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	 The geometric processing of spaceborne synthetic aperture radar (SAR) images plays a 
crucial role in achieving the high-precision positioning of SAR images. Traditional SAR image 
geometric processing models include rigorous sensor models and rational polynomial coefficient 
models. However, these models are not always fully applicable to complex SAR image geometric 
processing scenarios. To address this issue, we propose an innovative framework for spaceborne 
SAR image geometric processing, aiming to realize the training of SAR image geometric 
processing models. The framework primarily relies on the generation of coordinate samples 
based on the rigorous imaging model of spaceborne SAR and utilizes a network model called the 
Spaceborne Synthetic Aperture Radar Coordinates Points-Radial Basis Function Neural 
Network (SARCoorP-RBFNet), composed of radial basis function neurons, to approximate the 
mapping relationship between the heterogeneous spatial coordinates and the corresponding 
ground coordinates. The network is trained using the generalized inverse matrix method to 
achieve more stable performance. The proposed method has been tested on spaceborne SAR 
images covering most cities in China with resolutions of 1, 3, 5, 8, and 25 m in the imaging area. 
The results demonstrate that SARCoorP-RBFNet achieves a large number of well-fitted 
heterogeneous spatial coordinate point pairs with an accuracy higher than 5% of a pixel and 
exhibits significant advantages in complex scenarios involving the geometric processing of 
multiple images.

1.	 Introduction

	 Synthetic aperture radar (SAR) technology has been widely used in military and civilian 
fields owing to its ability to observe Earth in all-weather, all-day, multi-dimensional, and high-
resolution imaging. It has become one of the most important tools for Earth observation. With 
the advancement of space SAR technology, SAR image geometry positioning technology is 
developing rapidly. The preprocessing stage of SAR image geometry positioning technology 
involves the creation of SAR geometry imaging models. Currently, there are two main SAR 
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geometry imaging models: Range Doppler (RD)(1) and Rational Polynomial Coefficient (RPC).(2) 
The RD model can provide high-precision data but is severely dependent on physical sensor 
parameters,(2–4) limiting its application. The RPC model can fit SAR images under ideal zero 
Doppler conditions and can replace the RD model.(4) However, previous studies have shown that 
the RPC model has confidentiality issues because it can easily calculate the attitude information 
of remote sensing satellites.(5,6)

	 In recent years, with the continuous development of neural networks, the numerical fitting 
method based on neural networks has rapidly advanced. Neural networks have a hierarchical 
structure of data characteristics, which can represent high complexity functions,(7) providing a 
theoretical basis for the neural network model to fit the RD model. Compared with traditional 
numerical fitting methods, the neural network approach has the advantage of adapting to 
different data and performing a complete analysis of multiple variables.(8,9) Currently, there is 
extensive research on neural-network-based remote sensing image classification, object 
detection, and other related areas. However, there is relatively limited research on SAR image 
geometric processing. One of the challenges facing the geometric processing of SAR images is 
the lack of intelligent fitting models suitable for complex scenarios. Existing models are 
primarily designed for the geometric processing of single-scene SAR images, and their 
applicability is limited, thus unable to support the geometric processing of multiple SAR images 
in complex scenarios.
	 Therefore, we would like to adopt the neural network approach for the geometric processing 
of SAR images. However, neural networks rely on data-driven learning, and currently, there are 
no publicly available datasets that can support the training of neural networks specifically for 
SAR image geometric processing.
	 In this paper, we present a targeted network fitting model for the geometric processing of 
satellite-borne SAR image formation, which takes into full consideration the data characteristics 
of satellite-borne SAR images. On the basis of the rigorous geometric model of satellite-borne 
SAR imaging, heterogeneous spatial coordinate point pairs are generated. A targeted network 
fitting model is designed specifically for SAR image formation patterns and imaging coverage 
areas. The radial basis network is utilized to fit the mapping relationship between different 
spatial coordinate point pairs.
	 The main contributions of this paper can be summarized into the following two aspects:
1)	� We propose a network fitting model for the geometric processing of satellite-borne SAR 

image formation, referred to as Spaceborne Synthetic Aperture Radar Coordinates Points-
Radial Basis Function Neural Network (SARCoorP-RBFNet). We utilize the RD model to 
generate training samples and employ radial basis function (RBF) networks as the 
foundational structure for fitting the coordinate point pairs. 

2)	� We conduct targeted experiments and thoroughly validate our approach using SAR images 
with resolutions of 1, 3, 5, 8, and 25 m, covering multiple cities in China. The experimental 
results demonstrate the effectiveness of our method in fitting the mapping relationship 
between coordinate point pairs from different spatial locations for imaging geometric 
processing, while achieving reliable accuracy.
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2.	 Related Work

	 The purpose of SAR image geometric processing is to enhance the geometric positioning 
accuracy of SAR images. Currently, the mainstream geometric processing models primarily rely 
on improvements based on the RD and RPC models.
	 Back in 1981, Brown introduced a method for the absolute positioning of individual pixels in 
SAR images without the need for ground control points.(10) This approach relied on remote 
sensing ephemeris data and the characteristic parameters of the SAR data acquisition system as 
inputs. In 1993, Bamler and Schättler presented a paper on SAR image geocoding, where he 
parameterized the orbit model, range equation, and Doppler frequency equation using 
polynomials.(11) He established an RD model using the model parameters extracted from radar 
processing parameters, enabling indirect resampling and positioning. Iterative methods were 
employed for the spatial solution between the geographic and image coordinates. On the other 
hand, the RPC model has long been widely used in optical satellite remote sensing data 
processing. It was not until 2010 when Vassilaki and Ioannidis first applied RPC to high-
resolution SAR imagery, conducting target localization experiments using TerraSAR images 
with a model replacement accuracy of five pixels.(12) Eftekhari et al. presented a method for 
solving the RPC model, which was based on sensor parameter calibration.(13) Subsequently, as 
the RPC model matured, Capaldo et al. conducted research on stereo positioning algorithms and 
regional network adjustment methods based on the RPC model.(14) Sekhar et al. proposed an 
RPC model based on the orthorectification of SAR images.(15) 
	 We can observe that both the RD and RPC models are solely employed for the geometric 
processing of single-scene imagery. Consequently, to some extent, they lack general applicability 
when confronted with scenarios involving the geometric processing of multiple SAR images.
	 In recent years, with the continuous development of neural network technology, foreign 
researchers have increasingly recognized its application in the field of remote sensing. For 
example, Furukawa applied convolutional neural networks to the study of motion invariance in 
SAR imaging.(16) Mason et al. proposed a cyclic autoencoder network structure based on the 
iterative shrinkage-thresholding algorithm, which was combined with SAR modeling to form 
focused images in the presence of phase uncertainty.(17) Anantrasirichai et al. and Valade et al. 
utilized convolutional neural networks to determine whether a single SAR interferometer 
includes deformation.(18,19) Moreover, Gaddes et al. conducted multiple studies using blind 
signal separation methods to identify signs of instability in interferometric time series and 
utilized convolutional neural networks to locate deformations in the interferograms.(20,21) Note 
that, so far, the application of neural networks in SAR geometric positioning has not been 
proposed. Therefore, a neural network fitting method for the geometric processing of satellite-
borne SAR images is still lacking.

3.	 Materials and Methods

	 In response to the demand for the high-precision fitting of coordinate points in SAR image 
geometric processing, we propose a targeted network fitting model inspired by the research 
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advancements in the universal approximation theory of neural networks. As illustrated in Fig. 1, 
our approach comprises the folloowing two modules:
1)	 Dataset construction module: We generate coordinate point samples based on the rigorous 

geometric model of satellite-borne SAR imaging.
2)	 Coordinate fitting module: We design a network for fitting the SAR image geometric 

processing, enabling the learning of mapping relationships between different spatial points.

3.1	 Dataset construction module

	 The training of neural network models for SAR image geometric processing requires 
coordinate point pairs from different scenarios. Currently, there is a lack of benchmark datasets 
for neural network learning in SAR image geometric processing. To address the issue of 
insufficient training data, a distance-Doppler model is used to generate coordinate point 
samples.
	 Establishing a SAR image geometric processing model is the basis for photogrammetric 
positioning processing. The SAR image geometric processing model describes the mathematical 
relationship between the geodetic coordinates of ground points and their corresponding image 
coordinates.(22) On the basis of this mathematical relationship between the pixel points of the 
image and the ground point coordinates, the RD model can be constructed, which includes the 
ellipsoid, oblique distance, and Doppler equations.(23–25) The ellipsoid equation is 

	
( )
( )
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where ( , , )T
AOR X Y Z=  denotes the position vector of the ground target point, ae and B are the 

long and short semi-axes of the WGS84 Earth ellipsoid, respectively, and h is the ellipsoidal 
height of the target point.

Fig. 1.	 (Color online) Model of proposed SARCoorP-RBFNet algorithm.
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	 The oblique distance equation is 

	 2 2 2 2( ) ( ) ( ,)S S SR X X Y Y Z Z= − + − + − 	 (2)

where R is the distance between the SAR satellite and the ground point and ( , , )T
SO S S SR X Y Z=  

denotes the position vector of the satellite.
	 The Doppler equation is 

	 ( ) ( )2 ,D SO AO SO AOf R R V V
Rλ

= − − × − 	 (3)

where fD is the Doppler center frequency of the ground target, and RSO and VSO are the position 
and velocity vectors of the satellite at the imaging time of the ground target point, respectively. 
RAO is the position vector of the target point, VAO is the velocity vector of the target point, and λ 
is the radar wavelength.
	 We can use the formula above to determine the functional relationship between a ground 
object’s coordinate location in the WGS-84 coordinate system and its equivalent image space 
coordinate position.

3.2	 SARCoorP-RBFNet architecture

	 Neural networks can be divided into global and local approximation networks. Any output of 
the global approximation network is affected by the threshold and weight of the neural network 
node. The output of the local approximation network is only affected by the connection weight 
between several local nodes of the network input. Therefore, local approximation networks have 
a higher learning speed than global ones.(26) The RBF neural network is a three-layer forward 
local approximation network; the RBF is embodied in the fact that it can approximate any 
nonlinear function with arbitrary accuracy, which is based on the well-known Stone–Weierstrass 
theorem and other related theoretical foundations. The RBF neural network can effectively 
bypass the system complexity and has strong adaptability to new samples. The mapping 
relationship between the object and image point coordinates of spaceborne SAR images has 
nonlinear characteristics. Therefore, it is feasible to select the RBF neural network for modeling 
to fit this nonlinear mapping relationship. 
	 The RBF neural network is a linear combination of a set of weighted RBFs in the 
mathematical sense, generally composed of input, hidden, and output layers. The transformation 
from the input space to the hidden layer space is nonlinear, whereas that from the hidden layer 
space to the output layer space is linear. The role of the hidden layer is to map vectors from 
dimension m to dimension n, so that the case of linear indivisibility in dimension m becomes 
linearly divisible in dimension n. In effect, it is the idea of a kernel function. For regression 
problems, it can be used to directly fit an unknown function.(27) The purpose of RBF neural 
network modeling is to determine that f(x) makes ( )p pf x y=  and 1, ...,p D∀ = , xp is the input 
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vector (including latitude, longitude, and elevation information). The dimension D depends on 
the number of input samples, and the yp term is the output parameter. Therefore, the RBF neural 
network attempts to map each input data :1, 2, ...,pp

ix x N =   to its corresponding target value 
yp.(28) Its topological network structure is shown in Fig. 2.
	 Considering the data characteristics of spaceborne SAR image geometric processing, the 
input of the network consists of pairs of geodetic coordinate points, while the output corresponds 
to pairs of image space coordinate points. Prior to feeding the data into the network for training, 
the samples should be normalized to the range (0, 1), as indicated by

	 ( ) ( )
( )

.max min min
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max min

y y x x
y y

x x
− × −

= +
−

	 (4)

	 The SARCoorP-RBFNet model incorporates Gaussian functions as RBFs. The model 
includes three important hyperparameters, namely, the number of nodes in the hidden layer, the 
width parameter of the RBF, and the weight of the output layer. The number of hidden layer 
nodes has an important impact on the performance of the RBF neural network. Too few nodes 
may result in an underfitted model, whereas too many may result in overfitting. In this study, we 
set the number of hidden layer nodes of 150 neurons. The width parameter determines the shape 
and size of the RBF; a larger width parameter results in a function that is flat and insensitive to 
the details of the input, whereas a smaller width parameter results in a function that is sharper 
and more sensitive to the details of the input. Therefore, we set the diffusion scalar that controls 
the width of the RBF to 0.1. The weight of the output layer reflects the degree of contribution of 
each hidden layer node to the final output, and we used the inverse hyperbolic function as the 
activation function to adjust the weight size. Specifically, this approach employs a method based 
on the clustering of the sample set, using the negative mean distance of the sample set as the 
threshold, to automatically calculate the activation function threshold. The network is trained 
using the generalized inverse matrix method to achieve more stable performance. For the 
prediction of new samples, the sim function is utilized, with the image space coordinate point 

Fig. 2.	 (Color online) Radial basis function (RBF) neural network topology graph: R(x) denotes the number of 
neurons in the current layer.
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pairs generated by the RD model serving as ground truth and the predicted image space 
coordinate points from the network model serving as test values. The root mean square error 
function is employed as the evaluation metric for assessing the error between the ground truth 
and the test values.

3.3	 Experimental datasets

	 In this study, five imaging modes of GF-3 image standard view products were selected as test 
data, namely, Spot-Light (SL), Ultra-Fine-Strip (UFS), Fine-Strip-I (FSI), Quad-Polarised-
Strip-I (QPSI), and Quad-Polarised-Strip-Ⅱ (QPSII), covering areas such as Fangshan in Beijing 
(Northern China), Pudong in Shanghai (Eastern China), and Chengdu in Sichuan (Southwestern 
China). The study area is shown in Fig. 3. The detailed information of GF-3 satellite images is 
presented in Table 1.

3.4	 Implementation details

	 To evaluate the proposed spaceborne SAR image geometric processing model, SARCoorP-
RBFNet, in various imaging scenarios of spaceborne SAR imagery, this study applies 
SARCoorP-RBFNet to the assessment of GF-3 satellite image meta-products data. The 
experiments are conducted with a focus on two main aspects as follows.

Fig. 3.	 (Color online) Distribution of experimental data regions.
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(1)	�Evaluation of the fitting accuracy of the SARCoorP-RBFNet model trained on a single 
image. We used the coordinates of a single target point as an experimental sample to assess 
the fitting accuracy of the SARCoorP-RBFNet model in coordinate point data from two 
perspectives: images with different resolutions in the same region and images with the same 
resolution in different regions. To this end, we selected Shanghai’s Pudong as a representative, 
which includes the images taken in the same region with different imaging modes (SL, UFS, 
FSI, QPSI, and QPSII). We selected the QPSI imaging mode, which includes images from 
Pudong, Fangshan, Chengdu, Xingtai, and Nanjing with the same resolution but different 
locations. To test the applicability of the SARCoorP-RBFNet model in SAR images with 
different resolutions and terrains, we conducted experiments on the coordinate point datasets 
of each image.

(2)	�On the basis of multi-image training, the fitting accuracy of the SARCoorP-RBFNet model 
was evaluated. To further assess the effectiveness of the proposed strategy, extensive 
experiments were conducted from the perspective of mixed training of multi-scene images. It 
should be emphasized that, in the sample preparation stage, k-means clustering technology 
was used to create matching labels for each scene image coordinate point data, which were 
used as inputs to the network along with latitude and longitude coordinates. Moreover, two 

Table 1
GF-3 data information of study area.

Imaging mode Image ID Imaging date
Image width 
and height

Image width space 
and height space (m)

Imaging region
Latitude and longitude 

of image center
SL (1 m 
resolution)

SP_9563 23 March 2018 11666/ 34858 0.562111/0.312365 Shanghai Pudong 121.318072/31.194363

UFS (3 m 
resolution)

SP_1726 09 July 2018 16374/ 21955 1.124222/1.738304 Shanghai Pudong 121.204101/31.12610
BF_4747 11 December 2019 16374/ 22383 1.124222/1.728993 Beijing Fangshan 115.996666/39.77400

FSI (5 m 
resolution)

SP_6958 02 August 2020 13182/ 21896 2.248443/2.611574 Shanghai Pudong 121.604695/31.13054
BF_6710 22 August 2017 12875/ 21893 2.248443/2.608578 Beijing Fangshan 116.270416/39.82781

QPSI (8 m 
resolution)

SP_1557 05 July 2017 6907/7591 2.248443/4.754298 Shanghai Pudong 121.169319/31.26967
BF_3116 19 January 2019 6014/7689 2.248443/5.361792 Beijing Fangshan 116.461109/39.81046
AH_2710 19 January 2017 6675/11088 2.248443/4.670904 Anhui Hefei 117.143434/31.843186
HZ_8163 01 April 2017 7898/6804 2.248443/5.199595 Henan Zhengzhou 113.168304/34.459211
ZJ_2026 12 October 2017 6523/5983 2.248443/4.719058 Zhejiang 121.546764/29.910523
SD_9870 17 January 2018 7209/7827 2.248443/4.818387 Shandong 121.438526/37.601950
SW_4921 23 January 2018 6348/5986 2.248443/4.711925 Shanxi Weinan 109.057909/34.638829
HW_7132 09 October 2018 8062/6810 2.248443/5.204732 Hainan Wenchang 110.545403/19.961587
TJ_1776 19 October 2018 8062/6198 2.248443/5.540001 Tianjin 117.515814/39.244607
GS_0981 22 October 2018 8062/7900 2.248443/5.283754 Gansu 100.357916/38.951206
JX_9884 28 December 2018 8062/7480 2.248443/5.118558 Jiangxi 114.756659/25.680564
BF_9197 21 December 2018 6014/7682 2.248443/5.366279 Beijing Fangshan 116.430612/40.003701

HW_2194 11 December 2018 8062/6194 2.248443/5.548881 Hubei Wuhan 114.383576/30.499307

GZ_1362 23 March 2021 7139/8869 2.248443/4.839266
Guangdong 
Zhanjiang

110.537795/21.122401

SC_4783 16 May 2019 8062/6220 2.248443/5.530645 Sichuan Chengdu 103.257031/30.335912
HX_4208 23 April 2017 5974/5254 2.248443/5.042253 Hebei Xingtai 114.556551/37.007159
JN_5002 09 December 2017 5730/7684 2.248443/5.368656 Jiangsu Nanjing 118.500197/32.013715

QPSII (25 m 
resolution)

SP_3580 29 January 2017 9090/8974 2.248443/5.285367 Shanghai Pudong 121.624447/31.10519

SP: Shanghai Pudong; BF: Beijing Fangshan; SC: Sichuan Chengdu; HX: Hebei Xingtai; JN: Jiangsu Nanjing; GZ: 
Guangdong Zhanjiang; HW: Hubei Wuhan; JX: Jiangxi; GS: Gansu; TJ: Tianjin; HW: Hainan Wenchang; SW: Shanxi 
Weinan; SD: Shandong; ZJ: Zhejiang; HZ: Henan Zhengzhou; AH: Anhui Hefei.
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aspects were studied: the mixed training of different mode images in the same area and the 
mixed training of the same mode images in different areas. Specifically, SL, UFS, FSI, QPSI, 
and QPSII were selected as the five imaging modes for the mixed training of different modes 
in the Shanghai area. For the mixed training of the same mode images in different areas, the 
QPSI imaging mode was chosen, covering images of 16 regions in China.

4.	 Results

4.1	 Evaluation of SARCoorP-RBFNet model’s accuracy of fitting based on a single image 
training

	 Figure 4 shows the distribution of the fitting results of the SAR-CoorP-RBFNet model under 
different resolutions in the Pudong area of Shanghai. This figure shows that as the image 
resolution increases, the fitting accuracy of the SARCoorP-RBFNet model gradually decreases. 
The reason for this is that as the image resolution increases, the geographic distance represented 
by a single pixel decreases and brings with it less tolerance for fitting errors. Table 2 indicates 
that for images with a resolution of 1 m, the SARCoorP-RBFNet model has the largest fitting 

Fig. 4.	 (Color online) Distribution of test error findings of each image in Shanghai area.

Table 2
Single image fitting results for five resolutions.

Resolution (m) Image ID RMSE (pixel)
Range direction Azimuth direction

1 SP_9563 0.02712 0.10448
3 SP_1726 0.01427 0.01862
5 SP_6958 0.00719 0.01255
8 SP_1557 0.00653 0.00694

25 SP_3580 0.00617 0.00603
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errors of 0.02712 and 0.10448 pixels in the range and azimuth directions, respectively. For 
images with a resolution of 25 m, the fitting errors in both directions, which are 0.00617 and 
0.00603 pixels, respectively, are the smallest. Although the fitting accuracy of the SARCoorP-
RBFNet model decreases with increasing resolution, the lowest accuracy in the distance 
direction is still within 5% of the pixel range, and thus it can theoretically replace the RD model.

4.2	 Analyzing the accuracy of the SARCoorP-RBFNet model in fitting images of different 
regions at the same resolution

	 Figure 5 shows the fitting error distribution of the SARCoorP-RBFNet model for a single 
image of five cities (Pudong, Fangshan, Chengdu, Xingtai, and Nanjing) under the QPSI model.
	 According to Table 3, the accuracy of the SARCoorP-RBFNet model is less than 0.9% pixel 
for different areas of the same resolution. The fitting accuracy varies slightly from region to 
region owing to differences in topography, building density, and environment. The Fangshan 
area has the highest fitting accuracy in the distance direction (0.00409 pixels), whereas the 
Chengdu area yielded the highest fitting accuracy in the azimuth direction (0.00585 pixels). 
Figure 5 shows that the error distribution of images in various places is largely consistent, 
although there are a few outliers in Xingtai, Hebei Province. Overall, the fitting accuracy is 
good, which sufficiently demonstrates that the fitting result of the SARCoorP-RBFNet model is 
consistent and less affected by the topography.

Fig. 5.	 (Color online) Distribution of fitting results of RBF neural network for five regions under QPSI model.

Table 3
Fitting results for single image of five areas with a resolution of 8 m.

Area Image ID RMSE (pixel)
Range direction Azimuth direction

Shanghai Pudong SP_1557 0.02712 0.10448
Beijing Fangshan BF_3116 0.01427 0.01862
Sichuan Chengdu SC_4783 0.00719 0.01255
Hebei Xingtai HX_4208 0.00653 0.00694
Jiangsu Nanjing JN_5002 0.00617 0.00603
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4.3	 Evaluation of fitting accuracy of SARCoorP-RBFNet model trained for multiple 
images.

4.3.1	 Images of various imaging modes in Shanghai region

	 Figure 6 shows the fitting results of the SARCoorP-RBFNet model under the multi-mode 
imaging mixed training scenario in the Shanghai area, including the error results of the multi-
mode imaging mixed sample image test and the independent sample tests. Additionally, Fig. 6 
shows a Shapefile diagram of the distribution location of the images of each imaging mode.
	 Table 4 shows that the fitting accuracy of the network model obtained using mixed training 
with multi-scene images in the same area is reduced by two orders of magnitude on average. The 
error line graph in Fig. 6(a) shows slight variations in the fitting accuracy of the network model 
under different imaging modes. The Shapefile diagram in Fig. 6(b) indicates overlapping regions 
between different images, which can result in the reduced fitting accuracy of the network model. 
	 These tests show that when training with a mixture of multi-scene images from the same 
geographic region, which have different resolutions due to different imaging modalities, 
resulting in image overlap, there is a significant impact on the fitting accuracy of SARCoorP-
RBFNet.

Fig. 6.	 (Color online) Results of SARCoorP-RBFNet model fitting (a) and Shapefile image (b). (a) Distribution of 
fitting error. (b) Shapefile images of various imaging modes.

(a) (b)

Table 4
Test results of various imaging modes in Shanghai's Pudong region.

Image model Image ID RMSE (pixel)
Range direction Azimuth direction

Mixed Sample 1 0.251463 0.942022
SL 2 0.027255 0.105849
UFS 3 0.032625 0.048549
FSI 4 0.399985 0.999629
QPSI 5 0.861758 2.696055
QPSII 6 0.484541 2.418062
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4.3.2	 National area’s image in QPSI imaging mode

	 Figure 7(a) shows the model fitting errors produced by the mixed training of 16 areas in the 
QPSI mode, including the results of the mixed sample test error and the results of the single 
image test error for each region. The Shapefile image distribution by region is shown in Fig. 7(b).
	 According to the data in Table 5, the fitting accuracy of the network model is similar to that 
of training on a single scene when different regions of the same imaging mode are mixed-
trained, and the fitting accuracy of the distance and azimuth directions is higher than 2% pixels. 
The distribution of fitting errors for each region is shown in Fig. 7(a), and the error curves of 
most regions’ exhibit little variation. The right side of Fig. 7(b) shows the image distribution of 
each region, with no overlap between any of the area images. This indicates that even when 
images from different regions of the same imaging mode are mixed-trained, the proposed 
method still has high fitting and generalization capabilities.

5.	 Discussion and Conclusions

	 To address the demand for the intelligent geometric processing of SAR images, we have 
innovatively proposed a neural-network-based intelligent fitting model. This model is designed 
to construct fitting models for single- and even multi-scene SAR imagery in the context of 
image geometric processing, utilizing SARCoorP-RBFNet for the feature learning of the spatial 
mapping relationship of SAR image coordinate point pairs. We have demonstrated that our 

(a) (b)

Fig. 7.	 (Color online) Distribution of test results for each image in QPSI mode (a) and Shapefile image (b). (a) Test 
error maps for each area. (b) Shapefile distribution for each region.
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method achieves an accuracy in fitting the RD model that is superior to 5% of pixels, which is 
deemed effective in practical engineering applications. The following provides a detailed 
description of our conclusions. 
(1)	�The SARCoorP-RBFNet model exhibits excellent fitting performance on single-scene 

imagery. However, there are variations in the fitting accuracy of the SAR-CoorP-RBFNet 
model when applied to different-resolution images of the same area. It performs exceptionally 
well on low-resolution images such as QPSI, achieving a marked pixel-level fitting accuracy 
of up to 0.7%. The fitting accuracy of the SAR-CoorP-RBFNet model is slightly lower on 
high-resolution images (such as SL and UFS) than on low-resolution images. We can control 
the fitting accuracy in the range of less than 5% of a pixel in the distance direction. For 
images of the same resolution but different areas, the fitting errors of the SARCoorP-RBFNet 
model exhibit slight fluctuations in both directions, with a pixel-level fitting accuracy of less 
than 0.9%. This suggests that the fitting accuracy of this model is minimally affected by 
terrain factors. Hence, it indicates that terrain factors do not significantly impact the 
feasibility of replacing the RD model with the SARCoorP-RBFNet model. Therefore, in 
theory, the SARCoorP-RBFNet model can serve as a viable alternative to the RD model.

(2)	�The SARCoorP-RBFNet model, based on training with a blend of multiple images, has 
certain limitations. This model is only suitable for training with mixed samples from different 
regions. Compared with the models trained on single-scene images, the model’s fitting 
accuracy for different region images is reduced by two orders of magnitude, and the fitting 
accuracy for the same region images is also diminished. Therefore, when there are significant 
regional differences in the mixed images, the SARCoorP-RBFNet model, in theory, can still 
serve as a substitute for the RD model. 

Table 5
Results of testing each image in QPSI model.

Area Image ID RMSE (pixel)
Range direction Azimuth direction

Mixed Sample 0 0.008630 0.008121
Anhui 1 0.014884 0.016672
Henan 2 0.008315 0.007296
Hebei 3 0.008391 0.007443
Shanghai 4 0.006914 0.007389
Zhejiang 5 0.008138 0.007718
Jiangsu 6 0.006312 0.007592
Shandong 7 0.009039 0.007431
Shanxi 8 0.008423 0.007025
Hainan 9 0.008802 0.007277
Tianjin 10 0.007391 0.006264
Gansu 11 0.009724 0.006887
Jiangxi 12 0.008604 0.007269
Beijing 13 0.003813 0.006820
Sichuang 14 0.008853 0.006746
Hubei 15 0.008370 0.006537
Guangdong 16 0.006366 0.007580
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	 These results lay the foundation for establishing the efficient deep-learning-based geometric 
processing of SAR images. Although this study has achieved certain accomplishments, it still 
has limitations. The current geometric imaging models face challenges in achieving global 
image geometric processing. Therefore, future research should focus on developing a deep 
network fitting model suitable for global images to accomplish their geometric processing.
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