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 Recently, the number of high-resolution Earth-observing satellite sensors has been increasing 
owing to the growing needs of intelligence, mapping, and environmental monitoring. An 
acquired satellite image should be processed for analysis-ready data (ARD) that can be used for 
many applications. An important step among the processing is georeferencing that assigns 
geographic coordinates to each image pixel. These days, georeferencing is directly carried out 
using onboard sensors to produce sensor model information such as rational polynomial 
coefficients (RPCs). However, postprocessing is required to increase the positional accuracy of 
RPCs through bias compensation. Recently, bias compensation has been carried out on the basis 
of an automated process using ground control point (GCP) image chips. Image matching is 
carried out between the chips and the target satellite image to model the bias over the entire 
image. However, if the dissimilarity between the chip and the target satellite image increases 
owing to large differences in acquisition time and seasonal differences, the image matching 
often fails. Therefore, in this study, we utilized both intensity-based matching and edge-based 
matching to overcome these issues. We selected normalized cross-correlation (NCC) for 
intensity-based matching and relative edge cross-correlation (RECC) for edge-based matching. 
First, GCP chips were projected onto the target satellite images to align the two datasets. Then, 
both image matching methods were carried out in a pyramid image matching scheme, and their 
results were merged before RPC bias compensation with outlier removal. The experiments were 
carried out for two Kompsat-3A strips consisting of 9 and 7 scenes. NCC and RECC showed 
different matching results per scene, but RECC tended to show better results. NCC + RECC 
could derive most matching points, but the accuracy was between NCC and RECC. However, 
NCC + RECC shows potential to suppress a matching outlier. By applying automated bias 
compensation, 1.1–1.2 pixels of accuracy in root mean square error (RMSE) could be obtained.
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1. Introduction

 The growing needs of intelligence, mapping, and environmental monitoring have increased 
the number of high-resolution Earth-observing satellite sensors worldwide. Satellite sensors 
such as WorldView, Pleiades, SPOT, Kompsat, SuperView, Satellogic, TripleSat, and CAS-500 
are examples of Earth-observing satellites. These satellites provide a geospatial resolution of 
around 1 m to monitor target areas for many applications. Moreover, satellite constellations such 
as WorldView Legion, Dove of Planet, and Pathfinder of BlackSky provide abundant satellite 
images with more frequent revisit times.
 High-resolution images from satellite sensors are not just photos but information. Therefore, 
they are considered as data or maps containing various information about the target. As analysis-
ready data (ARD),(1) the image data must have accurate geographic coordinates. The process 
that assigns geographic coordinates onto each pixel is called georeferencing or registration. A 
satellite is installed with additional sensors such as global navigation satellite system (GNSS), 
inertial measurement unit (IMU), and a star tracker such that georeferencing is automatically 
carried out.(2) However, errors in the sensors produce inaccurate coordinates in the 
georeferencing; thus, postprocessing is required to increase the positional accuracy of rational 
polynomial coefficients (RPCs) through bias compensation.(3,4) Major commercial satellites 
such as WorldView and Pleiades are known to show 3–10 m positional errors in  root mean 
square error (RMSE),(5,6)  but other satellites show less accurate positional information. The 
accuracy is about 10 pixels or there are larger errors in the image coordinates such that the 
accuracy should be improved to one or two pixels of errors.(7)

 RPCs as the main sensor model information must be bias-compensated using ground control 
points (GCPs). GCPs consist of 3D ground coordinates and the corresponding 2D image 
coordinates. Therefore, GCPs should be accurately measured both in the ground and also on the 
image. Note that the ground surveying of GCPs is limited owing to the cost and accessibility to 
the ground site. In addition, the manual image coordinate measurement is also labor-intensive, 
and the accuracy may vary for each human operator. Therefore, recently, GCP chips from 
accurately preconstructed geospatial data have been created(8–12) and used for bias compensation.
(13–16) The image coordinate measurement was carried out by  the image matching technique 
between the GCP chip and the target satellite image. 
 Conventional image matching is carried out using intensity within an area or features around 
the point of interest.(17,18) Area-based matching utilizes the correspondence of each pixel to 
compute correlation. Feature-based matching computes feature vectors around the area of 
interest and similarity between the vectors.(19–21) These methods are effective for images with 
high similarity such as stereo data acquired in less time difference between target images and 
slightly different acquisition angles. GCPs and target satellite images may or may not have 
similar acquisition seasons. Therefore, if the dissimilarity between the chip and the target 
satellite image increases owing to large differences in acquisition time and seasonal differences 
such as snow cover, image matching often fails. 
 The image matching between the GCP chip and the satellite image should be robust to the 
seasonal difference and land cover change. The digital number and feature vector within the area 
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of interest highly depend on the intensity directly affected by land cover. However, the edge 
information depends less on them. In particular, edge information around a human geographical 
feature such as a road or a land boundary is very strong and invariant to seasonal differences 
unless the land cover itself changes. However, edge information is not always abundant where 
natural geographical features are dominant. In this analogy, we utilized both intensity-based 
matching and edge-based matching to overcome the aforementioned issues.  Normalized cross-
correlation (NCC)(22) and relative edge cross-correlation (RECC)(23) were used for the methods 
because of their simplicity with low computational cost and decent performance compared with 
feature-based matching methods. 
 The proposed image matching method consists of three major steps. First, GCP chips are 
projected onto the target satellite images to align the two datasets. Second, both image matching 
methods were carried out. Third, their results were merged before RPC bias compensation with 
outlier removal. The first step is to use rather erroneous RPCs to project each pixel onto the 
target image. The projection generates a projected GCP chip with the same geospatial resolution 
as and a similar alignment to the target image. The erroneous RPCs locate the projected GCP 
chip on an inaccurate position in the target image. Therefore, in the second step, the image 
matching is carried out to find the correct position of the GCP chip in the target image. For each 
chip, both NCC and RECC are carried out to accept a better matching result. Using both 
approaches can produce more reliable matching results over the entire target image. The image 
matching is also carried out with an image pyramid for higher performance. The matching 
results are used for RPC bias compensation with the well-known affine model with outlier 
removal based on data snooping. 
 The experiments were carried out for two Kompsat-3A strips consisting of 9 and 7 scenes 
located in an inaccessible area where on-site surveying is limited. Using precreated satellite 
ortho images as GCP chips, we applied the NCC and RECC image matching methods with the 
pyramid scheme for bias compensation. Then, we compared the number of successful image 
matching and the bias modeling accuracy for each case.
 This paper is structured as follows: The methodology is described in Sect. 2, experimental 
results for Kompsat-3A images are presented in Sect. 3, the discussion is presented in Sect. 4, 
and conclusions are provided in Sect. 5.

2. Methodology

 The methodology is described as a flowchart in Fig. 1. Given the target satellite image and 
RPCs, GCP chips are projected onto the target image space using the rather erroneous RPCs. 
The projection generates the projected GCP chips that are distorted for sensor information and 
acquisition angles. The projected chips are now aligned with the target satellite image while the 
positional offset still exists for the RPC error. Therefore, the image matching is carried out to 
estimate the offset for each chip. To be robust to seasonal differences, both the NCC and RECC 
matching methods are carried out. In the matching stage, the image pyramid is used for more 
efficient and precise image matching by reducing the search range starting from the low-scale 
matching to the high-scale matching. The matching results from both image matching methods 
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are now used for RPC bias compensation. In this stage, an outlier detection is iteratively applied 
until no outlier is detected. Finally, the filtered matching results are used for updated RPC 
generation.(24)

2.1 RPC bias compensation

 As sensor model information, the rational function model (RFM) equation is given as Eq. (1) 
to use the ground coordinates (ϕ, λ, h) as an input for computing the image coordinates (l, s).(3) 
Eighty coefficients are required, i.e., 20 coefficients for each a, b, c, and d, which are called 
RPCs. The RPCs model the sensor information such as the focal length, sensor distortions, 
acquisition angles, errors in ephemeris of the platform, and topographic relief using the 
polynomial coefficients.

 ,  
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Fig. 1. (Color online) Flowchart of the study.
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Here, (ϕ, λ, h) are the geodetic latitude, longitude, and ellipsoidal height, respectively. (l, s) are 
the image row and column coordinates, respectively. (U, V, W) are the ground coordinates. (ϕo, 
λo, ho) and (ϕS, λS, hS SS, LS) are the offset and scale factors, respectively, for the latitude, 
longitude, height, column, and row.
 The given RPCs are rather erroneous such that the computed image coordinates (l, s) are 
located in the wrong position. Therefore, an affine coordinate transform is widely used to 
compensate them, as shown in Eq. (2).(4) Finally, the more accurate position (l', s') can be 
computed. 

 0 1 2 0 1 2,   'l l A A l A s s s B B l B s′ = + + + = + + +  (2)

Here, A0, A1, ..., B2 are for an affine transformation that models shift, drift, and scale to angular 
affinity.

2.2 Image matching

 NCC and RECC are simple but well-performed image matching methods. The computational 
cost is low and suitable for large satellite data processing. In addition, because the projected 
GCP chip and a target satellite image are already aligned, no feature-based matching with high 
computational cost is required.
 NCC is an area-based matching methods using intensity values of corresponding image 
patches to compute the correlation between them as presented in Eq. (3) and Fig. 2. A is a target 
satellite image and B is a projected GCP chip. The reason why the GCP chips in the map 

Fig. 2. Image patch in search range for image matching.
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coordinates are not directly used for the image matching is that the satellite image is not in the 
map coordinates. Therefore, the GCP chips in the map coordinates are projected onto the 
satellite image coordinates. After the projection, the GCP chips and the target satellite image are 
well aligned for better image matching. The purpose of the image matching is that the correct 
location of B is searched within the search region in A using the indicator of NCC. NCC ranges 
from −1 to +1, and a larger NCC indicates that the corresponding patches are highly similar.
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Here, B is the projected GCP chip and A is a satellite image patch within the search region; both 
are in the size of w × w. ,B A are averages of all intensity values in the patches.
 RECC is an edge-based matching method using a sliding matching window similar to NCC. 
RECC uses an edge image that has 1 for edge and 0 for non-edge. The edge image can be 
generated using the well-known Canny operator.(25) The edge images Ae and Be are generated 
from A, B, which are the target satellite image and projected GCP chip, respectively. RECC 
computes the number of overlapping edge pixels between Ae and Be to measure the similarity 
and divides it by the total number of edge pixels as presented in Eq. (4). In other words, more 
overlapping edge pixels indicate better image overlapping. However, unlike NCC, RECC with no 
unit is not an absolute value because an image patch may contain a different number of edge 
pixels. Therefore, the peak position of high similarity can be identified using CV4 that computes 
the closeness between the top four highest similarity positions as shown in Eq. (5). A small CV4 
indicates a successful matching position and the unit is pixels.(23)
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Here, Be is a window in the edge image of the projected GCP chip (size: w × w), Ae is an edge 
image of the target satellite image patch, and  e

ijB  and e
ijA  are the digital numbers at row i and 

column j. CV4 is the concentration based on the maximum to fourth largest RECC values, and 
(rmax) and (ri, ci) are the image coordinates of the positions of the maximum and i-th largest 
RECC values, respectively.
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2.3 Outlier removal

 Image matching produces outliers that should be detected and removed. The RPC bias 
compensation model in Eq. (2) is used for the detection in matrix form as shown in Eq. (6). 
RANdom SAmpling Consensus (RANSAC)(26) and data snooping(27) are well-known outlier 
removal techniques. RANSAC is based on random sampling and adequate for a large number of 
observations, whereas data snooping is based on a more rigorous statistical test by singling out 
each observation from the set. We used the data snooping algorithm because RANSAC may 
produce different results for each random sampling.
 Data snooping utilizes the statistical T-test to determine whether the j-th observation is an 
outlier as shown in Eq. (7).
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Here, ẽ is the residual vector computed from Eq. (6), ẽj is the j-th element, and n and m are the 
numbers of equations and unknowns, respectively. rj is the redundancy number, X is the design 
matrix that consists of coefficients in front of unknowns in Eq. (6), and I is the identity matrix.

3. Results

3.1 Data

 The experiments were carried out for two Kompsat-3A image strips that were acquired for 
inaccessible North Korea. The specifications of the tested data are listed in Table 1. The numbers 

Table 1
Tested Kompsat-3A data specifications.

Strip 1 Strip 2
Number of scenes 9 7
GCP chips 369 258
Data 2020-10-12 2021-04-06
Azimuth/off-nadir (degrees) 55.99/15.35 319.07/11.74
GSD (m) 0.59 0.57
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of scenes per strip are 9 and 7. The acquisition dates are October 12, 2020 and April 6, 2021. The 
acquisition angles (off-nadir angles) range from 11.74 to 15.35 degrees. The azimuths are 55.99 
and 319.07 degrees, which are mostly in the opposite direction to each other. Note that the larger 
off-nadir angle leads to the smaller ground sampling distance (GSD), and the tested data show a 
similar off-nadir angle resulting in a similar GSD. The positional accuracy of Kompsat-3A is 
known to be about 10 m (about 20 pixels) in RMSE.(28)

 The site is mostly a rural area surrounded by mountains, as shown in Figs. 3 and 4. The data 
were acquired in the ascending node such that scene 1 is located in the south. Vegetation is 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. (Color online) Tested Kompsat-3A data strip 1: (a) scene 1, (b) scene 2, (c) scene 3, (d) scene 4, (e) scene 5, 
(f) scene 6, (g) scene 7, (h) scene 8, and (i) scene 9.
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healthy at the beginning of autumn (Fig. 3), while it is not at the end of winter (Fig. 4). Therefore, 
deciduous trees show different textures between the two datasets, as shown in Fig. 5.

3.2 Preparation and projection of GCP chips

 GCP chips were created from panchromatic satellite ortho images of 1 m GSD. The spatial 
resolution of the chip is relatively lower than the target data because the data availability is 
limited for the target area in an inaccessible area. The chip size is 257 × 257 pixels. The 
horizontal coordinates are from the ortho image information, and the height information is 
derived from the associated 10-m-resolution digital terrain model (DTM). 

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4. (Color online) Tested Kompsat-3A data strip 2: (a) scene 1, (b) scene 2, (c) scene 3, (d) scene 4, (e) scene 5, 
(f) scene 6, and (g) scene 7.
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 Figure 6 depicts the distribution of the overall GCP chip distribution with the target image 
footprints over the sites. In strip 1, scenes 6–8 [Figs. 3(f)–3(h)] partially overlap and scenes 6 and 
7 [Figs. 4(f) and 4(g)] mostly overlap in strip 2.
 Each GCP chip is in the ground coordinate system because the source is an ortho image. A 
target image does not have coordinates because no georeferencing has been carried out, and all 
target images are not corrected for sensor distortion, acquisition angles, and topographic reliefs. 
Therefore, the alignment between the chip and the target image is dissimilar. For easier and 
higher image matching performance, a GCP chip is projected onto the target image space using 
the given RPCs. Even if the RPCs are rather erroneous, the positional accuracy is usually less 
than dozens of meters, and the RPCs can apply the sensor distortion, acquisition angles, and 
topographic reliefs to the chips for alignment. Figure 7 presents examples of chip projections for 
each strip. The projection rotates and distorts the chip similar to the target images. The boundary 
of the projected chip shows that a different geometry of each strip is applied to the chips. The 
upper chip in Fig. 7 is decent with invariant features, whereas the lower chip shows an example 
with poor geographical features for image matching. In addition, looking at the lower chips, we 
can observe that the projected chip is more similar to target strip 2 than the original GCP chip.

3.3 Image matching with RPC bias compensation

 Given a projected GCP chip and the computed target image coordinates from the erroneous 
RPCs, the correct location of the GCP chip is sought by image matching. The search range is 
established using typical Kompsat-3A positional errors. About 20 pixels of error in RMSE was 
reported,(28) such that we used 100 pixels considering that large errors may occur. The image 
matching with the large search range is computationally ineffective, and it may introduce 
matching errors as Fig. 8 depicts the matching with a search range of 100 pixels.

Fig. 5. Texture difference between strips: (a) strip 1 and (b) strip 2.

(a) (b)
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(a)

(b)

Fig. 6. (Color online) Data distribution with GCP chips in map coordinate systems: (a) strip 1 and (b) strip 2. 
Triangles indicate the location of GCP chips.
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 Therefore, we used a pyramid-based image matching to effectively reduce the range. First, 
we changed the number of pyramid levels to select the optimal level. As shown in Fig. 9, level 3 
(1/4 scale) was selected as the lowest scale for image matching.
 Finally, 1/4- and 1/2-scale GCP chips and the corresponding target images were generated for 
image matching. The image matching was carried out at 1/4 scale with a 25 pixel search range 
(100 pixels in 1/1 scale), and if it is decent, the location was transferred to 1/2 scale and 1/1 scale 
matching with the reduced search range, as depicted in Fig. 10.
 For stereo matching based on NCC, the matching window size is 7–11 pixels. However, for 
heterogeneous data, a larger matching window size should be used to include more feature 
information. As the window size increases, NCC tends to decrease. Therefore, the size of 50 by 
50 pixels is used. For RECC, 180 by 180 pixels are used to include much edge information. 
 Figure 11 shows an example of poor NCC and decent RECC. In Fig. 11(a), the left is a chip, 
and the right is the target image with a wrong matched location. In Fig. 11(b), RECC finds a 

Fig. 7. (Color online) Examples of projected GCP chips: (a) ortho chips in map coordinate systems, (b) projected 
chips (strip 1), (c) projected chips (strip 2), (d) target satellite strip 1, and (e) target satellite strip 2.

(a) (b) (c) (d) (e)

(a) (b)

Fig. 8. (Color online) Example of image matching with a search range of 100 pixels: (a) projected GCP chip and (b) 
target image with matched position. 
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Fig. 9. (Color online) Number of matches per number of pyramids .

Fig. 10. (Color online) Image matching with pyramid to reduce the search range: (a) 1/4 scale, (b) 1/2 scale, and (c) 
1/1 scale. Left: projected GCP chips, right: location on the target satellite image.

(a)

(b)

(c)
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better location with the edge correspondence shown in Fig. 11(c). In contrast, Fig. 12 presents an 
example of decent NCC and poor RECC.
 Table 2 shows the number of image matchings per method for strip 1. Note that the number of 
points is counted after the outlier removal that may remove some points with moderate matching 

Fig. 11. (Color online) Example of poor NCC and decent RECC: (a) NCC-left: chip, right: target; (b) RECC-left: 
chip, right: target; and (c) RECC-left: chip edge, right: target edge.

(a)

(b)

(c)
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quality if they do not pass the strict statistical testing. NCC produced 7–24 matching points with 
a mean of 14.9, and a mean success rate of 36.1%. RECC produced 8–37 points with a mean of 
19.1 and a success rate of 42.8%. NCC + RECC (case 1) produced 8–37 points with a mean of 
19.8 and a success rate of 45.0%. Overall, RECC produces more matching points than NCC 

Fig. 12. (Color online) Example of decent NCC and poor RECC: (a) NCC-left: chip, right: target; (b) RECC-left: 
chip, right: target; and (c) RECC-left: chip edge, right: target edge.

(a)

(b)

(c)
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because it is more invariant to the acquisition date difference between the chip and the target 
image. In addition, NCC + RECC tends to produce more points, but the increase was not 
considerable because a point with both successful NCC and RECC matchings counts as one. By 
removing less reliable points and retaining a similar number of points to RECC, case 2 results 
are derived. Case 2 shows the similar number of matched points and success rate to RECC.
 Figure 13 shows the distribution of matched points for scene 1 in strip 1. The different 
distribution pattern between NCC and RECC is notable, and NCC + RECC consists of the results 
from the two methods. Some NCC and RECC points are added or removed in NCC + RECC. 
This depends on whether they are filtered or not in the outlier removal process during the RPC 
bias compensation.
 In case 2, the number of matched GCPs consists of the numbers of NCC and RECC points as 
shown in Table 3. Note that no single method dominates the matching results.
 Table 4 shows the results of the test on strip 2, which are similar to those of the test on strip 1. 
NCC produced 8–30 matching points with a mean of 17.7, and a mean success rate of 44.1%. 
RECC produced 12–30 points with a mean of 20.0 and a success rate of 50.6%. NCC + RECC 
produced 13–37 points with a mean of 22.7 and a success rate of 58.9%. Overall, NCC + RECC 
could generate the higest number of matching points, although the increase was not considerable. 
 NCC + RECC obtains more matching points than the others such that less reliable points 
could be removed, retaining a similar number of points to RECC, that is, case 2 in Tables 2 and 4.
 In case 2, the number of matched GCPs consists of the numbers of NCC and RECC points as 
shown in Table 5. Note that no single method dominates the matching results.
 Matching results are used for RPC bias compensation. Table 6 shows the affine-based bias 
compensation model residual after the outlier removal. RMSE is calculated down to the first 
decimal place. For image strip 1, NCC produced the highest accuracy for scenes 1, 2, 3, 5, 6, and 9. 
However, NCC produced significantly low results for scenes 7 and 8, which are harmful for 
georeferencing. RECC produced the highest accuracy for scenes 1, 7, and 8. Also, RECC could 
secure stable accuracy for problematic scenes 7 and 8, but it showed relatively low accuracy for 
scenes 6 and 9. In contrast, NCC + RECC tends to show smoothed accuracy between NCC and 
RECC except for scenes 4 and 9. From the mean, the overall NCC + RECC showed the most 

Table 2
Number of image machings and success rate (%) of image matching (strip 1).

Scene ID Num. of GCPs per 
image NCC RECC NCC + RECC 

Case 1
NCC + RECC 

Case 2
1 42 9 (21.4%) 16 (38.1%) 19 (45.2%) 18 (42.9%)
2 54 18 (33.3%) 32 (59.3%) 28 (51.9%) 27 (50.0%)
3 59 19 (32.2%) 37 (62.7%) 37 (62.7%) 36 (61.0%)
4 56 24 (42.9%) 27 (48.2%) 27 (48.2%) 30 (53.6%)
5 39 14 (35.9%) 22 (56.4%) 25 (64.1%) 24 (61.5%)
6 33 7 (21.2%) 12 (36.4%) 10 (30.3%) 10 (30.3%)
7 31 18 (58.1%) 9 (29.0%) 12 (38.7%) 11 (35.5%)
8 32 18 (56.3%) 8 (25.0%) 12 (37.5%) 8 (25.0%)
9 30 7 (23.3%) 9 (30.0%) 8 (26.7%) 8 (26.7%)

Mean 14.9 (36.1%) 19.1 (42.8%) 19.8 (45.0%) 19.1(42.9%)
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Table 3
NCC + RECC matching (strip 1).
Scene ID NCC + RECC Case 2 Num. of NCC Num. of RECC
1 18 (42.9%) 7 (16.7%) 11 (26.2%)
2 27 (50.0%) 16 (29.6%) 11 (20.4%)
3 36 (61.0%) 18 (30.5%) 18 (30.5%)
4 30 (53.6%) 20 (35.7%) 10 (17.9%)
5 24 (61.5%) 13 (33.3%) 11 (28.2%)
6 10 (30.3%) 8 (24.2%) 2 (6.1%)
7 11 (35.5%) 4 (12.9%) 7 (22.6%)
8 8 (25.0%) 5 (15.6%) 3 (9.4%)
9 8 (26.7%) 2 (6.7%) 6 (20.0%)

Table 4
Number of image machings and success rate (%) of image matching (strip 2).

Scene ID Num. GCPs per image NCC RECC NCC + RECC 
Case 1

NCC + RECC 
Case 2

1 57 21 (36.8%) 28 (49.1%) 29 (50.9%) 31 (54.4%)
2 55 30 (54.5%) 28 (50.9%) 37 (67.3%) 32 (58.2%)
3 46 29 (63.0%) 30 (65.2%) 32 (69.6%) 28 (60.9%)
4 29 10 (34.5%) 12 (41.4%) 15 (51.7%) 14 (48.3%)
5 28 8 (28.6%) 12 (42.9%) 13 (46.4%) 9 (32.1%)
6 29 14 (48.3%) 17 (58.6%) 18 (62.1%) 19 (65.5%)
7 28 12 (42.9%) 13 (46.4%) 18 (64.3%) 15 (53.6%)
8 57 21 (36.8%) 28 (49.1%) 29 (50.9%) 31 (54.4%)
9 55 30 (54.5%) 28 (50.9%) 37 (67.3%) 32 (58.2%)

Mean 17.7 (44.1%) 20.0 (50.6%) 22.7 (58.9%) 21.1 (53.3%)

Table 5
NCC + RECC matching (strip 2).
Scene ID NCC + RECC Case 2 Num. of NCC Num. of RECC
1 31 (54.4%) 16 (28.1%) 15 (26.3%)
2 32 (58.2%) 23 (41.8%) 9 (16.4%)
3 28 (60.9%) 8 (17.4%) 20 (43.5%)
4 14 (48.3%) 11 (37.9%) 3 (10.3%)
5 9 (32.1%) 5 (17.9%) 4 (14.3%)
6 19 (65.5%) 10 (34.5%) 9 (31.0%)
7 15 (53.6%) 8 (28.6%) 7 (25.0%)

Fig. 13. (Color online) Matching point distribution for scene 1 (strip 1): (a) NCC, (b) RECC, and (c) NCC + RECC.

(a) (b) (c)
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stable accuracy even though the increase was minimal up to 0.1–0.2 pixels compared with that of 
RECC. NCC + RECC helps to suppress the low accuracy modeling by two methods compensating 
each other. In case 2 by removing less reliable points and retaining a similar number of points to 
RECC, the maximum error dropped from 1.9 to 1.3 pixels.
 For strip 2, NCC produced a low accuracy for scene 3 in Table 7. Overall, RECC showed the 
highest accuracy even though the difference was negligible (0.1–0.2 pixels) compared with 
NCC + RECC. Fortunately, there are no significantly low accurate results found in RECC in this 
strip. In case 2, by removing less reliable points and retaining a similar number of points to 
RECC, the maximum error of NCC + RECC dropped to 1.3 pixels, which is a more negligible 
difference from RECC. Therefore, in strip 2, RECC was the best option, but the use of 
NCC + RECC can be another stable option to avoid potential low accurate results considering 
strip 1.
 Tables 8 and 9 show the computed RPC bias in the target image for each strip and scene. 
Considering only the shift errors A0 and B0, the biases are up to more than 26 pixels, which is 
about 15 m on the ground. Considering this error, the original positional accuracy of the tested 
data seems within the reported value.(28) For strip 1, the bias before the RPC compensation is 
larger along the line direction than along the sample direction, while strip 2 shows a larger error 
along the sample direction. By compensating for these errors, one pixel level of RPC accuracy 
can be automatically obtained by GCP chip-based image matching.
 Figure 14 shows a bias pattern from scene 1 of strip 1 along the line and sample directions. 
Figure 14(a) shows the line and sample biases along the line direction in the middle of the scene. 
The line direction bias and slope are larger than those of the sample direction. Figure 14(b) 
shows the bias along the sample direction in the middle of the line. The bias change along the 
sample direction is bounded to 2 pixels, whereas that along the line direction is up to 16 pixels. 
The bias change is much less along the sample direction than along the line direction. This 
shows that the bias modeling should not be carried out using the simple shift model, but the bias 
modeling of Kompsat-3A RPCs using the affine model is appropriate.

Table 6
Compensation precision in RMSE [pixels] (strip 1).

Scene ID NCC RECC NCC + RECC 
Case 1

NCC + RECC 
Case 2

Sample Line Diagonal Sample Line Diagonal Sample Line Diagonal Sample Line Diagonal
1 0.9 0.8 1.1 0.9 0.7 1.1 0.8 0.8 1.1 0.8 0.8 1.1 
2 0.9 0.9 1.3 1.1 1.0 1.5 0.9 0.9 1.3 0.9 0.9 1.3 
3 0.8 0.6 1.0 0.8 0.9 1.2 0.8 0.9 1.2 0.7 0.9 1.1 
4 0.9 0.8 1.2 0.9 0.8 1.2 0.8 0.7 1.1 0.9 0.7 1.2 
5 0.8 0.8 1.1 1.0 0.7 1.2 0.9 0.9 1.3 0.8 0.7 1.1 
6 0.6 0.2 0.7 1.6 1.2 1.9 0.6 0.4 0.7 0.6 0.4 0.7 
7 3.1 2.8 4.2 0.9 0.9 1.2 0.9 0.9 1.3 0.7 0.9 1.2 
8 2.7 2.8 3.9 0.5 0.7 0.9 1.0 1.3 1.7 0.6 0.7 0.9 
9 0.7 0.6 0.9 1.4 1.0 1.7 0.4 0.7 0.9 0.4 0.7 0.9 
Mean 1.3 1.1 1.7 1.0 0.9 1.3 0.8 0.9 1.2 0.7 0.7 1.1 
Max 3.1 2.8 4.2 1.6 1.2 1.9 1.0 1.3 1.7 0.9 0.9 1.3 
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 Finally, the target images are orthorectified using the original erroneous and bias-
compensated RPCs for comparison. Figure 15(a) shows the ortho images with the original 
erroneous and bias-compensated RPCs. Figure 15(a) also shows the ortho images of 2020 and 
2021 with the original erroneous RPCs,  and Fig. 15(b) shows those with the bias-compensated 
RPCs. The discrepancy between them (about 15 m) is clearly visible near buildings, whereas the 
compensated ortho image shows good registration results in Fig. 15(b). Building-level 
registration can be identified.

Table 7
Compensation precision in RMSE [pixels] (strip 2).

Scene ID NCC RECC NCC + RECC 
Case 1

NCC + RECC 
Case 2

Sample Line Diagonal Sample Line Diagonal Sample Line Diagonal Sample Line Diagonal
1 1.2 1.1 1.6 0.8 0.8 1.1 0.8 0.9 1.2 0.7 0.9 1.2 
2 1.0 1.2 1.6 0.8 1.0 1.3 1.0 1.1 1.5 1.0 0.9 1.3 
3 1.7 1.8 2.5 0.7 1.0 1.2 0.7 1.0 1.2 0.7 0.9 1.1 
4 0.5 0.7 0.8 0.5 0.5 0.7 0.9 0.9 1.2 0.8 0.8 1.1 
5 0.6 0.4 0.7 0.8 0.9 1.2 1.2 0.9 1.5 0.8 0.7 1.1 
6 1.1 1.3 1.7 0.8 0.9 1.2 0.8 0.8 1.1 0.8 0.9 1.2 
7 0.9 1.1 1.5 0.7 0.7 1.0 0.8 0.9 1.2 0.8 0.8 1.1 
8 1.0 1.1 1.5 0.7 0.8 1.1 0.9 0.9 1.3 0.8 0.9 1.2 
9 1.7 1.8 2.5 0.8 1.0 1.3 1.2 1.1 1.5 1.0 0.9 1.3 
Mean 1.2 1.1 1.6 0.8 0.8 1.1 0.8 0.9 1.2 0.7 0.9 1.2 
Max 1.0 1.2 1.6 0.8 1.0 1.3 1.0 1.1 1.5 1.0 0.9 1.3 

Table 8
Estimated bias (strip 1).
Scenes Bias

A0 (shift) A1 (drift) A2 (affinity) B0 (shift) B1 (drift) B2 (affinity)
1 −17.635074 0.000060 0.000618 −4.709010 0.000071 0.000167
2 −26.809429 −0.000166 0.000417 −1.661388 −0.000065 0.000061
3 −18.838355 −0.000102 −0.000396 −1.932555 0.000089 −0.000069
4 −10.541562 −0.000117 −0.000258 −2.045777 0.000457 −0.000110
5 −1.245073 −0.000076 −0.000374 2.534880 0.000098 0.000002
6 2.011869 0.000002 −0.000248 −1.125922 0.000219 −0.000432
7 1.222146 −0.000054 0.000064 −1.416397 0.000204 0.000033
8 −3.585199 −0.000098 0.000263 0.318448 0.000176 −0.000176
9 0.951062 −0.000316 0.000182 −3.093446 0.000355 0.000058

Table 9
Estimated bias (strip 2).
Scenes Bias

A0 (shift) A1 (drift) A2 (affinity) B0 (shift) B1 (drift) B2 (affinity)
1 8.551921 −0.000072 0.000628 6.410667 0.000018 0.000453
2 −9.973537 −0.000084 0.000641 5.176177 0.000332 −0.000159
3 −12.649700 0.000100 −0.000049 12.887208 0.000186 −0.000225
4 −2.826613 −0.000155 −0.000279 12.478661 −0.000101, 0.000130
5 8.482035 −0.000115 −0.000483 20.834514 0.000051 −0.000384
6 5.875974 0.000135 −0.000027 16.941955 0.000169 0.000086
7 8.860162 0.000159 −0.000250 15.774101 0.000172 0.000135
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4. Discussion

 The accurate georeferencing of high-resolution satellite images is difficult and labor-intensive 
such that an automated but robust approach has been needed. To this end, the approach with 
image matching methods seems to have a high potential to reduce the cost. 
 NCC + RECC is recommended for more robust image matching by detecting and removing 
outliers because it can produce more redundant matching points than either NCC or RECC. 
Between RECC and NCC, the experimental results showed that RECC is more effective for 
heterogenous data matching than NCC. 

Fig. 14. (Color online) Bias pattern of strip 1 – scene 1: (a) bias along line and (b) bias along sample.

Fig. 15. (Color online) Orthoimages overlay between 2020 and 2021 for registration comparison: (a) before and (b) 
after bias compensation.

(a) (b)

(a) (b)
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 We also applied feature-based matching methods such as SIFT and SURF to the experimental 
data; however, they were not only time-consuming but produced very poor results for these 
heterogenous data. 
 As a limitation of this study, the registration accuracy could not be assessed using a quality 
reference point with a reliable positional accuracy in the experiment. Since the tested GCP chips 
were derived from military data for the inaccessible area, metadata such as the accuracy and 
acquisition date were unknown. Therefore, the effect of the GCP quality as well as elevation 
accuracy on the image matching and RPC bias compensation could not be analyzed.
 
5. Conclusions

 In this study, we used both the intensity- and edge-based matching methods for the automated 
RPC bias compensation and analyzed their performance for high-resolution satellite sensor data 
processing. To this end, NCC was selected for intensity-based matching and RECC was selected 
for edge-based matching. First, GCP chips were projected onto target satellite images to align 
the two datasets. Then, both image matching methods were carried out in a pyramid image 
matching scheme and their results were merged before RPC bias compensation with outlier 
removal. The experiments were carried out for two Kompsat-3A strips consisting of 9 and 7 
scenes. The following conclusions were derived:
-  Overall, RECC produces more matching points than NCC because it is more invariant to the 

acquisition date difference between the chip and the target image.
-  NCC + RECC tends to produce more points even though the increase was not considerable 

because a point with both successful NCC and RECC matching counts as one.
- Bias modeling accuracy using NCC and RECC was different for each scene, but RECC tends to 
produce stable results.
-  NCC + RECC generates a larger number of successful matching points such that the bias 

compensation accuracy can be more improved by removing less reliable points and retaining a 
similar number of points to RECC.

-  NCC + RECC can be a stable option to avoid potentially poorly accurate results, i.e., outliers.
-  By applying the automated bias compensation, 1.1–1.2 pixels of accuracy in RMSE could be 

obtained.
 Future studies should include the effects of parameters such as matching window size and 
search range for better image matching. 
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