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	 Recently, extensive research has been conducted on generating virtual training data in a 
digital twin-based simulator to reduce the time and cost associated with acquiring high-quality 
training data necessary for autonomous driving. In this study, we propose an efficient method of 
generating synthetic training datasets for autonomous driving by combining real-world and 
virtual training data. Specifically, we propose a method of implementing a digital twin-based 
autonomous driving simulator, collecting large amounts of virtual training data using its camera 
sensor, and generating synthetic training datasets by combining virtual and real-world training 
data in various ratios. The effectiveness of these datasets is then validated in deep learning 
applications, particularly for detecting traffic lights and signal information. Validation results 
indicate that synthetic training datasets significantly improve deep learning performance, 
provided they include a sufficient amount of real-world training data to avoid class imbalance 
issues. We conclude that the synthetic training datasets generated using a digital twin-based 
simulator are cost-effective and practical for deep learning applications.

1.	 Introduction

	 In recent years, deep learning has achieved remarkable progress in tasks such as object 
detection, semantic segmentation, and time series forecasting within geographic information 
systems (GISs). These studies rely heavily on various types of training data, including road, 
aerial, and remote sensing images, and location data.(1–4) For example, deep learning studies 
have utilized remote sensing and aerial images for detecting vehicles, ships, and people,(5–7) and 
for segmenting forests, soil, and buildings.(8) Numerous studies in autonomous driving have also 
relied on road images for detecting vehicles, pedestrians, and road infrastructure. The 
performance of deep learning models in GISs and autonomous driving heavily relies on the 
availability of large, high-quality training datasets, particularly aerial and road images. However, 
collecting such high-quality training data in real-world environments is time-consuming and 
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costly. To solve this challenge, researchers have developed methods such as data augmentation 
and synthetic training data generation.(9–11) Data augmentation techniques such as mirroring, 
rotation, random cropping, shearing, and local warping increase the diversity and variability of 
training data, thereby improving performance and robustness in deep learning models. On the 
other hand, synthetic training data generation typically involves using virtual simulation 
environments or generative adversarial networks(12,13) to generate large quantities of virtual 
training data, reducing the dependence on real-world data.
	 In autonomous driving, various studies have been conducted to improve object detection and 
segmentation performance using synthetic training datasets. In this study, we present a method 
of generating such synthetic training datasets using a digital twin-based autonomous driving 
simulator. Specifically, we generate synthetic training datasets for detecting traffic lights and 
signal information, and we validate their effectiveness in real-world autonomous driving 
scenarios. Our approach involves collecting various types of road images from the virtual sensor 
of an autonomous driving simulator, automatically labeling these images with bounding box 
locations and signal information annotations, and combining the virtual training data with real-
world data from the laboratory for intelligent and safe automobile (LISA) dataset in various 
ratios to generate synthetic training datasets. We validate the effectiveness of these datasets by 
YOLOv5-based traffic light and signal information detection. The validation results demonstrate 
performance improvements in terms of precision, recall, and mean average precision (mAP) for 
both YOLOv5l and YOLOv5s models when using synthetic training datasets.
	 The remaining sections of this paper are organized as follows: In Sect. 2, we review recent 
research related to the generation and validation of synthetic training datasets in digital twin-
based virtual environments. In Sect. 3, we present the implementation details of the proposed 
digital twin-based autonomous driving simulation system and the method of generating multiple 
synthetic training datasets using this system. In Sect. 4, we validate the performance of our 
synthetic training datasets by YOLOv5-based traffic light and signal information detection. 
Finally, in Sect. 5, we present our conclusions and discuss future work. 

2.	 Related Works

	 Autonomous driving technology typically requires large and diverse training datasets for 
tasks such as object detection, segmentation, and tracking.(14) In recent years, several training 
datasets, such as KITTI,(15) nuScenes,(16) LISA,(17) and ETRIDriving,(18) have been introduced to 
advance autonomous driving technology. These datasets consist of real-world data collected 
from various sensors, including camera, LiDAR, and radar sensors, and cover a wide range of 
driving scenarios. In addition to these real-world datasets, there is growing interest in generating 
virtual training datasets using digital twin-based autonomous driving simulators. Virtual 
training datasets offer advantages such as the rapid generation of large amounts of data, the easy 
variation of data distribution, and the ability to simulate challenging scenarios that may be 
difficult to capture in real-world settings. For instance, various autonomous driving simulators, 
such as CARLA,(19) LGSVL,(20) AirSim,(21) and VISTA 2.0,(22) have been used to generate 
virtual training datasets. CARLA, in particular, is widely recognized for its realistic driving 
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environment and ability to generate various sensor data such as RGB images, depth maps, and 
LiDAR point clouds.
	 Jeon et al.(23) generated virtual training data for object detection using CARLA and 
demonstrated improved performance when combining virtual training data with real-world data 
from the Waymo dataset.(24) They argued that adding the virtual training data in deep learning is 
more cost-effective than adding the real-world data. Deschaud(25) used CARLA to generate a 
virtual dataset of point clouds and images similar to the KITTI dataset by simulating a vehicle 
equipped with the same sensors used to collect the KITTI dataset. They collected a total of 5000 
virtual data samples across seven different CARLA maps, each representing a different 
environment, for example, cities, suburbs, mountains, rural areas, or highways. Labels for the 
virtual training dataset were manually annotated to match the format of the KITTI dataset. They 
showed that when using the virtual dataset, object detection models achieved similar 
performance to those trained on the original KITTI dataset. Deschaud et al.(26) also presented a 
synthetic Paris-CARLA-3D dataset consisting of both virtual and real-world point clouds, and 
validated its applicability to 3D segmentation tasks: semantic segmentation, instance 
segmentation, and scene completion. Pena et al.(27) proposed PerDevKit, a tool to generate 
virtual training datasets for road objects using CARLA, and showed performance improvements 
in YOLOv5 when combining virtual and real-world KITTI datasets. In particular, they showed 
that performance improvements become more evident when the virtual training dataset ratio is 
relatively low compared with the KITTI dataset ratio. Niranjan et al.(28) generated a virtual 
training dataset using CARLA and validated it using a single-shot multibox detector (SSD)(29) 
model, showing that combining virtual and real-world datasets enhances performance. 
Specifically, they generated and validated virtual training datasets for five objects: vehicles, 
bicycles, motorbikes, traffic lights, and traffic signs. Dworak et al.(30) collected virtual point 
clouds from CARLA and combined them with KITTI data to generate synthetic training and test 
datasets. They compared the performance characteristics of three object detection models of 
VoxelNet,(31) YOLO3D,(32) and PointPillars(33) using synthetic training and test datasets. They 
argued that CARLA can serve as a valuable tool for collecting virtual training data and that the 
combination of virtual and real-world training datasets can lead to improved object detection 
performance compared with using either type of dataset in isolation. Weng et al.(34) proposed the 
AIODrive dataset, a comprehensive virtual dataset designed to support various perception tasks 
in autonomous driving, including challenging conditions such as adverse weather and lighting. 
This dataset includes multiple sensor modalities, including RGB cameras, depth cameras, and 
LiDAR, and provides annotations for various tasks, such as object detection, object tracking, 
object trajectory prediction, and segmentation. They validated the AIODrive dataset’s 
effectiveness in 2D and 3D object detection tasks.
	 In contrast to most studies that focus on large objects such as vehicles and pedestrians, our 
research aims to generate synthetic training datasets for smaller objects such as traffic signals 
and to validate their effectiveness in real-world scenarios. Specifically, we first implement a 
digital twin-based autonomous driving simulator to generate various types of virtual training 
data. We then propose a method of automatically generating virtual training data from the 
simulator, combine it with real-world data to generate various synthetic training datasets, and 
validate their effectiveness in traffic light and signal information detection.
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3.	 Synthetic Training Dataset Generation by Digital Twin-based Simulation

	 In this section, we describe the implementation details of a digital twin-based autonomous 
driving simulation system for collecting virtual road images and the generation of synthetic 
training datasets using the virtual road images. The process consists of four steps: data 
collection, auto-labeling, refinement, and combining.

3.1	 Implementation of digital twin-based autonomous driving simulation system

	 Figure 1 illustrates the configuration of the digital twin-based autonomous driving simulation 
system used in this study. The simulation system collects various virtual road images by 
extending the framework implemented by Kim and Jang(35) using CARLA. The system supports 
digital twin-based simulation by importing real-world 3D spatial data and high-definition road 
maps. It also allows customized vehicle driving routes and dynamic traffic light changes, 
providing a versatile environment for generating diverse training data.
	 In the server system, we implemented an import module and a conversion module to build a 
simulation environment identical to the real world using 3D spatial data and high-definition road 
maps. The import module imports various 3D spatial data in format such as FBX or OBJ, which 
can be used in the simulation system. In contrast, the conversion module, implemented from 
scratch, converts high-definition road maps into the OpenDRIVE format usable in the simulation 
system, because most high-definition road maps have proprietary formats that are not 
standardized. Specifically, we implemented the National Geographic Information Institute high-
definition map (NGII HD map)-to-OpenDRIVE conversion function by expanding the 
conversion module partially implemented by Kim and Jang.(35) Finally, we further implemented 
a digital twin-based simulation module by expanding the CARLA agent library to collect 
various virtual road images. The simulation module can dynamically set user-defined driving 
routes instead of the default driving route set based on the A* algorithm and manually control the 
real-time route of an ego vehicle. It can also configure all traffic signal information during the 
simulation to the user’s specifications.

Fig. 1.	 Configuration of digital twin-based autonomous driving simulation system.
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	 Figure 2 shows an example of our system’s simulation. Specifically, Fig. 2(a) shows a real-
world street view image, Fig. 2(b) shows the 3D spatial data built for the same area, and Fig. 2(c) 
shows the digital twin-based simulation peerformed using both real-world 3D spatial data and 
the NGII HD map.
	 In the client system, we additionally implemented a configuration module and a data 
collection module. These modules, also implemented by expanding the CARLA API, enable the 
collection of various virtual road images. As shown in Fig. 3, the configuration module sets 
various driving environmental settings such as weather, time, the number of vehicles, user-
specified driving routes, and user-specified signal information. The data collection module 
collects virtual road images by specifying various options for image format, size, acquisition 
interval, and camera sensor type. For instance, in this study, we collected 70000 RGB images 
with a resolution of 1280 × 720 in driving environmental settings of daytime, clear weather, and 
30 vehicles.

Fig. 2.	 (Color online) Implementation of digital twin-based autonomous driving simulation server: (a) real-world 
street view, (b) 3D spatial data built for real-world buildings, and (c) digital twin-based simulation performed using 
both 3D spatial data and NGII HD map.

Fig. 3.	 (Color online) Implementation of configuration module: (a) driving environmental settings such as weather, 
time, and number of vehicles, (b) user-specified driving route settings, and (c) user-specified signal information 
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3.2	 Synthetic training dataset generation

	 The process of generating synthetic training datasets includes four major steps: data 
collection, auto-labeling, refinement, and combining. Figure 4 depicts each step in detail.
	 Before data collection, we first set up a simulation environment to collect various high-
quality virtual road images. Table 1 shows the simulation map, vehicle, weather, time, and 
sensor settings.
	 For the map setting, we simulated various maps covering intersections and roads from small 
villages to downtowns to collect road images including traffic lights in various cases. For the 
weather and time setting, we simulated clear weather and noontime to collect large numbers of 
virtual road images in a consistent environment. Finally, we simulated a fleet of 30 vehicles, 
each equipped with RGB camera sensors and set to the autopilot mode. Figure 5 shows the 
downtown and village maps used in the simulation.
	 In the data collection step, we collected 70,000 virtual road images with a resolution of 1280 
× 960 using the simulation system. These images captured various urban and suburban 
environments under consistent weather and lighting conditions. In the auto-labeling step, we 
trained two YOLOv5-based models, TM1 and TM2, to detect traffic lights and signal information 
in road images, respectively, using training data of 14000 real-world traffic light images 
acquired from the LISA dataset. Using TM1, we detected traffic lights in all captured virtual 
road images and generated the first labeled road images (L1) with 2D bounding boxes and 
location annotations for traffic lights. Similarly, using TM2, we detected signal information for 
each traffic light in the first labeled road images (L1) and generated the second labeled road 

Fig. 4.	 Synthetic training dataset generation process including four major steps: data collection, auto-labeling, 
refinement, and combining.

Table 1
Simulation map, vehicle, weather, time, and sensor settings.
Setup Description
Map Eight maps representing various road environments such as urban and suburban areas
Weather and time Consistent data collection environment with clear weather and noontime
Vehicle Randomly generated 30 vehicles and random selection of ego vehicles for data collection
Sensor RGB camera sensor capturing road images with a resolution of 1280 × 960
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images (L2) with additional annotations for red, green, and yellow signal information. In the 
refinement step, we manually corrected invalid bounding boxes and annotations in the auto-
labeled data, generating the refined results R1 and R2. This refinement was performed using an 
annotation tool developed to efficiently edit bounding boxes and signal information for each 
traffic light. Finally, in the combining step, we generated two types of synthetic training dataset: 
S1 and S2. S1 and S2 were generated by combining R1 and R2, respectively, with the real-world 
LISA data (D1). To sufficiently validate the performance of our synthetic training datasets, we 
generated multiple sets of S1 and S2 by combining R1 and R2 with D1 in various ratios. Figure 6 
shows examples of R1, R2, and D1 used to generate S1 and S2.
	 In this study, we generated as much synthetic training data as possible to accurately validate 
their performance in traffic light and signal information detection. Table 2 shows the data counts 
and descriptions of the various datasets collected or generated during the synthetic training 
dataset generation process. As shown in Table 2, we first acquired 14000 D1 and 10954 D2 
images from the LISA dataset to have adequate amounts of training and testing data for traffic 
light and signal information detection. We then collected 70000 virtual road images (V) from 
the simulator and created 15392 and 12000 auto-labeled data (L1 and L2) from V and 14000 and 
8400 refined training data (R1 and R2) from L1 and L2, respectively. Finally, we generated six 
synthetic training datasets (S1) by combining R1 with D1 in various ratios, where the ratio of R1 
increases in 20% increments from 0 to 14000. Similarly, we generated four synthetic training 
datasets (S2) by combining R2 with D1 in various ratios, where the R2 ratio increases in 20% 
increments from 0 to 8400.

4.	 Validation of Synthetic Training Dataset

	 In this section, we present the validation results for the synthetic training datasets. We 
evaluated the performance of the YOLOv5 model for traffic light and signal information 
detection. For traffic light and signal information detection, we validated the YOLOv5 model 
trained using synthetic training datasets by determining whether it can detect traffic lights and 
the red, green, and yellow signals in real-world images. We used two variants of the YOLOv5 

Fig. 5.	 (Color online) Downtown and village maps used to collect road images including traffic lights in various 
cases.
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model, YOLOv5l and YOLOv5s, to determine the effectiveness of synthetic training datasets on 
deep learning models that perform high-precision detection and fast inference, respectively. In 
addition, we used S1 and S2 as synthetic training datasets for traffic light and signal information 
detection, respectively, and used D2, consisting of real-world data from LISA, as the test dataset. 
D2 contains annotations for both traffic light location and signal information, making it suitable 
for traffic light and signal information detection.
	 To validate the effectiveness of the synthetic training datasets in various scenarios, we 
conducted two types of validation. In the first validation, we incrementally increased the total 
number of synthetic training datasets by adding virtual training data in 20% increments to the 
real-world training data, performing validation on six different synthetic training datasets (S1) 

Fig. 6.	 (Color online) Composition of synthetic training datasets (S1 and S2): (a) refined result R1, (b) refined result 
R2, and (c) LISA data D1.

Table 2
Summary of datasets collected or generated in synthetic training dataset generation process.
Dataset Count Description
LISA data for training 
(D1)

14000 Real-world training data from LISA for traffic light and signal information 
detection

LISA data for testing 
(D2)

10954 Real-world testing data from LISA for traffic light and signal information 
detection

Virtual data (V) 70000 Virtual road images collected at resolution of 1280 × 960 from proposed 
digital twin-based simulator

1st auto-labeled 
virtual data (L1)

15392 Road images with 2D bounding box and location for traffic light, 
automatically labeled from V

2nd auto-labeled 
virtual data (L2)

12000 Road images with annotation of red, green, and yellow signal information in 
addition to bounding box, automatically labeled from L1

1st refined virtual data 
(R1)

14000 Refined road images generated by correcting invalid bounding boxes and 
annotations in L1

2nd refined virtual 
data (R2)

8400 Refined road images generated by correcting invalid bounding boxes and 
annotations in L2

1st synthetic training 
datasets (S1)

14000–28000 Six synthetic training datasets generated by combining D1 with R1, where 
R1 increases from 0 to 100% in 20% increments

2nd synthetic training 
datasets (S2)

14000–22400 Four synthetic training datasets generated by combining D1 with R2, where 
the number of R1 increases from 0 to 100% in 20% increments
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for traffic light detection, ranging from 14000 to 28000. Similarly, we performed validation on 
four different synthetic training datasets (S2) for signal information detection, ranging from 
14000 to 22400. In the second validation, we fixed the total number of synthetic training datasets 
and compared the performance with varying ratios of virtual to real-world training data (100:0, 
50:50, and 0:100). We performed validations on three different synthetic training datasets for 
traffic light detection and signal information detection, with the total number fixed at 14000 and 
8400, respectively. Finally, we compared precision, recall, and mAP as performance metrics to 
evaluate the accuracy and completeness of object detection using YOLOv5s and YOLOv5l 
models.

4.1	 Validation by traffic light detection

	 In this section, we present the validation results of YOLOv5l and YOLOv5s for traffic light 
detection when using the synthetic training datasets. Tables 3 and 4 show the results for the first 
and second validations, respectively.
	 In Table 3, we can see that the overall performance of YOLOv5l improves as more virtual 
training data are added to the synthetic training dataset. Specifically, when 14000 virtual 
training data are added, precision and mAP significantly improve from 0.706 to 0.878 and from 
0.666 to 0.836, respectively, with recall also improving from 0.652 to 0.772. Although the 

Table 3
First validation results of YOLOv5l and YOLOv5s for traffic light detection.
Model Synthetic training dataset Test dataset Precision Recall F1-score mAP

YOLOv5l

D1(14000)

D2(10954)

0.706 0.652 0.678 0.666
D1(14000) + R1(2800) 0.690 0.677 0.684 0.679
D1(14000) + R1(5600) 0.756 0.688 0.721 0.743
D1(14000) + R1(8400) 0.724 0.694 0.709 0.690
D1(14000) + R1(11200) 0.699 0.747 0.723 0.745
D1(14000) + R1(14000) 0.878 0.772 0.822 0.836

YOLOv5s

D1(14000)

D2(10954)

0.703 0.609 0.652 0.653
D1(14000) + R1(2800) 0.719 0.678 0.698 0.699
D1(14000) + R1(5600) 0.750 0.665 0.705 0.701
D1(14000) + R1(8400) 0.734 0.670 0.701 0.714
D1(14000) + R1(11200) 0.686 0.779 0.730 0.737
D1(14000) + R1(14000) 0.724 0.708 0.715 0.717

Table 4
Second validation results of YOLOv5l and YOLOv5s for traffic light detection.
Model Synthetic training dataset Test dataset Precision Recall F1-score mAP

YOLOv5l
D1(14000)

D2(10954)
0.706 0.652 0.678 0.666

D1(7000) + R1(7000) 0.815 0.725 0.768 0.771
R1(14000) 0.786 0.457 0.578 0.533

YOLOv5s
D1(14000)

D2(10954)
0.703 0.609 0.652 0.653

D1(7000) + R1(7000) 0.719 0.658 0.688 0.673
R1(14000) 0.434 0.464 0.449 0.358
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performance of YOLOv5s is not as good as that of YOLOv5l, it still shows overall improvement. 
When 14000 virtual training data are added, precision, recall, and mAP improve from 0.703 to 
0.724, from 0.609 to 0.708, and from 0.653 to 0.717, respectively. Thus, meaningful performance 
improvement can be achieved by incorporating a large number of virtual training data into the 
synthetic training dataset for traffic light detection. In particular, this training data augmentation 
using virtual training data appears more suitable for YOLOv5l, which prioritizes high-precision 
inference, than for YOLOv5s, which prioritizes faster inference.
	 In Table 4, both YOLOv5l and YOLOv5s achieve the best precision, recall, and mAP when 
the training dataset consists of a 50:50 ratio of real-world and virtual training data, with a total 
number of 14000 data. Additionally, the worst recall and mAP can be seen when using a training 
dataset consisting of 100% virtual training data. Specifically, the recall and mAP of YOLOv5l 
are 0.457 and 0.533, whereas those of YOLOv5s are 0.464 and 0.358, respectively. Thus, for 
example, when there are more than 50% of real-world training data, meaningful performance 
improvement can be achieved by appropriately combining real-world training data and virtual 
learning data. This suggests that the training process benefits from the augmentation of diverse 
virtual training data that do not exist in the real-world training data.

4.2.	 Validation by signal information detection

	 In this section, we present validation results for signal information detection to validate the 
effectiveness of synthetic training datasets in detecting small objects in road images. Tables 5 
and 6 show the results for the first and second validations, respectively.

Table 5
First validation results of YOLOv5l and YOLOv5s for signal information detection.
Model Synthetic training dataset Test dataset Precision Recall F1-score mAP

YOLOv5l

D1(14000)

D2(10954)

0.748 0.679 0.712 0.752
D1(14000) + R2(2800) 0.885 0.709 0.788 0.808
D1(14000) + R2(5600) 0.883 0.721 0.794 0.809
D1(14000) + R2(8400) 0.929 0.808 0.865 0.848

YOLOv5s

D1(14000)

D2(10954)

0.703 0.609 0.653 0.653
D1(14000) + R2(2800) 0.776 0.668 0.718 0.729
D1(14000) + R2(5600) 0.728 0.704 0.716 0.712
D1(14000) + R2(8400) 0.762 0.709 0.735 0.699

Table 6
Second validation results of YOLOv5l and YOLOv5s for signal information detection.
Model Synthetic training dataset Test dataset Precision Recall F1-score mAP

YOLOv5l
D1(8400)

D2(10954)
0.766 0.695 0.729 0.755

D1(4200) + R2(4200) 0.718 0.598 0.653 0.647
R2(8400) 0.691 0.504 0.583 0.468

YOLOv5s
D1(8400)

D2(10954)
0.729 0.643 0.684 0.670

D1(4200) + R2(4200) 0.725 0.659 0.691 0.643
R2(8400) 0.643 0.448 0.529 0.457



Sensors and Materials, Vol. 36, No. 9 (2024)	 4039

	 In Table 5, YOLOv5l shows significant performance improvements as more virtual training 
data are added to the synthetic training dataset. Specifically, when 8,400 virtual training data 
are added, precision, recall, and mAP improve from 0.748 to 0.929, from 0.679 to 0.808, and 
from 0.752 to 0.848, respectively. YOLOv5s also shows slight performance improvements, with 
precision, recall, and mAP increasing from 0.703 to 0.762, from 0.609 to 0.709, and from 0.653 to 
0.699, respectively. These results indicate that training data augmentation using virtual training 
data can achieve significant performance improvement even in small object detection tasks such 
as signal information detection.
	 In Table 6, both YOLOv5l and YOLOv5s achieve the best precision, recall, and mAP when 
the training dataset consists entirely of real-world data. When the ratio of real-world to virtual 
training data is 50:50, the precision, recall, and mAP of YOLOv5l decrease slightly from 0.776 
to 0.718, from 0.695 to 0.598, and from 0.755 to 0.647, respectively, with similar trends observed 
for YOLOv5s. The worst performance is observed when using a training dataset consisting of 
100% virtual training data such as Table 4. Thus, when the number of real-world training data in 
the synthetic training dataset is insufficient, combining virtual training data does not 
significantly improve deep learning performance, likely owing to the lack of various types of 
real-world signal information data.

4.3	 Discussion

	 From the results of the validation of the synthetic training datasets by traffic light and signal 
information detection, we conclude the following:
•	� If the synthetic training datasets contain a sufficient number of real-world training data to 

avoid class imbalance problems, the addition of virtual training data can significantly 
improve deep learning performance. Conversely, if the number of real-world training data is 
insufficient, the addition of virtual training data does not have a significant effect on 
improving deep learning performance.

•	� The synthetic training datasets are effective in recognizing small objects, such as signal 
information, as well as traffic lights in road images.

•	� The synthetic training datasets have a greater impact on the performance improvement of 
models such as YOLOv5l, which prioritizes accuracy, than models such as YOLOv5s, which 
prioritize inference speed.

•	� Synthetic training datasets consisting only of virtual data significantly decrease deep 
learning performance.

	 These conclusions suggest that synthetic training datasets are sufficiently usable for detecting 
various objects, such as road signs and pedestrians, in future work. Additionally, we consider 
that these synthetic training datasets will be effective for not only the YOLO model, but also 
various object detection models such as SSD and Faster RCNN.

5.	 Conclusions

	 In this study, we generated multiple synthetic training datasets by combining real-world 
training data with virtual training data collected using a digital twin-based autonomous driving 
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simulator. We validated the effectiveness of these synthetic training datasets by traffic light and 
signal information detection. To perform validation in various environments, we varied the ratio 
of virtual to real-world training data in the synthetic training datasets and used two deep 
learning models, YOLOv5s and YOLOv5l. The validation results showed that synthetic training 
datasets can significantly improve deep learning performance if they include a sufficient amount 
of real-world training data to avoid class imbalance problems. Additionally, they showed that 
these synthetic training datasets are effective even in detecting small objects, such as signal 
information.
	 However, this study has limitations in that we only used the YOLO model for performance 
validation and did not consider various road objects other than traffic lights. In addition, it has a 
limitation in that we cannot conduct experiments in a domestic digital twin environment owing 
to the lack of high-resolution 3D spatial data and high-definition maps. Therefore, future work 
will extend this research in two directions. First, we aim to generate and validate domestic 
synthetic training datasets for various road objects such as road signs, lanes, pedestrians, and 
bicycles. Second, we plan to more accurately validate the effectiveness of synthetic training 
datasets using various object detection models, such as SSD and Faster RCNN, in addition to 
YOLO.
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