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	 Digital elevation models (DEMs) are essential for quantitatively monitoring the current state 
and changes in the morphology of tidal flats and extracting terrain information, such as tidal 
channels. However, the unique environmental characteristics of tidal flats, where water and land 
coexist in shallow areas, make it challenging to apply traditional direct surveying methods or 
ship-based echo sounding. Additionally, remote sensing technologies such as airborne 
topographic light detection and ranging (LiDAR), drone photogrammetry, and satellite imagery 
are challenging to use in submerged areas. Airborne bathymetric LiDAR (ABL), which is 
capable of directly surveying the seabed through seawater, is a highly effective method for 
surveying tidal flats. However, the high turbidity and shallow water environment of tidal flats 
attenuate the return strength, resulting in a low signal-to-noise ratio and making airborne 
bathymetric LiDAR (ABL) full-waveforms extremely complex. In this study, we aim to improve 
the performance of ABL full-waveform processing to generate high-precision DEMs in such 
challenging environments. First, we analyze the characteristics of ABL waveforms under 
varying turbidity conditions and propose preprocessing and waveform decomposition techniques 
to improve seabed point extraction rates in tidal flat environments. To achieve this, experiments 
and validations are conducted using the data acquired by the Seahawk system along the west 
coast of Korea.

1.	 Introduction

	 Intertidal tidal flats occupy at least 127921  km2  (124286–131821  km2, 95% confidence 
interval) worldwide and are characterized by soft sediments that are exposed at low tide. Tidal 
flats serve as habitats for diverse marine life, act as buffers against marine disasters, including 
typhoons and tsunamis, and are reservoirs of marine resources and natural filtration systems.(1) 
As one of the most efficient primary producers in coastal ecosystems, tidal flats can address the 
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current biodiversity-climate crisis and contribute to carbon neutrality, climate resilience, 
biodiversity support, and human well-being.(2) The west coast of Korea is renowned for its 
extensive tidal flats, which have developed owing to significant tidal variations and the generally 
flat terrain. These tidal flats, designated as a UNESCO World Heritage site, “Getbol”, hold 
significant ecological importance.(3) However, the total area of Korea’s tidal flats has decreased 
by approximately 22.5% over 30 years, from 3203.5 km² in 1987 to 2487 km² in 2018, owing to 
land reclamation and other factors.(4) This continuous reduction underscores the increasing need 
for conservation and management and the importance of conducting accurate surveys of tidal 
flats and collecting high-precision spatial data to monitor changes. 
	 Among various spatial data, digital elevation models (DEMs) are fundamental for 
quantitatively monitoring the current state and changes in morphology. They are also highly 
useful for extracting geomorphic features, such as tidal creeks, and modeling temporal changes 
using tide models. However, applying traditional direct surveying or ship-based multi-beam 
echo sounder (MBES) surveying methods in Korea’s west coast tidal flats is difficult owing to 
the water–land environment, significant tidal variations, and shallow depths. The tidal flats 
stretch along the coastal regions of Korea, with notable tidal ranges of approximately 7.3 m in 
Incheon, which is located centrally, and approximately 3 m in Mokpo, situated in the southern 
part of the coast.(5) Over the last decade, remote sensing has demonstrated its potential to address 
the challenges posed by this difficult environment, with multiple studies conducted using 
satellite imagery involving the DEM construction of large areas at various timescales.(6–9) Using 
satellite imagery for DEM construction over large tidal flat areas is effective, but it has 
limitations, such as low resolution and fixed revisit cycles, making it challenging to survey areas 
submerged during tidal activities. Recent studies have reported the use of drone imagery(10–12) 
and airborne light detection and ranging (LiDAR)(13,14) to construct high-resolution DEMs for 
the tidal flats on the west coast of Korea. However, these methods are limited by the restricted 
survey ranges and gaps in coverage for areas that remain submerged during surveys. These 
environmental characteristics considerably enhance the applicability of airborne bathymetric 
LiDAR (ABL), which uses green lasers and can penetrate the water surface to directly measure 
the seabed. Specifically, bottom- and surface-water signals are typically detected using ABL 
systems (more commonly known as full-waveform ABL systems) using the 532 and 1064 nm 
bands that can detect these signals, respectively.(15) To identify echo types and extract the 
temporal positions of these echo signals, full-waveform data processing methods are primarily 
applied.(16) Generally, the in-water transmission of the laser generated by the ABL system is 
extremely complex, which means that a more complex LiDAR bathymetry modeling is required 
to compensate for factors such as water surface reflection and refraction, water volume 
scattering, and turbidity. These factors can complicate the propagation models and attenuate the 
return intensity, resulting in a lower signal-to-noise ratio (SNR).(17) Tidal flats are particularly 
challenging for this system owing to continuous tidal activity and the presence of soft sediments, 
leading to shallow depths and high turbidity. Limited water depths, significant turbidity, and low 
reflectance impose challenges for bathymetric LiDAR, especially in land–water transition zones 
where the water surface, water column, and benthic layer returns interact. However, the 
performance of full-waveform ABL in shallow and turbid waters has received little attention in 
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the literature except for a few studies.(17–19) In this study, we aim to present a bathymetric full-
waveform processing strategy that accounts for unclear bottom return and excessive noise in the 
tidal environment, thus enabling a more accurate bathymetry determination and the construction 
of high-precision DEMs in challenging environments using ABL systems.
	 The remainder of the paper is organized as follows. In Sect. 2, we describe the test site and 
data used in our experiments. In Sect. 3, we provide a detailed explanation of the proposed 
method. In Sect. 4, we present the experimental results and evaluations as well as the discussion. 
In Sect. 5, we conclude with a summary and final remarks.  

2.	 Materials 

2.1	 Test sites

	 To verify the bathymetric performance of the proposed approach in the tidal flat area, we 
selected the west coast of the Korean Peninsula as the test site, where the water depth is less than 
2 m and the turbidity is high. Figure 1 and Table 1 show the location and Seahawk observation 
area of the test site. The test data were collected in the Hwang-do tidal flat in Taean-gun, 
Chungcheongnam-do, South Korea. This area has a wide intertidal zone that is mainly composed 
of clay and silt, with a tidal range of 6–7 m. The Hwang-do tidal flat is home to various 
invertebrates such as shellfish, crabs, and polychaetes, and is actively used for fishing activities, 

(a) (b)

Fig. 1.	 (Color online) Test site: (a) location and (b) aerial photograph and topography.

Table 1
Summary of test site.
Location Taean-gun, Chungcheongnam-do, South Korea
Area 1.65 km2

Spring tide range 7.33 m
Neap tide range 5.43 m
Mean sea level 3.98 m
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such as shellfishing. It is also an important stopover site for migratory birds to find food and rest 
and an important natural ecosystem for various species of organisms. Our focus was on 
conducting bathymetry in areas where ABL surveys are challenging, specifically in shallow and 
turbid waters. Therefore, ABL data were collected during ebb tide when turbidity was high 
owing to currents, and a region with a water depth of less than 2 m was selected as the test area, 
as shown in Fig. 1(b).

2.2	 Dataset

	 The bathymetric survey was conducted using the Seahawk system over a 21 km2 area for a 
total flight time of 90 min. Seahawk utilizes a near-infrared (NIR) laser for topographic 
observation and a green laser for bathymetric surveying, and provides two green channel data 
(shallow green for shallow water surveying and deep green for deep water surveying).(20) In this 
study, since the test site is a shallow tidal flat area [Fig. 2(a)], the shallow green waveform data 
were used for the experiment. The ABL point cloud is generated from raw observation data 
using proprietary software, namely, the Lidar BAthymetry SyStem—Data processing 
(LBASSD); the data processing algorithms are not disclosed. The Seahawk system digitizes the 
received analog signal at 1.6 giga samples per second; thus, the time bin resolution of the 
waveform is 0.625 ns. The Seahawk individual waveform is recorded in 2,400 bins at 16 bits 
[0−65,536 digital number (DN)] per sample. In addition, we collected airborne topographic 
LiDAR (ATL) data during low tide on the same day to obtain ground truth for measuring the 
accuracy of the observed seabed location through ABL waveform processing [Fig. 2(b)]. The 
details of the two types of airborne LiDAR data are listed in Table 2. To analyze the turbidity 
environment of the test site and the characteristics of the ABL waveform according to turbidity, 
seawater turbidity was measured at nine spots from a ship [Fig. 2(c)]. Surface water was collected 
by direct sampling, and then the total suspended material (TSM) was measured through 
sampling filtration.

Fig. 2.	 (Color online) Test dataset: (a) airborne bathymetric LiDAR (ABL) data, (b) airborne topographic LiDAR 
(ATL) data as ground truth, and (c) turbidity measurement spots.

(a) (b) (c)
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3.	 Methods

	 The green laser beam of ABL propagates across the air–water interface, reaches the bottom, 
and then returns to the receiver, revealing the water surface and bottom positions through the 
peaks of the waveform.(21) A typical ABL waveform consists of the water surface return, water 
column backscatter, bottom return, and noise.(22) Individual components are separated through 
waveform decomposition, and the decomposed components are converted into points through 
position registration (Fig. 3).
	 To improve the seabed observation performance in the tidal flat area, we generated points 
through the following waveform processing process.

3.1	 Preprocessing

	 First, waveforms with no received signal or those with defective signals were removed, and 
then preprocessing was performed on individual waveforms, including noise removal and actual 
signal range selection. Waveform data inevitably contain long-term, low-frequency background 
noise and short-term, high-frequency random noise. Background noise, typically related to solar 
radiation and detector dark current, is usually uniformly distributed and traditionally removed 
using a threshold.(23) However, in the west coast area where tidal activity is high, differences in 
the amount of background noise between waveforms may be present even during flight due to 
changes in solar reflectivity or turbidity during surveying. Therefore, a process for automatically 
estimating the amount of background noise for each individual waveform rather than a uniform 
threshold is necessary. The range in which the actual received signal is recorded in the waveform 
(signal range) occupies only a very small portion of the entire time record, and the main 

Table 2
Specifications of test datasets.

Airborne bathymetric LiDAR Airborne topographic LiDAR

System

Sensor Seahawk Terrain Mapper

Laser wavelength 
532 nm (shallow green/deep 

green)
1064 nm (NIR)

1064 nm

Laser beam divergence
7 mrad (shallow green/deep 

green)
10.5 mrad (NIR)

0.23 mrad

Pulse repetition rate 10 kHz 2000 kHz
Field of view 20° 20–40°

Weight 73 kg 48 kg

Vertical accuracy ( )220.5 0.013 depth+ ×  (m) < 5 cm 1 σ

Operation

Flight altitude 400 m 2,400 m
Swath width Up to 70% of flight altitude Up to 70% of flight altitude

Aircraft speed 140 knots 110 knots

Acquisition time Oct. 15, 2023
(Ebb tide)

Oct. 15, 2023
(Low tide)
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contribution to the DN in most of the waveforms is background noise. Therefore, in this study, 
the mode of each waveform was considered as the amount of background noise, and the 
background noise was removed by differentiation: 

	 ( )*  y y mode y= − ,	 (1)

where y and y* are the original waveform and the waveform with background noise removed, 
respectively. Random noise is generally removed using low-pass filtering,(24) and in this study, 
smoothing through Gaussian filtering was applied to minimize the damage to the original 
waveform:
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where yt' is the Gaussian filtered value at time t, w indicates the number of waveform bins, and 
σG is the standard deviation of the Gaussian distribution. The larger σG is, the more smoothing is 
performed, and σG was empirically determined as 2 in this study.
	 Since the actual signal range is very limited in the waveform recorded in thousands of bins 
[Fig. 4(a)], we can increase computational efficiency by only performing analysis in the signal 
range and preventing the generation of outlier points caused by the false detection of noise in 
nonsignal ranges as peaks.(25) The signal range varies depending on the flight altitude, laser 
transmission angle, terrain altitude, and water depth. To distinguish between actual return 
signals and noise, the signal range is often determined on the basis of a random noise estimate of 
individual waveforms.(26,27) In this study, the standard deviation (σN) of the definite nonsignal 
range of the ABL system waveform was used as a standard for determining the signal range. The 

Fig. 3.	 (Color online) Data flow in airborne bathymetric LiDAR system. 



Sensors and Materials, Vol. 36, No. 9 (2024)	 4067

Seahawk system records 2400 bins over 1.5 µs, with the first 0.1 µs (160 bins) considered as the 
nonsignal range for detector stabilization. The starting point (tS) of the signal range is the point 
where the water surface reflection signal begins, the point at which the waveform amplitude DN 
significantly increases was selected, and the end point (tE) was determined as the point where the 
amplitude becomes smaller than the DN of the starting point, as follows [Fig. 4(b)]. 

	 t t y' y'S t t N� � �� ��min | 1 3� 	 (3)

	 t t y' y'E t tS� � ��max | 	 (4)

3.2	 Waveform decomposition

	 Generally, waveform decomposition techniques detect peaks (local maximum points) and use 
them as initial values ​​for Gaussian model-based decomposition to perform multiple Gaussian 
model approximations, as in Eq. (5), where n, Ai, μi, and σi denote the number of Gaussian 

Fig. 4.	 (Color online) Example of preprocessing: (a) original waveform and (b) result of noise reduction and range 
determination. 

(a)

(b)
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models, amplitude, center position, and standard deviation of the ith Gaussian model, 
respectively.(28)
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	 The final decomposition performance is determined by the number and location of peaks 
initially detected. The Gaussian decomposition method is effective for waveforms with distinct 
peaks but struggles with ABL waveforms, where continuous scattering and overlapping 
Gaussian return signals cause a left-tilted signal.(25) Specifically, when the water depth is very 
shallow and the peaks of the surface and seabed reflection components overlap [Fig. 5(a)] or the 
seabed reflection component is very weak [Fig. 5(b)], each component may not be appropriately 
decomposed. 
	 Therefore, in this study, progressive Gaussian decomposition (PGD),(29) which is suitable for 
waveform decomposition in shallow and turbid waters, was adopted and utilized in the 
experiment. PGD can improve the approximation accuracy of the decomposition model by 
gradually estimating and adding potential peak candidates to the initial peaks (Fig. 6). The PGD 
approach iteratively determines the optimal number of Gaussian models to decompose the 
waveform by starting with the number of detectable peaks and gradually increasing the number 
of models. The initial original peaks (OPs) are detected from the local maxima, and Gaussian 
curve fitting is performed using the Levenberg–Marquardt optimization algorithm. This process 
continues until the time difference between the OP and the estimated peak (EP) is within a 
specified threshold (τ) and the fitness is high. If the criteria are not met, further iterations add 
new initial values based on the most distant EPs from the OPs. The time threshold τ, which 
represents the acceptable temporal error in the waveform decomposition, is important for 
balancing fitting accuracy and computational efficiency. Setting τ too low can lead to overfitting 
and increased computational time, while setting it too high can reduce depth accuracy. In this 
study, τ was set to 5 bins, corresponding to a depth difference of approximately 0.34 m, on the 

Fig. 5.	 (Color online) Examples of general Gaussian decomposition results for ABL waveforms: (a) very shallow 
water and (b) deep water.

(a) (b)
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basis of preliminary experiments and the Seahawk system’s parameters. Figure 7 shows 
examples of the steps involved in the iterative PGD process for a waveform with two OPs and a 
water depth of 1.17 m. In the first and second iterations [Figs. 7(a) and 7(b), respectively], because 
some of the time distances from each OP to their nearest EP (e.g., ΔtOP2) exceed the threshold τ, 
potential peaks are gradually added to the initial values for the next iteration to perform 
optimization. The process continues until all time distances (ΔtOPi)  are below τ [Fig. 7(c)]. The 
Gaussian components generated through the waveform decomposition were converted into 
points via geo-registration.

4.	 Results

4.1	 Waveform types by turbidity

	 To investigate the effect of turbidity in tidal flat areas on ABL data, we analyzed the 
correlation between the turbidity values measured in the field and the ABL waveform features 
observed at the corresponding locations. After analyzing various waveform features, two 
features related to turbidity are listed in Table 3. The random noise was set to the standard 
deviation of the deterministic nonsignal range, as described in Sect. 3.1. The intensity area was 
used to estimate the attenuation of the return pulse energy and represent the total sum of the 
areas from the multiple Gaussian models of the decomposed components in each waveform. The 
results revealed that background noise had little correlation with turbidity, whereas random 
noise tended to increase with turbidity level. Figure 8 shows the results of the linear regression 
analysis between turbidity (TSM) and the corresponding waveform features. The positive 
correlation (R2 = 0.63) between turbidity and ABL waveforms suggests that in the ABL 
waveforms obtained from highly turbid seawater, such as in mudflats, it may be more 
challenging to distinguish between actual return signals and noise [Fig. 8(a)].  The intensity 
domain showed a weak negative correlation (R2 = 0.33) with turbidity, indicating that the 
reflected pulse energy tends to be attenuated more significantly as turbidity increases owing to 
underwater scattering [Fig. 8(b)]. To achieve more reliable trend and correlation analysis, a 
larger number of samples are required.

Fig. 6.	 (Color online) Examples of progressive Gaussian decomposition (PGD) results for ABL waveforms: (a) 
very shallow water and (b) deep water.

(a) (b)



4070	 Sensors and Materials, Vol. 36, No. 9 (2024)

	 Figure 9 shows examples of waveform shapes, signal ranges, and decomposition results for 
similar depths with varying levels of turbidity. This demonstrates that the ABL waveforms 
obtained from higher turbidity spots tend to have more random noise distributed throughout. 
Additionally, in highly turbid seawater, noise that could be mistaken for return peaks is often 
found in the later part of the signal range. Such waveform noise increases the likelihood of 
outliers (invalid points at lower altitudes than the seabed) occurring, making it even more critical 

Fig. 7.	 (Color online) Iterative steps of PGD: (a) first iteration with original peaks (OPs), (b) second iteration with  
OPs and potential peaks, and (c) final decomposition result. 

Table 3
Turbidity measurement and amount of waveform features.

Spot No. TSM (mg/L) Waveform feature
Random noise Intensity area

1 14.27 123.41 598471
2 13.37 110.83 613131
3 36.85 262.79 516935
4 22.88 150.38 528031
5 24.72 122.34 513313
6 20.48 118.40 626553
7 8.09 102.31 577576
8 20.81 173.52 586084
9 8.72 138.84 985624

Fig. 8.	 (Color online) Correlation between turbidity (TSM) and waveform features: (a) random noise and (b) 
intensity area.

(a) (b) (c)

(a) (b)
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to accurately determine the signal range in high-turbidity areas. Figure 9 also demonstrates that 
waveforms with very shallow depths of approximately 0.4 m, where the bottom return peak is 
not detected, can be effectively decomposed using the proposed approach.

4.2	 Seabed extraction comparison

	 To quantify the improvement in bathymetry performance using our approach, decomposed 
components were geo-registered to the point cloud and compared with a point cloud generated 
using LBASSD software. Because bathymetry performance relies on seabed observation, 
bottom points were manually extracted from point clouds generated by both our approach and 
LBASSD. As shown in Fig. 10, when processing the same ABL waveform data from test sites 
with depths of less than 2 m and high turbidity, LBASSD rarely extracted the bottom point. In 
contrast, the proposed approach successfully generated bottom points across almost the entire 
site, and the corresponding area and number of points are detailed in Table 4. This demonstrates 
that the approach effectively decomposed the shallow bottom component that overlapped closely 
with the water surface component.

Fig. 9.	 (Color online) Examples of waveform and decomposition results under different levels of turbidity (spots 3, 
5, and 7 in Table 3).

Spot 
No. Waveform Waveform decomposition

3   

5   

7   
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4.3	 Seabed accuracy evaluation

	 To evaluate the positional accuracy of the bottom points extracted using the proposed 
approach, we compared the locations of these extracted points with the ATL data obtained 
during low tide, serving as ground truth. The vertical errors (∆Z) between the extracted bottom 
points and the ground truth surface are illustrated in Fig. 11. Overall, the results indicated that 
the extracted bottom points tend to be estimated at slightly higher elevations. The average error 
was 0.102 m, the standard deviation was 0.146 m, and the errors were distributed in a Gaussian 
shape, demonstrating that the proposed approach can achieve stable positional accuracy with a 
height precision exceeding International Hydrographic Organization (IHO) order 1b standards. 
Finally, Fig. 12 shows the 1-m-resolution DEM generated from results of this test.

5.	 Conclusions

	 The Korean Peninsula has extensive tidal flats with significant economic and potential value, 
which creates a strong demand for precise tidal flat terrain monitoring. In this study, we 
proposed an ABL waveform processing approach for the effective terrain surveying of tidal 
flats, where conducting depth measurements is challenging owing to their high turbidity and 

Fig. 10.	 (Color online) Bottom point extraction results: (a) LBASSD and (b) proposed approach.

Table 4
Bottom point extractability results of LBASSD and proposed approach.
Method Number of points Area (m2) Max. depth (m)
LBASSD 1849 12464 0.86
Proposed approach 703988 1552016 2.15

(a) (b)
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extremely shallow waters. We analyzed the correlation between the turbidity and ABL waveform 
data obtained from field measurements. The results revealed that a higher turbidity leads to an 
increase in irregular noise within the signal. To effectively handle this, it is crucial to pre-
determine the signal range where the actual return signal is recorded. Additionally, by adopting 
the PGD technique, we improved bottom extractability in extremely shallow waters (less than 2 
m deep), where surface and bottom peaks overlap. However, since the number of turbidity 

Fig. 11.	 (Color online) Vertical error (∆Z) between bottom points and ground truth: (a) ∆Z map and (b) ∆Z 
distribution.

Fig. 12.	 (Color online) DEM generated from test results.

(a) (b)
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measurement points in the field was limited and the approach has not been validated across 
diverse regions, future work will focus on validation based on the data acquired from various 
tidal flat areas.
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