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	 Improving heating, ventilating, and air conditioning (HVAC) efficiency is crucial for energy 
savings and carbon emission reduction. In this study, we employed deep reinforcement learning 
(DRL) to optimize HVAC system control in commercial buildings. Traditional control methods, 
such as rule-based and model predictive control, often fall short in dynamic and complex 
environments. In contrast, DRL combines reinforcement learning with deep neural networks to 
provide a more adaptive and efficient approach. Focusing on a multi-floor commercial building, 
we used a binary on/off control strategy to streamline decision-making and enhance scalability. 
The HVAC control problem is modeled as a finite Markov process, with a deep Q-network 
optimizing operations based on parameters such as indoor/outdoor temperatures, cloud coverage, 
and occupancy levels. A comparative analysis using simulations and real-world data collected by 
sensors from a commercial building in South Korea showed that the DRL-based method 
significantly reduced the HVAC operation frequency and on/off cycles, achieving superior 
energy savings while maintaining comfortable temperature levels. These results highlight the 
potential of DRL for effective HVAC management by balancing energy efficiency with occupant 
comfort.

1.	 Introduction

	 Building energy consumption constitutes a substantial portion of global energy use and has a 
rapid upward trajectory. It currently accounts for 40% of the global primary energy consumption, 
contributing significantly to 30% of CO2 emissions.(1) Among the various building services, 
heating and air conditioning systems, which are essential for maintaining optimal indoor 
temperatures for occupant comfort, are the most energy intensive. In recent years, abnormal 
weather conditions have further increased energy usage, which is largely driven by the demand 
for heating and cooling. Enhancing the efficiency of energy control systems is crucial to address 
this challenge. Such improvements are essential not only for realizing significant energy savings 
in building operations, but also for reducing carbon emissions.
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	 Technological advancements such as cloud computing and artificial intelligence (AI) 
facilitate real-time data monitoring and communication with devices, enabling instantaneous 
decision-making. In the building sector, these innovations seamlessly integrate intelligence and 
control systems, culminating in the development of a unified and efficient system for building 
operations: the smart building management system.(2) This system optimizes building energy 
use by collecting internal and external weather information through Internet-of-Things devices, 
thereby allowing the real-time control of heating and air conditioning systems. Furthermore, 
occupant movements within buildings are tracked via their cell phones connected to beacon 
receivers, enabling adaptive adjustments to indoor temperatures to address congestion and 
enhance comfort. To enhance the effectiveness of building management systems further, 
incorporating parameters that are associated with occupants, including behavior, preferences, 
and interactions with the building, into the control algorithm is crucial. The predominant focus 
of these systems is on balancing two crucial factors: optimizing occupant comfort and achieving 
energy-saving goals.(3) This balance is particularly important in commercial buildings, where 
energy use directly affects costs and occupant comfort influences sales and space utilization.
	 Numerous studies have delved into heating, ventilating, and air conditioning (HVAC) 
systems, underscoring their pivotal role in overall building energy consumption. Strategies for 
enhancing energy efficiency include upgrading outdated systems and integrating natural energy 
sources. Effective control methods are essential to achieve energy savings while ensuring 
occupant comfort. Rule-based and model predictive control (MPC) methodologies are often 
recommended for efficient HVAC system control. Rule-based control is simple and effective in 
static situations. However, its performance may deteriorate in dynamic scenarios. Conversely, 
MPC, which is designed using optimization techniques, ensures optimal operation but can be 
time-consuming and sometimes infeasible in complex situations. Addressing the uncertainty in 
dynamic scenarios poses challenges for both rule-based control and MPC.
	 In recent years, AI techniques such as deep reinforcement learning (DRL) have been 
employed to enhance energy efficiency while simultaneously ensuring occupant comfort. DRL 
combines RL and deep learning using a neural network (NN). In the RL framework, an agent 
interacts with the environment, observes the state, and selects an action from a predefined set. 
The environment provides a reward based on the selected action. In sequential decision-making, 
an NN guides the action selection. Through iterative processes, the objective of RL is to train the 
agent to maximize its rewards in a given environment.
	 The complexity of HVAC systems is notable, encompassing various components such as 
heating equipment, controller systems, and refrigerants that work in tandem to regulate the 
indoor environment of a building. These systems are typically found in large or new commercial 
buildings with sophisticated centralized control mechanisms and are less prevalent in smaller 
commercial establishments. Tenants in smaller or older buildings often use individual HVAC 
systems such as heat pumps and air conditioners, which are simpler than those in large buildings. 
The operation of individual HVAC units, which are controlled by occupants, introduces 
fluctuations in the energy usage according to individual preferences, making energy efficiency 
susceptible to occupant behavior.
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	 In this paper, an HVAC system control algorithm based on DRL is presented to improve 
energy efficiency and maintain occupant comfort. The algorithm manages the status of the 
HVAC system through on and off actions to regulate the indoor temperature effectively while 
conserving energy. In addition, a separate deep NN is developed to predict the indoor 
temperature based on the status of the HVAC system. The performance of the algorithm was 
compared with that of a rule-based control approach, which was evaluated in a case study with 
the real data collected by sensors.
	 The remainder of this paper is organized as follows. In Sect. 2, we present a literature review 
of the control methodologies for HVAC systems in buildings and explore DRL. The details of the 
building model and the DRL algorithm using the Markov decision process are described in Sect. 
3. The details of the experiments with the DRL algorithm in comparison with rule-based 
methods are presented in Sect. 4. Finally, in Sect. 5, we conclude the paper with a summary of 
the findings.

2.	 Literature Review

	 As the focus on climate and energy conservation intensifies, numerous studies have focused 
on improving energy efficiency in the building sector, paying special attention to HVAC 
systems, which constitute a significant portion of the energy consumption in buildings. Rule-
based methodologies that incorporate information relating to building occupants have been 
introduced to control HVAC systems for energy savings. Agarwal et al. devised a control system 
that orchestrates the activation and deactivation of HVAC systems based on the detection of the 
presence and absence of occupants using passive infrared (PIR) and door sensors.(4) Another 
study explored the manipulation of cooling and heating setpoints through the connection of 
smartphones to Wi-Fi infrastructure, contingent on occupant detection within rooms.(5) 
Padmanabh et al. introduced control logic with the aim of increasing energy efficiency in 
conference spaces.(6) The occupancy status was meticulously determined by the controller, 
which set a threshold for measurements acquired from light and sound sensors. Consequently, 
the HVAC system and lighting were deactivated during unoccupied periods.(6)

	 In another study, an occupancy prediction model using a particle filter was proposed to 
determine precisely the current occupancy status of a building. Data collected from PIR sensors 
and cameras were used for occupancy estimation, and energy was saved through adjustments to 
ventilation rates and room-temperature target points based on occupancy measurements and 
predictive analytics.(7) Gao and Keshav proposed a model for predicting future room 
temperatures based on the current power of the HVAC system.(8) They identified an optimal 
control strategy and determined the most efficient time to activate or deactivate the HVAC 
system based on the model. For example, the HVAC system was activated 10 min before the 
arrival of the occupant and deactivated earlier than the expected departure time, thereby 
showcasing an energy-saving approach.(8) Li et al. introduced two control strategies to optimize 
HVAC systems for energy savings.(9) They addressed the challenges associated with the 
inclination to set a lower temperature setpoint and the tendency to forget to turn off the HVAC 
system. These issues were resolved by implementing anomaly detection and the automatic on/off 
control of the HVAC system.(9)
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	 MPC has also been employed in smart building management to manage HVAC systems. 
MPC involves making instantaneous decisions to control commands at every moment within a 
planning horizon by solving an optimization problem.(10) Dong and Lam introduced a nonlinear 
MPC approach for HVAC system control by incorporating the anticipation of occupant behavior 
patterns and weather conditions.(11) Indoor environmental parameters, power consumption, and 
ambient conditions were monitored using sensors, and occupant behavior patterns were 
predicted using Markov models. By leveraging this information, temperature adjustments were 
made in unoccupied zones, thereby contributing to energy efficiency.(11) Široký et al. similarly 
employed MPC integrated with weather predictions for the HVAC system with the aim of 
minimizing energy consumption.(12) This approach involved reducing the room temperature 
during nights and weekends.(12) Another study used a model predictive controller with the 
prediction of zone loads and weather conditions to optimize the operational efficiency of HVAC 
systems.(13) 
	 In recent years, active discourse has arisen on research employing AI techniques. Esrafilian-
Najafabadi and Haghighat introduced an HVAC control system using a deep learning algorithm 
to predict the preheating time and occupancy patterns.(14) Their study facilitated energy 
reduction by regulating the setback and setpoint temperatures.(14) Other studies explored HVAC 
system control with a focus on occupancy patterns using machine learning techniques.(15,16) RL, 
which is another AI technique, has also been applied to controlling HVAC systems. In a study by 
Wei et al., DRL was employed to address variable airflow volume control within an HVAC 
system.(17) Similarly, Brandi et al. applied DRL to optimize energy savings in an HVAC system, 
where the agent selected one of the suggested supply water temperature setpoints.(18) Another 
study utilized the DRL framework, considering both the adjustment of the thermostat and 
occupant behavior regarding clothing choices.(19) Wang et al. employed a model-free actor–critic 
DRL algorithm to optimize the thermal comfort and energy consumption of HVAC systems by 
controlling the setpoints.(20) Ahn and Park controlled the setpoints of HVAC systems using a 
deep Q-network (DQN), which is another DRL algorithm, to strike a balance between different 
HVAC systems.(21) DRL methodologies have exhibited better performance in saving energy and 
maintaining occupant comfort than other methods.(21)

	 Although existing research has predominantly focused on using AI techniques, especially 
DRL, to control HVAC system setpoints, notable challenges impact the practical implementation 
of such approaches. The issue of exponential complexity becomes evident when considering a 
higher number of temperature setpoints, introducing computational challenges in exploring and 
optimizing the vast action space. This challenge is particularly relevant in real-world scenarios 
in which multiple room zones need to be controlled. The computational demands associated with 
training DRL methods, coupled with the exponential growth in complexity when managing 
multiple zones, pose significant hurdles to scalability and real-world feasibility.(22) 
	 The distinctiveness of this study lies in its contribution to overcoming the well-known 
scalability barrier in DRL applications for HVAC systems. Unlike previous methods that 
struggle with the exponential complexity of multi-zone control, our binary representation 
effectively reduces the computational burden, enabling the DRL method to be more easily 
implemented in real-world settings. Moreover, in this study, we demonstrated that even with a 



Sensors and Materials, Vol. 36, No. 9 (2024)	 3921

simplified action space, the DRL-based approach retains the ability to optimize energy 
efficiency and maintain thermal comfort across multiple zones. This balance between simplicity 
and effectiveness highlights the potential for the widespread application of our method in diverse 
building environments, paving the way for more scalable and practical AI-driven HVAC control 
systems.

3.	 HVAC System Control Problem

	 In this study, a commercial building with multiple stories was selected as the application 
domain for implementing DRL to control HVAC systems. The distinctive feature of this 
commercial building lies in the paramount importance of occupant comfort, given its direct 
impact on sales. Nevertheless, energy conservation remains a crucial objective. The HVAC 
systems regulate the indoor temperature on each floor, offering different modes such as 
“Cooling,” “Heating,” and “Auto.” In the “Auto” mode, the HVAC system can autonomously 
switch between cooling and heating on the basis of the indoor temperature and specified 
setpoint. For generality, we focused on scenarios in which all floors required cooling. The 
primary objective of the HVAC system control was to maintain the indoor temperature within 
the user comfort range while minimizing energy costs.

3.1	 DRL-based HVAC system control in commercial building

	 DRL has recently emerged as a focal point for researchers and practitioners, finding 
application across various industrial domains including the building sector. Within the realm of 
DRL, various algorithms have been developed, with the DQN being notable and still gaining 
traction. In contrast to the traditional Q-learning introduced by Watkins and Dayan, the DQN 
integrates an NN into its framework.(23) The DQN, which was proposed by Mnih et al., 
distinguishes itself by approximating the Q-value through the NN and updating the network 
weights using a combination of replay memory and a target network.(24)

	 Unlike conventional Q-learning, in which Q-values are computed and updated in a Q-table 
based on state–action pairs, the DQN leverages an NN to generate an approximate Q-value. The 
replay memory stores the samples and a random subset of these samples is drawn for learning. 
This approach effectively addresses the coupling characteristics between learning data, ensures 
stable learning, and mitigates overfitting. In addition, the inclusion of a target network plays a 
pivotal role in stabilizing the learning process by calculating the target value with a fixed 
parameter for specific steps. This prevents the target value from undergoing frequent changes, 
ultimately contributing to the stability of the learning process.
	 Numerous studies have employed DRL to regulate HVAC systems to curtail energy 
consumption while ensuring occupant comfort.(25–27) Given the intrinsic characteristics of 
buildings, optimizing these two objectives is pivotal for HVAC system control. Efforts have 
traditionally focused on manipulating the temperature setpoints of HVAC systems using DRL 
algorithms. This involves designing a set of candidate actions, each representing a specific 
temperature setpoint, from which the agent selects the most suitable action.
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	 However, a noteworthy challenge arises as the scale of buildings increases with the use of 
multiple HVAC systems. The potential divergence in the setpoints for each HVAC system 
introduces a substantial increase in the action space.
	 In large structures, this can lead to an unwieldy number of possible actions, complicating the 
optimization process. To address this issue, we adopted a strategic shift in the design of actions. 
Rather than intricately manipulating the temperature setpoints, the proposed approach focuses 
on the binary control of HVAC systems, specifically, toggling them on or off. This deliberate 
simplification effectively streamlines the action space, ensuring more manageable and efficient 
exploration while maintaining optimal indoor temperatures for occupant comfort and achieving 
energy-saving goals.
	 This study distinguishes itself from previous research by adopting a fundamentally different 
approach to DRL-based HVAC control. Whereas earlier studies have concentrated on optimizing 
temperature setpoints, often leading to complex and computationally intensive action spaces, 
our approach simplifies the control mechanism to a binary on/off decision for HVAC systems. 
This not only reduces computational complexity but also enhances the scalability and practicality 
of DRL in real-world applications. By focusing on binary control, our method offers a more 
straightforward yet effective solution for achieving energy efficiency and occupant comfort, 
setting it apart from the temperature-setpoint-driven strategies commonly explored in earlier 
studies.

3.2	 State, action, and reward

	 The depiction of state and action illustrates a building environment and the conduct of agents 
in the environment. The state is delineated by the observations made by agents regarding the 
current conditions of each floor within the building. Let st be a set of states at time t and f be a 
floor in the building. The state signifies the current information for each floor in the building 
and each floor state is expressed as Sft. Therefore, st can be determined using Eq. (1).

	 { }1 , ,  t t Fts S S= … 	  (1)

	 There are many factors that contribute to the building environment. In this study, to control 
temperature through HVAC systems, indoor and outdoor conditions are primarily monitored to 
assess the current indoor temperature. Both indoor and outdoor temperatures are key 
considerations. For indoor conditions, since temperature is affected by occupancy, two specific 
factors are considered: the total number of people inside the building and their distribution 
across different floors. By taking these factors into account, the system can accurately evaluate 
their impact on indoor temperature. For outdoor conditions, cloudiness information provided by 
the meteorological administration is considered, as it can affect the amount of solar radiation 
entering the building. Finally, time slots are also taken into account to ensure that the information 
is organized and analyzed effectively. Sft consists of the inside and outside information of the 
building and is described as

	 ( ) ( ) ( ){ }, max , 0 , max , 0 , , , / ,  ft ft ft t t ft t t ft t tS IT IT OT OT IT CN DP SP MP CT= − − .	 (2)
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	 In Eq. (2), the first term, ITft, indicates the indoor temperature of floor f at time t. OTt denotes 
the outdoor temperature of the building at time t. The second and third terms indicate the 
temperature difference between the indoor and outdoor conditions. The second term is active 
when the indoor temperature is lower than the outdoor temperature, and the third term is active 
when the indoor temperature is higher than the outdoor temperature. CNt represents the cloud 
coverage at time t, which reflects the amount of sunshine. The indoor temperature is affected by 
the degree of sunshine. DPt is the degree of the number of people entering the building at time t. 
More people entering can lead to longer door-opening times, thereby affecting the indoor 
temperature as the outside temperature infiltrates the door openings. SPft expresses the number 
of people on each floor f at time t because the presence of people affects the indoor temperature. 
As the range of SPft can be infinite, SPft is divided by the total number of people staying inside 
the building at time t, MPt, to reduce the space. Finally, the term CTt signifies the current 
position within the designated timeslot at time t. The total number of slots is determined by 
dividing the duration from the opening to closing of the building by the time interval at which 
the agent makes a decision.
	 In this study, the action determines the number of HVAC systems to be operated at time t, 
where nf represents the number of HVAC systems installed on floor f and Aft denotes the set of 
candidate actions. The set of candidates is expressed as {0, ..., nf}. Therefore, the action controls 
the number of HVAC systems to be on at time t, and at can be expressed as

	 { }1 , ,  t t Fta A A= … .	 (3)

	 The reward is assigned to the agent after the action and indicates the purpose of the algorithm. 
As mentioned previously, the main purpose of this algorithm is to maintain occupant comfort 
and save energy. This is not easily compatible with operating HVAC systems, leading to the use 
of energy, which is required to maintain occupant comfort. Equations (4) and (5) show the 
reward at time t on floor f and the reward formulation, respectively. As the agent selects an 
action to maximize the reward, its value is negative.

	 { }1 , ,   t t Ftr R R= … 	 (4)

	 ft fd ftR R w A= + × 	 (5)

The reward at time t, Rft, consists of two terms and is shown in Eq. (5). In the first term, UTf 
denotes the upper bounds of the temperature in floor f range in which the occupants feel 
comfortable. Rfd represents the difference between ITft and UTf. Once ITft exceeds UTf, Rfd 
becomes UTf − ITft. When ITft falls below UT, Rfd is 0. Equation (6) shows the value of Rfd. 

	 ,   ,  otherwise 0  fd f ft ft fR UT IT if IT UT= − > 	 (6)
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	 In the second term of Eq. (5), the weight w is multiplied by the number of HVAC systems to 
be operated on floor f at time t, denoted by Aft. As Aft characterizes the energy consumption, the 
extent of HVAC system utilization is regulated by adjusting the weight w. Thus, when aiming to 
prioritize energy conservation, a higher value for weight w is assigned. Conversely, in situations 
in which energy conservation is not the primary focus and occupant comfort is more important, 
a lower value is selected for the weight w. Table 1 lists the notations used for DRL.

3.3	 DRL algorithm for HVAC system control

	 In this study, the DQN algorithm was used to control the HVAC systems, as described in 
Algorithm 1. This algorithm runs during the operational hours of the building, defined from the 
opening time (1) to the closing time (T). During this period, the agent observes the state of each 
floor of the building at each interval i.
	 The action is selected by employing the ε-greedy policy or the Q-value. A random number is 
generated, and if the number is less than or equal to the value of ε, the action is randomly 
selected from the set of actions. If the number is larger than ε, the action with the maximum 
Q-value is selected. The value of ε gradually decreases as the algorithm is trained, increasing the 
likelihood that actions will be selected on the basis of the maximum Q-value over time. To 
generate the Q-value, the state is used as the input for the NN. The output is the Q-value 
corresponding to the number of operating HVAC systems. Thus, the structure of the action 
ranges from zero to the total number of HVAC units installed on each floor f.

Table 1
Notations for DRL.
Notation Definition
st Set of states at time t
Sft State of floor f at time t
ITft Indoor temperature on floor f at time t 
OTt Outdoor temperature at time t
CNt Cloud coverage at time t
DPt Degree of people entering at time t
MPt Total people inside building at time t
SPft Number of people on floor f at time t
CTt Current position of time t within time slot 
at Set of actions at time t
Aft Set of candidate actions for floor f at time t
rt Set of rewards at time t
Rft Reward at time t of floor f
w Weight assigned to action Aft
UTf Upper temperature on floor f
e Episode
T Total time for building opening
M Minimum training point
θ Parameters for Q-network
θ− Parameters for target Q-network
i Interval of time that agent makes decision
K Reply memory
dr Decay rate
ϵ Epsilon
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	 Algorithm 2 presents the pseudocode for the action selection. Once an action is selected, the 
designated number of HVAC systems is operated for each floor. After executing the action, the 
next state st+1 is observed and the agent receives reward rt. The set of transitions (st, at, rt, st+1) is 
stored in memory K. The memory has the maximum length, and if it is full, the old transition is 
removed from the memory. After the number of sets of transitions occupies more than half of the 
memory size, the training of the NN is initiated. Finally, the parameters of the target network are 
updated using the NN at the end of each episode. In the training phase, the control problem of 
the HVAC systems is solved and learned using the proposed algorithm. Subsequently, the trained 
weight of the NN is tested during the test phase. Figure 1 shows the overall framework of the 
DQN for the training and testing phases.

4.	 Case Study

	 The proposed control method for HVAC systems was evaluated and compared with several 
rule-based methods in a commercial building in South Korea. The building has five floors and 
five HVAC systems on each floor, all operated by a retail store. Data were collected from three 
floors of the building to test the proposed control method. The data were obtained from sensors 
and cameras installed on each floor for temperature and occupant monitoring. The data 
collection period spanned from March to December 2023. Figure 2 shows the framework for 
controlling the HVAC systems.
	 A simulator was designed before implementing the proposed control method in the actual 
HVAC systems in the commercial building. The purpose of this simulation was to test and 
validate the efficacy of the proposed control method in a controlled and virtual environment 

Algorithm 1
DQN for HVAC system control.
Input: HVAC system control problem 
Output: Weights θ of the Q-network
1:	 Initialize replay memory K
2:	 Initialize Q-network with weights θ
3:	 Initialize target network Q with weights θ−
4:	 for e = 1, E do
5:		  for t = 1, T do
6:			   if t % i = 0 then 
7:				    Observe st
8:				    Select a random action at with probability ε-greedy policy. Otherwise, max ( , ; )t a ta Q s a θ=
9:				    Execute at (the number of HVAC systems to be operated on floor f at time t)
10:					     Observe st+1 and assign rt is to the agent
11:				    Save transition (st, at, rt, st+1) in K
12:				    if |Y | ≥ M then
13:					     Sample random minibatch (sk, ak, rk, sk+1) from K
14:					     Calculate )max ( , ; )l maxs ( ;s ,o a k a tQ s a Q s aθ θ −−← ′
15:					     Perform gradient decent regarding weight θ
16:					     ϵ ← ϵ × dr
17:				    end if
18:			   end if
19:		  end for
20:		 Update θ− = θ
21:	 end for 
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Algorithm 2
Action selection
1:	 rand ← random():
2:		  if rand ≤ ϵ then
3:			   action ← random(Aft)
4:		  else 
5:			   action ← max Q-value(Aft)
6:		  end if

Fig. 1.	 DRL framework for training and testing.

Fig. 2.	 HVAC system control framework.
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before applying it to real-world HVAC systems. The main role of the simulator was to calculate 
the indoor temperature based on the operation of the HVAC systems. Diverse factors affect the 
variance in the indoor temperature, making it difficult to express a formulation. In this study, a 
deep NN (DNN) was employed to calculate the change in the indoor temperature according to 
the operation of the HVAC systems.
	 The performance of the agent was evaluated using two heuristic rules. Rule 1 states that all 
HVAC systems should be operated when the current temperature deviates by one degree from 
the upper temperature thresholds. That is, the HVAC systems should be activated if the 
temperature rises one degree above the upper limit. Rule 2 involves a calculation to determine 
the number of HVAC systems to be operated, considering the difference between the current 
temperature and upper temperature thresholds. The number of HVAC system operations was 
determined on the basis of the average ability to reduce the temperature per HVAC system.
	 Three key performance measurements for evaluating the efficiency and effectiveness of the 
proposed method were the temperature (Temp), the number of HVAC system on and off cycles 
(on/off), and the number of HVAC system operations during control intervals (# of on). The 
temperature performance measurement assessed the floor temperature, which was calculated by 
the simulator on the basis of the operation of the HVAC systems according to the proposed 
method and rules. Maintaining an optimal temperature is crucial for comfort and productivity, 
and this metric helps ensure that the HVAC system achieves the desired temperature levels 
efficiently. The measurement of the number of on and off cycles of the HVAC systems tracks 
how frequently the HVAC systems are turned on and off. Minimizing the number of on/off 
cycles is important because frequent cycling can increase the energy consumption and wear and 
tear on the systems. Ideally, the HVAC systems should operate smoothly with fewer on/off 
transitions while maintaining the desired temperature levels. The number of HVAC system 
operations during the control interval indicates the number of times that the HVAC systems are 
activated during specific control intervals. This provides insight into the frequency of HVAC 
system usage within a given timeframe, helping to optimize the energy consumption and 
operational efficiency. Minimizing unnecessary system operations without compromising 
temperature control is key to reducing energy costs and prolonging the equipment lifespan.
	 The experiment was conducted on a computer with an AMD Ryzen9 3950x processor and 64 
GB of RAM. The DNN and proposed algorithm were coded in Python. The DNN predicted the 
indoor temperature on each floor on the basis of the operation of the HVAC systems controlled 
by the proposed method. The DNN employed a fully connected architecture comprising four 
hidden layers with 64, 128, 256, and 32 neurons. The activation function for all layers was ReLU. 
The input for the DNN was structured with seven parameters: the indoor temperature of floor f 
at time t, the outdoor temperature of the building at time t, the cloud coverage at time t, the 
number of people entering the building at time t, the number of people on each floor f at time t, 
the current position within the designated timeslot at time t, and the electricity consumption of 
the outdoor unit of the air conditioner. The DNN output predicted the indoor temperature on 
floor f at the next time step (t + 1).
	 The NN for the proposed method also had a fully connected architecture comprising three 
hidden layers with 64, 32, and 16 neurons. The activation function for all layers was ReLU. The 
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hyperparameters used in the training and testing phases are listed in Table 2. Because searching 
for optimal hyperparameters is difficult owing to the large search space, a random search was 
employed in this study to identify the best values.(28) As explained above, the agent is responsible 
for regulating the operation of HVAC systems in the commercial building. The agent reward is 
assigned on the basis of the difference between the current indoor temperature and the specified 
upper temperature threshold. The temperature threshold varied for each floor, as indicated in 
Table 3. The reason for the different temperature thresholds for each floor was that the main 
items were placed on the lower floor, and fewer customers tended to visit when the floor height 
increased.
	 The agent operated in a 30-min control interval, making decisions at these intervals within 
the operational hours of 8:00 to 22:00 when the store was open. Each day constituted one 
episode, with 28 transitions stored during each episode. The transitions represented (st, at, rt, st+1) 
pairs in the decision-making process. During training, one of the 88 sets of real-world data was 
randomly selected to represent an episode. The agent learned the policy for operating the HVAC 
systems in a simulator on the basis of the selected actions and received rewards every 30 min. 
During training, if a randomly generated value was less than a specified epsilon (ϵ) value, the 
agent selected actions randomly. Otherwise, it selected the action with the maximum value, 
adhering to an exploration–exploitation strategy. The training process spanned 3000 episodes, 
during which the agent refined its policy by iterating through state–action pairs and the 
associated rewards. 
	 The experiments for testing the proposed method were conducted over 20 days, selected 
randomly from the data, with each day representing a case and the operational hours ranging 
from 8:00 to 22:00. During these experiments, the performance of the proposed method was 
compared with that of two other rules across these cases. The results were then summarized by 
calculating the average operational hours for all floors considered, as shown in Table 4.

Table 2
Hyperparameters for DRL.
Hyperparameter Value
Size of replay memory (Y) 20000
Optimizer Adam
Batch size 32
Discount factor (γ) 0.95
Decaying rate (dr) 0.995
Minimum epsilon 0.01
Learning rate (lr) 0.001
Target Q-network update frequency Every episode
Episodes (E) 3000
Q-network update frequency (C) Every action
Minimum training points (L) 1000

Table 3
Temperature threshold for each floor.
Floor Upper temperature (℃)
3 23
4 24
5 25
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	 The proposed method for controlling HVAC systems exhibited significant advantages over 
existing rules, particularly in terms of the on/off frequency. Better performance was achieved in 
17 out of 20 cases compared with Rule 1 and in 12 out of 20 cases compared with Rule 2, 
indicating a notable improvement in terms of the on/off frequency. This suggests that the 
proposed method offers more efficient control over HVAC operations, which likely results in 
energy savings. Furthermore, from the perspective of the number of HVAC system operations 
during the control intervals (# of on), the proposed method achieved better performance in 
almost all cases compared with the two rules.
	 Table 5 shows the result for each floor between the proposed method and other control rules.
Specifically, the top floor was more affected by sunlight than the other floors. Because Rule 2 
operated when the temperature was above the target temperature, it showed better performance 
in terms of all measurements than the proposed method and the other two rules. For the 
remaining floors, the proposed method outperformed the other rules in terms of on/off and # of 
on. In terms of temperature, the control by the proposed method was worse than that of the other 
rules, but the difference was small.

Table 4
Results of proposed method compared with other control rules.

Case DRL Rule 1 Rule 2
Temp On/off # of on Temp On/off # of on Temp On/off # of on

1 23.6 9 14.3 23.6 18.3 60 23.3 12 69
2 23.8 3 6.3 23.4 11.7 48.3 22.9 6 47
3 24 3.3 6.7 23.8 11.7 60 23.5 7.3 92.7
4 23.7 9 19 23.7 15 60 23.4 8.7 83.3
5 24.8 9.7 20 24 31.7 83.3 23.7 13.7 112
6 25.3 10.7 28 24.3 11.7 123.3 24.1 7.7 135.3
7 24.8 5 7.3 24 15 70 23.8 11 97
8 24.9 4.7 7 24.3 20 95 24 12 114.7
9 24.7 12.3 47.7 24.4 16.7 110 24 10 116
10 26.5 10.7 48 25.2 5 145 25.2 5 145
11 26.2 20 56 24.9 5 145 24.9 5.7 144
12 24.9 6 18 24 25 83.3 23.7 12.7 108
13 23.4 11 17 23.1 11.7 58.3 22.6 10 58.3
14 26 13.3 44 24.8 6.7 143.3 24.8 6 142.7
15 24.3 5.3 11 24.1 13.3 86.7 23.8 7.3 102.3
16 25 15.7 34.3 24.2 21.7 98.3 23.8 12 114.3
17 24 2.7 4.7 23.4 15 35 22.7 10 39.3
18 23.5 4.7 21.3 23.4 10 31.7 23 8 53.3
19 24.3 4.7 9.3 23.8 6.7 75 23.6 6.7 94
20 24.4 13 27.3 24 18.3 80 23.5 14 96
Mean 24.6 8.7 22.4 24.0 14.5 84.6 23.70 9.3 98.2

Table 5
Comparison of proposed method and other control rules for each floor.

Floor DRL Rule 1 Rule 2
Temp On/off # of on Temp On/off # of on Temp On/off # of on

3 24.6 4.6 14.5 24.2 13.0 104.25 24.0 8.05 113.8
4 24.7 4.9 15.3 24.3 13.8 101.0 24.0 8.8 111.0
5 25.2 15.9 34.5 24.2 17.5 87.5 23.8 9.1 101.7
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	 This result showed that the operation of the HVAC systems controlled by the proposed 
method was better than that of the other rules. The original HVAC system was fully operated by 
human control. Control using the proposed method can save energy costs compared with other 
methods, without a significant difference in temperature.

5.	 Conclusion

	 In this study, we addressed the control problem of HVAC systems by a DRL method. The 
proposed approach aims to optimize energy savings while maintaining appropriate temperature 
levels. A case study with the real data collected by sensors was conducted to evaluate the 
performance of the proposed DRL-based control method, and the results were discussed.
	 The proposed method demonstrated superior performance compared with traditional HVAC 
control rules. Specifically, the DRL-based method achieved significant energy savings by 
reducing the frequency of HVAC system operations and minimizing the number of on/off cycles, 
all while maintaining the desired temperature within acceptable limits. Notably, the method 
showed approximately 4 to 5 times fewer HVAC system operations than conventional rules, 
indicating its effectiveness in balancing energy efficiency and thermal comfort.
	 The results suggest that DRL-based control is a promising approach to HVAC system 
management, outperforming conventional strategies in both energy efficiency and indoor 
comfort. This makes it a viable and effective solution for HVAC system control with the potential 
for widespread applications in various settings. Future work can focus on further optimizing and 
adapting the model for different building types and climates to fully leverage its capabilities. 
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