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	 Construction sites have shown the highest incidence of safety accidents across industries in 
recent times. Small-scale sites, in particular, often operate without on-site safety managers, 
leading to significant safety oversights. In this study, we developed a method of identifying risk 
areas during construction procedures by using bird’s-eye-view image data throughout the 
construction cycle. Actual construction site images were collected and specific target objects 
were selected to create an AI training dataset. The segmentation model’s performance was 
validated, and a system was developed to identify fall risk areas by establishing interconnections 
between these target objects within the images. The findings of this study can help enhance 
compliance assessment with construction procedures and improve safety management oversight 
at small-scale construction sites.

1.	 Introduction 

	 Recently, the government of South Korea has intensified efforts to reduce the number of 
fatalities and safety accidents in industrial sites through legislation such as the Occupational 
Safety and Health Act and the Serious Accidents Punishment Act. Despite these measures, the 
construction sector reported the highest number of fatalities in 2021, with 417 deaths, comprising 
50.5% of all industrial accidents.(1) While large companies deploy on-site safety managers who 
independently oversee safety tasks, small-scale construction sites with budgets below 5 billion 
KRW are not obligated to do so, resulting in significant safety oversights. Statistical analysis 
from the Construction Safety Management Integrated Information Network reveals that such 
small-scale construction sites exhibit the highest accident rate, predominantly due to falls. This 
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underscores the urgent need for technical solutions to enhance safety management in these 
overlooked areas of the construction industry. 
	 Therefore, this study focused on detecting process areas and fall risk zones using closed-
circuit television (CCTV) footage, with a specific emphasis on small-scale construction sites 
where fall accidents are prevalent. Unlike in previous studies where data were typically analyzed 
using CCTV installed on-site, in this study, a novel approach that utilizes bird’s-eye view images 
was considered. To gather real-world data, a small-scale construction site was selected and a 
bird’s eye-view image collection system was deployed onsite. Data spanning the entire 
construction cycle were collected and time-series analysis was conducted to capture images of 
construction areas at various stages. The key process areas and elements associated with fall 
risks were identified to form datasets, and a real-time fall risk detection system was implemented 
using a segmentation model. The reliability of the system was validated through evaluations of 
object detection rates and segmentation performance using experimental data. 
	 In small-scale construction sites, construction progresses rapidly with multiple concurrent 
processes, leading to dynamic changes in fall risk zones and heightened worker accident risks. 
In this study, we propose a distinctive data analysis method, providing an easy way to detect fall 
risk areas at different floor levels without the need for additional sensors (e.g., distance sensors). 
Implementing this system is expected to reduce accident rates at construction sites and enhance 
compliance with safety protocols.  

2.	 Related Research 

	 Traditional computer vision theories have extensively been used in research on object 
recognition technologies.(2) These methods relied on predefined rules for detection, which 
proved challenging to define comprehensively, limiting their performance. However, recent 
advancements in deep learning-based object recognition have substantially enhanced detection 
capabilities, even in challenging conditions with poor data quality. Consequently, deep learning 
technologies are now applied to enhance CCTV-based safety monitoring in construction sites, 
which often face varying light, weather, and dust conditions.
	 For instance, Xiang et al.(3) utilized the Faster Region-based Convolutional Neural Network 
(R-CNN) method to monitor large-scale construction sites and detect intruding vehicles. 
Similarly, Guo et al.(4) employed CNN’s multi-level features to detect densely packed vehicles in 
small-scale construction sites, introducing an orientation-aware bounding box technique for 
enhanced vehicle identification in crowded areas. Yang et al.(5) applied the Mask R-CNN method 
to identify crane operators and hazardous zones within construction sites, while Fang et al.(6) 
used Mask R-CNN to classify various construction-related objects. Chen et al.(7) utilized three 
CNNs to track and analyze multiple excavators’ activities from surveillance images to assess 
construction site productivity. Luo et al.(8) estimated construction equipment posture using 
various deep learning architectures.
	 SODA(9) and AIM(10) have developed and released AI datasets specifically for monitoring 
construction sites, integrating deep learning technologies into surveillance tasks. In contrast to 
prior research, in this study, we collected CCTV footage in bird’s-eye-view format and 
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constructed a dataset for experimentation with the compliance assessment of construction 
procedures and the segmentation of fall risk areas. 

3.	 Materials and Methods

3.1	 Small-scale construction site

	 To construct a standardized dataset, a neighborhood living facility construction site in 
Daehyeon-dong, Seodaemun-gu, Seoul was chosen. Figure 1 provides details of the site layout. 
Figure 1(a) illustrates the overall site plan, encompassing cross and longitudinal views, with the 
site comprising one basement level and eight above-ground floors. Given the study’s focus on 
safety management through construction procedure monitoring, it was essential to establish an 
image collection system capable of overseeing the entire site. Unlike conventional approaches 
that deploy multiple CCTVs within the site, in this study, we positioned CCTVs at elevated 
vantage points near the site perimeter to capture comprehensive bird’s-eye view of the entire 
area, as depicted in Fig. 1 (b). 
	 Table 1 shows the specifications for CCTV installation. To capture a comprehensive view of 
the evolving site in real time, a fixed camera model DS-2CE16HOT-IT5F from HIKVISION was 
deployed. This camera features a 5 MP resolution of 2560 × 1944 pixels and is equipped with 
waterproof and dustproof capabilities, suitable for high outdoor locations. 
	 The monitoring system, depicted in Fig. 2, comprises an image collection CCTV, a network 
video recorder (NVR), and an internet network, enabling data access from mobile devices and 

Fig. 1.	 (Color online) Construction site information: (a) cross and longitudinal sections of the site and (b) example 
of CCTV installation at the construction site.

(a) (b)

Table 1
Dataset status according to number of objects and dataset type.

Type Manufacturer Resolution 
TVL HD Digital 

(DSP) Focal length Picture elements 
H × V Additional info

Spec Hikvision 5 MP Yes Yes 2.8; 3.6; 6 2560 × 1944

High-quality imaging 
with 5 MP, 2560 

× 1944 resolution, 
and water and dust 
resistance (IP67)
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PCs via the internet. The system was configured to capture site footage through CCTV during 
operational hours from 06:00 to 22:00, saving recordings at 30 min intervals.

3.2	 Experimental data

	 Using the monitoring system’s image backup feature, approximately three months of original 
footage were obtained. To encompass all site activities in the acquired footage, the initial step 
involved sampling from all images. The sampled images were then organized by floor.
	 Moreover, the construction activities depicted in the sampled images were categorized, and 
their procedural cycles were identified. Figure 3 illustrates the visualization of construction 
activities across three floors. Each floor consistently follows a processing sequence comprising 
foundation work, formwork, rebar installation, wiring, and concrete pouring. 
	 Further analysis was conducted on the basis of the procedural cycles. Table 2 presents the 
construction durations required for each floor. Generally, the construction period for each floor 
spans approximately 10 days, although delays occurred in August owing to adverse weather 
conditions, resulting in extended process durations.
	 To identify fall risk areas in the images over time, in this paper, we selected specific target 
objects, as detailed in Table 3. The primary targets for detection were workers and active 
construction zones. These zones included areas dedicated to foundation construction, formwork 
construction, rebar work, and concrete pouring. Additionally, rebar work and wiring were 
grouped together, while formwork construction was subdivided into formwork foundation and 
formwork ceiling construction.
	 Table 4 presents the training data status, primarily comprising monthly and categorized 
image data based on construction types. Monthly image data were sampled at 30 min intervals 
throughout the acquisition period to capture comprehensive site conditions (e.g., lighting and 
weather). The monthly samples were further refined to enhance the dataset, specifically 
targeting critical construction areas to ensure robust detection performance. The experimental 
dataset comprised a total of 2340 images, split into training and test data in an 8:2 ratio.

3.3	 Experimental method

	 Small-scale construction sites undergo constant changes, resulting in real-time fluctuations 
in risk areas. Particularly in multi-story building construction, the construction period for each 
floor progresses rapidly, typically within approximately two weeks, barring severe weather 

Fig. 2.	 (Color online) Image collection monitoring system configuration.
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Fig. 3.	 (Color online) Video samples by floor and construction type: (a) 1st floor foundation work, (b) 1st floor 
formwork, (c) 1st floor rebar work, (d) 1st floor wiring, (e) 1st floor concrete pouring, (f) 2nd floor foundation work, 
(g) 2nd floor formwork, (h) 2nd floor rebar work, (i) 2nd floor wiring, (j) 2nd floor concrete pouring, (k) 3rd floor 
foundation work, (l) 3rd floor formwork, (m) 3rd floor rebar work, (n) 3rd floor wiring, and (o) 3rd floor concrete 
pouring.
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conditions. To effectively segment risk areas according to the dynamic zones, it is essential to 
analyze CCTV footage to distinguish construction areas and evaluate risk zones through post-
processing.
	 Figure 4 illustrates the entire experimental process, divided into the training and inference 
phases. The training phase involves developing a model based on instance segmentation using 
the collected data, assessing object recognition and area segmentation performance to ensure 
model reliability. The inference phase sequentially conducts object recognition and segmentation 
on input images, followed by post-processing to identify risk areas. 
	 The risk area designation changes the current floor area to a fall risk area on the basis of the 
progression to the next floor. Figure 5(a) depicts the image of the Nth floor, with Fig. 5(c) 

Table 2
Construction period by floor. 
Floor Process name Period Construction duration

1st floor

Foundation work 20220818 07:00 – 20220825 11:37

21 days
Formwork 20220827 08:02 – 20220901 15:19
Rebar work 20220902 07:29 – 20220903 11:25

Wiring 20220903 11:31 – 20220903 15:22
Concrete pouring 20220908 09:07 – 20220908 16:28

2nd floor

Foundation work 20220913 06:59 – 20220920 10:10

13 days
Formwork 20220920 13:03 – 20220923 15:46
Rebar work 20220924 06:37 – 20220924 12:25

Wiring 20220924 12:25 – 20220924 17:18
Concrete pouring 20220926 09:13 – 20220926 16:28

3rd floor

Foundation work 20220927 08:22 – 20220930 11:39

9 days
Formwork 20221001 07:15 – 20221001 15:33
Rebar work 20221005 06:35 – 20221005 13:20

Wiring 20221005 13:20 – 20221005 16:14
Concrete pouring 20221006 08:36 – 20221006 12:29

Table 3
Detection target object selection.
Detection object Subdivided detection object Class name

Worker Worker worker
Worker without safety equipment worker_no_helmet

Foundation work Foundation construction foundation_construction

Formwork Formwork foundation construction form_foundation_construction
Formwork ceiling construction form_ceiling_construction

Rebar work wiring Rebar work reinforcing_bar_construction
Concrete pouring Concrete pouring concrete_construction

Table 4
Detection target object selection.
Category Count Total
August 602

1657September 827
October 228
Formwork 342

683Rebar work 171
Concrete pouring 170
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showing the designated green area for foundation construction. Figure 5(d) illustrates the blue 
area for the formwork ceiling and the yellow area, also designated for foundation construction. 
As construction progresses on the Nth floor, the appearance of the blue area indicates the onset 
of the N + 1 floor area. Thus, the presence of the formwork ceiling area signals the occurrence of 
the N + 1 floor area. Consequently, the post-processing procedure for determining risk areas is 

Fig. 4.	 Experimental process.

(a) (b)

(c) (d)

Fig. 5.	 (Color online) Criteria for changing risk areas: (a) 1st floor image, (b) 2nd floor image, (c) 1st floor 
foundation construction area, and (d) 2nd floor formwork ceiling and risk areas.
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designed to designate the foundation construction area as a fall risk area based on the presence 
of the formwork ceiling area.

4. Results and Discussion

	 The primary model used for training was Mask R-CNN,(11) a prominent model in the instance 
segmentation field. Figure 6 illustrates the model structure of Mask R-CNN. Mask R-CNN 
operates in a two-stage manner, incorporating a Fully Convolutional Network (FCN) into the 
foundational structure of Faster R-CNN.(12,13) 
	 Mask R-CNN applies FCN to the region of interest (RoI) extracted during the Region 
Proposal Network (RPN) process. RPN functions as a localization technique that estimates 
object positions in images on the basis of anchor box parameters. In this study, we conducted 
experiments analyzing visual inference and numerical results from the training dataset using 
Mask R-CNN. Numerical evaluations employed mean average precision (mAP) and mean 
intersection over union (mIoU), standard metrics in object recognition and segmentation 
models.(14,15) mAP assesses the accuracy of object detection via bounding boxes, while mIoU 
measures how closely the predicted area within a bounding box aligns with the ground truth.(15) 
The IoU threshold used for evaluation was set at 0.5.

4.1	 Numerical performance evaluation results

	 Table 5 presents the numerical evaluation results of the model using various metrics. Both 
structured (related to workers) and unstructured (construction areas) objects exhibited an overall 
object detection accuracy exceeding 80%. The segmentation accuracy (mIoU) also achieved 
performance close to 80%, albeit slightly lower than the object detection accuracy. Specifically 
for fall risk areas, the experiment achieved an accuracy of approximately 70% based on the 
criteria for determining the risk areas described earlier.
	 Figure 7 depicts the visual evaluation results of the model for various objects in the images. 
The experiments were conducted under consistent conditions, confirming the accurate 
classification of object types at their respective positions. However, upon comparing the 
detection boundaries in each image to the ground truth, minor mis-segmentations were 

Fig. 6.	 (Color online) Experimental process (He et al.(11)).
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Table 5
Detection results by target object.

Target object Inference results
Mean AP Mean IoU

Worker 0.88 0.82
Worker without helmet 0.81 0.75
Foundation construction 0.83 0.77
Formwork foundation construction 0.82 0.78
Formwork ceiling construction 0.81 0.75
Rebar work 0.84 0.78
Concrete pouring 0.85 0.79
Fall risk area 0.71 0.68

Process name Example
Ground truth Inference result

Worker

Formwork foundation 
construction

Formwork ceiling 
construction

Rebar work 
construction

Fig. 7.	 (Color online) Comparison of ground truth and inference results. 
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observed. It is anticipated that incorporating additional training data and fine-tuning model 
parameters will enhance accuracy levels suitable for practical field applications.

5.	 Conclusion

	 In this study, we investigated the real-time detection of fall risk areas from bird’s-eye-view 
images for safety monitoring at small-scale construction sites. CCTV footage was collected from 
actual small-scale construction sites, and key detection targets were identified by segmenting the 
stages of small-scale layered construction processes. The entire dataset was sampled and 
processed during the construction period to create the training dataset. Experimental results 
demonstrated an object detection accuracy of approximately 80%, with segmentation 
performance exceeding 70%. Further improvements are anticipated through the inclusion of 
additional data and the optimization of the model’s training parameters. Furthermore, a 
methodology was proposed for determining fall risk areas through inter-object analysis, 
achieving a performance level of 70%, underscoring the study’s potential. This research defines 
critical objects at construction sites and utilizes image-based information for object recognition, 
contributing to the evaluation of compliance with construction procedures and enhancing safety 
management through monitoring at small-scale construction sites. In this study, we recognize 
the need to improve detection performance by securing various sites and further processing the 
currently available datasets. Additionally, we also recognize the need to develop a platform that 
allows safety managers to easily monitor hazardous area through the integration of Building 
Information Modeling (BIM).

Concrete pouring 
construction

Fall risk area

Fig. 7.	 (Color online) (continued) Comparison of ground truth and inference results.
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