; consequently, 
information about their movement cannot be acquired directly. However, once they have been 
connected to a motor, their movement can be estimated using sensor information from the servo 
motor. Simulation software was employed to analyze the torque conditions of the bearing and 
nut corresponding to different motor torques, currents, and stator temperatures under normal 
preload conditions; sensitivity and regression analyses were then performed. The results revealed 
that the bearing and nut torque ratio could be expressed as a polynomial of the motor torque; 
thus, the motor torque obtained through servo feedback could be split into bearing and nut 
torques (as shown in Fig. 6):

	 r C C C CBN BN M BN M BN M BN� � � �
3

3

2

2

1 0
� � � ,	 (8)

where rBN is the nut torque τN divided by the bearing torque τB, CBNi is coefficient i of the torque 
ratio polynomial, and τM is the motor torque. The machine bearings could be divided into the 
front and back bearings, and their torques could be calculated separately by decoupling the 
bearings by the same method.
	 Once the motor torque had been split into the bearing and nut torques, the status of the 
bearing and nut was estimated. According to bearing torque theories, the preload value of the 
bearing can be estimated from the actual machine bearing torque and used in fault diagnoses; 
the possibility of failure due to a reduction in bearing preload or a sharp increase in friction 
caused by wear and tear on the bearing could be determined. Moreover, on the basis of the 
bearing torque status, machining businesses can increase or decrease the cutting depth to 
maximize the machining efficiency and prevent damage to components. Regarding temperature 

Fig. 5.	 (Color online) Motor temperature graphs: (a) surface temperature and (b) stator temperature.

(a) (b)
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predictions, by using bearing heat effect simulation and analysis technology, the current bearing 
heat could be calculated from the bearing torque and added together with the previously 
accumulated bearing heat to determine the total bearing heat. Predictions of bearing temperature 
can be employed in displacement prediction and monitoring, improving the accuracy of a 
machine tool. Sensitivity analysis showed that the relationship between the initial bearing 
temperature and the stator temperature could be expressed as 

	 T C T CBearing SB stator SB� �
1 0 ,	 (9)

where TBearing is the initial bearing temperature and CSBi is the ith-order constant in the 
relationship between the bearing and the motor stator. 
	 The total heat generation of the bearing is

	 H H C H' CB B BH B BH� �� � � � �1 ,	 (10)

	 H' C nB HB' B B� � ,	 (11)

where HB is the cumulative heat of the bearing, H'B is the current bearing heat, τB is the bearing 
torque, nB is the rotational speed of the bearing, CBH is the regression coefficient of the 
cumulative bearing heat at each regular sampling time until the total heat is achieved, and CHB is 
the coefficient of bearing heat at the time of sampling. The values of these coefficients could be 
obtained through regression analysis. When the machine sampling frequency was not consistent 
with that in the regression analysis (as shown in Fig. 7), CBH had to be adjusted using the ratio of 
the two sampling frequencies. The bearing temperature could then be calculated as 

	 T C H CBearing BH B BH� �
1 0 ,	 (12)

where CBHi is the ith-order constant of the bearing heat and temperature. 

Fig. 6.	 (Color online) Relationship between motor torque and bearing-to-nut torque ratio.



3832	 Sensors and Materials, Vol. 36, No. 9 (2024)

	 The process of detecting the nut status is similar to that of bearing status monitoring. (1) 
First, the nut torque was decoupled from the motor torque of the servo drive, and the preload 
value was obtained using nut torque theories. This preload value was employed to determine 
whether the status was abnormal and to offer suggestions for adjustments to the cutting depth 
parameters. (2) Temperature predictions involved the use of nut heat effect simulation and 
analysis technology: the current nut heat was calculated from the nut torque and added together 
with the previously accumulated nut heat to determine the total nut heat. Predictions of nut 
temperature can be used in displacement prediction and monitoring to improve the accuracy of a 
machine tool. The sensitivity analysis results and regression analysis formulae for nut 
temperature were similar to those for bearing temperature. 

3.3	 Estimation of transmission shaft straightness and backlash 

	 A transmission shaft (also known as a linear or feed axis) primarily comprises a motor, a 
front bearing, screws, nuts, and a back bearing. The motor rotates and drives the screws 
supported by the front and back bearings, resulting in the linear motion of the nuts on the screw 
and the moving platform above them. The movement of these components generates heat, which 
is transferred to the structure through heat conduction. The resulting heat deformation of the 
structure causes slight deviations in the horizontal and vertical directions of the moving platform 
while it is moving, and these deviations reduce machining precision. Currently, most machining 
businesses conduct regular shutdowns for maintenance and repairs, during which they use laser 
interferometers to measure the linear movement deviation of moving platforms. However, such 
offline measurements do not enable the immediate detection and correction of abnormalities, 
and a large number of defective products are thus produced before the deviations have been 
discovered. Additionally, laser interferometers are expensive, and operators of these devices 
must receive training on them. Most machining businesses cannot afford the associated in-house 
equipment and staff and therefore outsource this work; consequently, when an abnormality 

(a) (b)

Fig. 7.	 (Color online) Relationship between bearing heat and temperature: (a) stator temperature and (b) total 
bearing heat.
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occurs, a plant must be shut down until it has been inspected by the contracted service provider. 
To address this issue, thermal fluid–solid coupling analysis was employed in this study to 
estimate the linear deviations of a transmission shaft, with the temperature estimation 
technology described in the previous section employed to analyze the impact of component 
heating on the deformation of a transmission shaft structure. In the simulation analysis, first, the 
transmission shaft was segmented into multiple nodes, and the amount of deformation of each 
node under various movement conditions was simulated and predicted separately. Horizontal 
and vertical changes in axis straightness were analyzed in accordance with the geometrical 
product specification standard ISO 1101. The proposed approach overcomes the issue of product 
defects caused by excessive straightness changes due to the inability of machines to dynamically 
predict the straightness changes caused by thermal displacement. 
	 Once large amounts of simulation data had been gathered and the data had been validated 
against laser interferometer measurements, sensitivity analysis was performed on the simulation  
and measured data. The results indicated that the vertical and horizontal straightness changes 
could be expressed as functions of the motor and front and back bearings. This is because the 
motor and bearings are directly connected to the structure (whereas the screws and nuts are only 
indirectly connected through the bearings), and the heat can thus be directly conducted to the 
structure, producing thermal deformation. The equations are as follows:

	 �Hi
j

HFBij FBearing
j

j
HBBij BBearing

j

j
HMijC T C T C� � �

� � �
� � �
1

3

1

3

1

3

TT CMotor
j

Hj� ,	 (13)

	 �Vi
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VFBij FBearing
j

j
VBBij BBearing

j

j
VMijC T C T C� � �

� � �
� � �
1

3

1

3

1

3

TT CMotor
j

Vi� ,	 (14)

where δHi and δVi represent the horizontal and vertical straightness deviations of node i, 
respectively; CHFBij and CVFBij are the coefficients of the impact of the front bearing temperature 
on the jth-order horizontal and vertical straightness deviations of node i, respectively; CHBBij and 
CVBBij are the coefficients of the impact of the back bearing temperature on the jth-order 
horizontal and vertical straightness deviations of node i, respectively; CHMij and CVMij are the 
coefficients of the impact of the motor temperature on the jth-order horizontal and vertical 
straightness deviations of node i, respectively; CHj and CVi are the constant coefficients of the 
horizontal and vertical straightness deviations, respectively; TFBearing is the temperature of the 
front bearing; TBBearing is the temperature of the back bearing; and TMotor is the temperature of 
the motor. The estimation model is illustrated in Fig. 8. 
	 Regarding backlash in the transmission shaft, wear from the prolonged use of a machine tool 
results in the deformation of the backlash, compromising the machining accuracy. Presently, 
most inspections are conducted using laser interferometers, which also involve the risks of 
machining defects and delayed repairs, similar to those of straightness compensation. To address 
this issue, a backlash detection method that employs servo feedback data to determine the 
backlash of a transmission shaft was developed. First, reciprocating movement commands were 
given to the transmission shaft; this was begun with the minimum movement unit, and the 
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movement range was then gradually expanded. The results demonstrated that when the 
movement command was smaller than the backlash, only the motor rotated, and the moving 
platform on top of the transmission shaft was not driven. Consequently, the motor current 
remained low. When the movement range was greater than the backlash, the moving platform 
began to move, which caused the motor current to increase or decrease depending on the 
direction of the movement. This enabled the detection of the transmission shaft backlash under 
nonmachining conditions and the inference of the backlash value for different rotational speeds. 
The proposed approach reduces the backlash measuring time from the 15 min required when 
using a laser interferometer to below 10 min while also improving machining precision. The 
current under the reciprocating movement is illustrated in Fig. 9. 

3.4	 Estimation of rotational axis thermal elongation 

	 Another key component in a machining center is the rotational axis, which may constitute a 
spindle or rotating platform. The interior of the rotating axis mainly comprises transmission 
components such as a motor, bearings, or nuts, and the backlash of each component can be 
estimated and compensated by the methods described in Sect. 2.3. Whereas the transmission 
shaft transmits linear movement, the rotational axis produces rotational movement; therefore, 
the thermal deformation of the rotational axis primary takes the form of axial elongation. The 
amount of deformation affects the parameters for correcting the machine tool length. If thermal 
elongation of the rotational axis is not compensated in a timely manner, finished workpieces will 
be larger or smaller than the target size, depending on whether the rotational axis has elongated 
or shortened. Currently, most machining businesses ensure that a rotational axis is thermally 
stable (its elongation has a certain stable value with only microscale changes being possible) by 
warming up the machine first (e.g., through continuous rotation for 30 min or longer) and then 
measuring the tool length and using the controller to compensate for this length to maintain 
machining accuracy. However, if a machine has been on standby for a long period (for reasons 
such as workers going on a break or changing molds), the machine must be warmed up again, 

Fig. 8.	 (Color online) Model for estimating straightness changes in the transmission shaft.
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which wastes time and compromises production capacity. To address this issue, we developed a 
technology for estimating the thermal elongation of the rotational axis. The heat dissipation and 
thermal displacement of a rotational axis were analyzed by examining the heat generated by a 
motor and bearings; finite element analysis software was then employed to establish the 
relationship between the servo feedback and the thermal displacement. The proposed technology  
enables machining businesses to periodically estimate the elongation of the rotational axis and 
thus predict the thermal displacement of the shafts; with this information, the businesses can 
rapidly compensate the tool length and improve machining accuracy. 
	 Large amounts of simulation data were gathered, and these data were verified against eddy-
current detector measurements. Sensitivity analysis was then performed on the simulation and 
measured data. The results revealed that the thermal displacement of the rotational axis could be 
expressed as a function of the motor’s load, rotational speed, and temperature difference:

	 �R RT RM M RL M RCC T C S C L C� � � �� ,	 (15)

where δR is the thermal elongation of the rotational axis; CRT, CRM, CRL, and CRC are constants 
derived through regression analysis; ΔT is the difference between the current stator temperature 
and the stator temperature at the time of tool calibration; and LM is the motor load. Entering data 
on the motor’s rotational speed, load, and temperature into Eq. (15) enabled the calculation of the  
amount of elongation. The accuracy of the thermal elongation of rotational axis is shown in Fig. 
10.

3.5	 On-site β-site system validation

	 To validate its appropriateness, β-site validation was conducted by introducing the proposed 
technology in an actual machining plant that performs turbine bush milling. The test machining 
process is illustrated in Fig. 11. Each hour, the manufacturer can produce six turbine bushings on 

Fig. 9.	 Motor current during backlash inspection
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each machine. However, Taiwan’s declining birth rate has led to a labor shortage and an inability 
to pass on production line experience. Consequently, the manufacturer hoped to improve their 
machining accuracy and efficiency through the introduction of digital technologies and the 
prevention of sudden failures. The verification conditions in this study are shown in Table 1, and 
the results are shown in Table 2. Using the results in Table 2 for regression analysis, the predicted 
and actual thermal displacements of the rotational axis were obtained, as shown in Fig. 12.
	 The equipment status monitoring and precision estimation technology developed in this 
study was introduced to the machining process in the following manner.
•	 	Routine machine warmup monitoring: An onsite operator revised the routine machine 

warmup task so that it would be executed by the transmission and rotational axis status 
monitoring module developed in this study. The software module automatically monitored 
the statuses of the transmission and rotational axis and provided a fault warning system that 
could prevent sudden failures. Furthermore, the transmission shaft backlash was calculated 
during the machine warmup process, and the compensation values were displayed on the 
human–machine interface, enabling managers to decide whether parameters should be 
entered into the machine controller. 

•	 	Trial machining and adjustments: During the cutting process, the on-site manager ran the 
software module to monitor the machine tool status. Once the machining program was 

Fig. 11.	 (Color online) Machining process of the plant used for β-site validation.

Fig. 10.	 (Color online) Relationship between rotational axis temperature and thermal displacement.



Sensors and Materials, Vol. 36, No. 9 (2024)	 3837

complete, the software module displayed the recommended adjustments to the depth of cut 
(to be applied to the rough cutting). The manager could calibrate the machining program in 
accordance with the displayed results to improve the machining efficiency. 

•	 	Machining process monitoring: During the machining process, the developed software 
module was kept running so that it could automatically monitor changes in transmission shaft 
straightness and thermal elongation in the rotational axis. The statuses of the axis were 
displayed on the software interface, enabling managers to enter the necessary parameters into 
the machine tool controller to compensate for any thermal displacements and thus improve 
the machining accuracy. 

	 The accuracy of the model estimations was verified by employing actual machining practices 
with a five-axis machining center developed by the Industrial Technology Research Institute; 
instruments such as thermometers, load cells, and a laser interferometer were irregularly 
employed to take measurements and verify the accuracy of the estimations. Using the elongation 
of the rotational axis as an example, during validation, the controller provided feedback about 
the rotational speed, torque, and stator temperature. The axial thermal elongation history was 
taken into consideration when the temperature and thermal elongation of the rotational axis were 
being estimated, and the actual thermal displacement was derived from the displacement 

Table 2
Experimental results.

1 2 3

Operation conditions 
and
thermal deformations

Operation 3 h −21 −33 −34
Stop 1 h −26 −19 −37
Run 1.5 h −28 −26 −45
1 h Lunch break errors 
(μm) 5 14 3

Max. (μm) 0 0 0
Min. (μm) −29 −33 −45
Difference (μm) 29 33 45

Fig. 12.	 (Color online) Predicted and actual thermal displacements of the rotational axis.
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measurements and compared with the predictions. Lastly, all the measurements and predictions 
were analyzed to determine the coefficient of determination (R2), which described the accuracy 
of the model estimations. The results are illustrated in Fig. 9. 
	 The estimation accuracy for each technology is detailed in Table 3.
	 The experimental results indicate that when the sensor signal is close to the estimation target 
and the sensing data can be used to predict the state, a higher estimation accuracy can be 
achieved (such as for motor temperature estimation). However, if more than two sets of 
regression equations are required for state prediction, the prediction accuracy decreases as the 
number of equations increases (such as for bearing and nut temperature estimation). Practically, 
owing to mechanical design constraints, it is often difficult to place sensors directly at the 
measurement location, making it hard to detect the state of parts. Compared with the current 
detection difficulties, we provide a simple method to directly estimate the state of parts that are 
difficult to measure using servo feedback, thereby preventing unexpected failures. Additionally, 
in this study, we primarily use multiple regression analysis to conduct sensitivity analysis on 
multiple input and one output parameters from a small number of experiments and a large 
amount of finite element analysis simulation results, producing corresponding regression 
equations. According to the equations obtained in this study, state estimation through multiple 
linear regression equations can generally achieve an estimation accuracy of more than 90%. 
However, practically, the linear regression analysis method cannot be applied to all machines. 
The thermal deformation prediction equations of machine tools are related to machine design. 
Considering conditions such as thermal symmetry, the thermal deformation equations can 
usually be simplified into linear regression equations. If the thermal effects are not considered in 
the machine design, it is generally difficult to achieve good estimation results using regression 
analysis. Many researchers have also invested in the prediction and compensation methods for 
the thermal deformation of such types of machines using neural networks such as LSTM, GRU, 
and RNN. However, the estimation calculations are much more complex and cannot be 
embedded into the machine tool controller for real-time compensation. The results of our study 
also align with those in Okuma’s technical white paper:(21) regression analysis is an effective 
method for thermal compensation, and if the results are inaccurate, it may indicate a problem 
with the machine tool design. Therefore, the results of this study further demonstrate the 
effectiveness of regression analysis in machine tool thermal compensation and a thermal 
compensation method that can be embedded into the machine tool motion controller is 
developed, which will be introduced into end-processing plants for actual machining 
verification. The benefits to the machining business from the introduction of these technologies 
can be summarized as follows.

Table 3
Status monitoring accuracy
Estimation target Estimation accuracy
Motor temperature R2 ≈ 0.92
Bearing temperature R2 ≈ 0.88
Nut temperature R2 ≈ 0.90

Transmission shaft straightness Horizontal straightness R2 ≈ 0.93
Vertical straightness R2 ≈ 0.94

Transmission shaft backlash R2 ≈ 0.97
Rotational axis thermal elongation R2 ≈ 0.92
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•	 	The validation of machining accuracy and yield rate was performed through random 
inspections of the turbine bushings produced when following the original quality control 
protocols of the collaborating manufacturer. The original tolerance was approximately 0.05 
mm. Following the introduction of the thermal displacement estimation technology, the 
compensation was improved to 0.03; furthermore, the tolerance was exceeded for no more 
than one item per 100 samples. Hence, the technology was shown to effectively improve 
machining accuracy and yield while addressing the impact of misaligned lubrication holes on 
the lubrication of turbine bushings.

•	 	Regarding adjustments to the machining parameters, the machining center status and 
component stress could be automatically estimated using status estimation technology and a 
visual interface, and recommendations for the maximum cutting depth could be provided. 
The user could modify the machining program in accordance with the recommendation, and 
the number of trial cuts was reduced by more than 30%. 

•	 	No unforeseen shutdowns occurred during the technical validation period of this study. 
Furthermore, the equipment status detection performed by the warmup program and using 
the technology developed in this study reduced the time taken to inspect three-axis milling 
beds by 60%. 

4.	 Conclusions

	 In this study, systems that use servo feedback data were developed for status estimation, 
precision estimation, and the compensation of the machine tool transmission and rotational axes. 
The proposed technologies do not require the installation of sensors and can perform estimations 
using only the servo feedback information obtained from the machine tool controller. Compared 
with existing sensorless estimation techniques, this approach improves the estimation accuracy, 
avoids incorrect estimations due to sudden changes in machine tool status, and eliminates the 
need for additional sensor installations at specific positions, which would require modifications 
to the mechanical design. The proposed method was practically introduced into a β-site for 
machining verification. The verification results indicate that, with the proper mechanical design 
of the machine tool, the accuracy of estimating mechanical part temperatures and thermal 
deformation through regression analysis can reach a value above 88%. This method is easier to 
integrate into the machine tool controller for real-time compensation than existing neural 
network methods, and the results are consistent with those in Okuma’s technical white paper. 
The validation results indicate the following benefits to machining businesses:
•	 	Improving the value added to products: Machining accuracy can be improved by equipping 

machine tools with intelligent machining application functions to carry out efficient and 
intelligent machining and production; in addition, defect rates can be reduced, and trial 
machining parameter adjustment and machine status detection times can be shortened.

•	 	Establishing smart manufacturing capabilities: Small-batch, diverse, and customized 
requirements will become the norm for customer orders in the future, and the stability and 
efficiency of machining will affect manufacturing capabilities. Establishing smart 
manufacturing capabilities by using the status detection technologies developed in this study 
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would enable the digital and visual management of the equipment status. As well as reducing 
time-consuming and inaccurate manual operations, the developed technologies enable 
quality monitoring, production progress querying, and customer feedback in real time. 
Overall, these technologies can effectively improve product quality and lead times while 
lowering product costs, thereby improving a company’s competitiveness. 
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