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 Improving the performance of nutation blood pumps has long been a focus of medical 
research. In this study, we introduce the finite element method combined with sensor-based 
experimental measurements to explore the factors affecting the stability of the levitated magnetic 
rotor in the blood pump. Initially, we derived Euler angle and motion state equations to describe 
the motion of the magnetically levitated rotor inside the blood pump. Subsequently, employing 
the finite element method, we analyzed various factors impacting the dynamic levitation 
stability of the rotor. Our results indicate that the size of the permanent magnet in the rotor 
bearing, the nutation angle, and the levitation gap are critical factors affecting the rotor’s 
levitation stability. We discuss these crucial parameters in detail, highlighting their correlation 
with the levitation stability of the rotor. Furthermore, comparing our theoretically obtained 
magnetic forces with experimental results, we found the maximum difference to be within 8%. 
Overall, this study provides valuable insights to enhance the functionality of blood pumps and 
understand the key parameters affecting their design.

1. Introduction

 The dynamic stability of the levitated rotor directly impacts the performance and reliability 
of magnetic levitation blood pumps. These pumps typically employ an axially passive permanent 
magnetic bearing as a key element in their internal motion mechanism. The stability of this 
passive permanent magnetic bearing within the blood pump cavity is the primary factor 
affecting the pump’s performance. Ensuring a stable levitation of the passive permanent 
magnetic bearing requires the internal rotor to achieve stability in both radial and axial 
directions. 
 Chen et al. studied the levitation stability of passive magnetic bearings in blood pump 
rotors.(1) They discovered that the rotor stability increased with rotor speed. At 2300 rpm, the 
maximum disturbance of the levitation gap was only 0.2 mm.(1) Chen et al. investigated the 
design of a novel passive magnetic levitation rotor blood pump for ventricular assist devices. 
Through hydraulic experiments, they determined that the pump could achieve pressures of 
60–140 mmHg at rotational speeds of 600–1600 rpm, flow rates of 0.4–6.7 L/min, and a 
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normalized hemolytic index (NIH) for the nutrient pump of 0.0043 ± 0.0008 g/100 L. In vitro 
experiments demonstrated that the magnetically levitated ventricular assist commutated blood 
pump exhibited good levitation stability and feasibility for animal testing.(2) Wang et al. 
developed a novel bearingless axial blood pump utilizing magnetic double suspension.(3) They 
established an external circulation experimental system to test this pump, conducting 
experiments to measure the axial and radial displacements of the rotor under various operating 
conditions using Hall effect sensors and a laser vibrometer.(3) Shen et al. devised an innovative 
magnetic levitation bearing, combining a single-winding bearingless motor with a permanent 
magnet bearing.(4) They used the solution of the Reynolds equation and stiffness analysis to 
determine the optimal structural parameters for this bearing, exploring various factors through 
computational fluid dynamics (CFD). Their vibration experiments demonstrated that the rotor of 
the blood pump equipped with this magnetic levitation bearing exhibited excellent levitation 
stability, with the maximum deflection under external fluid impact not exceeding 2 µm.(4) Chen 
et al. created an innovative magnetically levitated (maglev) nutation blood pump designed for 
low speed and small volume flow rate, effectively eliminating friction damage to blood cells.(5) 
In vitro experiments demonstrated that the pump can sustain an output of more than 5 L/min 
under a pressure load of 100 mmHg, with the pump’s output flow remaining stable under various 
pressures. The NIH of this nutation pump was measured at 0.0039 ± 0.0006 g/100 L.(5) Shida et 
al. studied the impact of gravity on flow estimation in centrifugal blood pumps with suspended 
impellers.(6) They analyzed the effect of gravity on flow estimation methods and proposed a 
compensation technique.(6) Kosaka et al. introduced an analytical approach to enhance 
hemolysis performance in a hydrodynamically levitated centrifugal blood pump by optimizing 
the shroud size.(7) They showed that numerical analysis was effective in determining the optimal 
shroud size and proposed a specific blood pump model with an optimal shroud size to minimize 
hemolysis.(7) Luo et al. investigated the performance of passive magnetic bearings in a pediatric 
left ventricular assist device (LVAD) magnetic levitation blood pump system.(8) They developed 
a pediatric LVAD utilizing noncontact magnetic bearings, which include passive and active 
magnetic bearings, to minimize blood trauma and extend device lifespan.(8) Miyamoto et al. 
explored the effect of nutation orientation on blood pump performance, specifically examining 
pulse pressure and regurgitant flow when the pump is halted.(9) Their findings indicate that 
nutation orientation has a minimal effect on pump performance, showing no impact on pulse 
pressure or regurgitant flow during pump stoppage.(9) Yang et al. employed CFD to investigate 
the flow channel optimization and performance prediction of a cone-shaped axial magnetic 
levitation blood pump.(10) Their study focused on using magnetic levitation support to minimize 
blood damage and extend the pump’s lifespan.(10) Li et al. conducted a thorough comparison of 
the in vitro blood compatibilities of extracorporeal centrifugal blood pumps.(11) They emphasized 
the importance of in vitro blood compatibility testing for assessing the side effects of transit 
blood pumps, providing a necessary reference for evaluating blood-pump-induced blood injury 
before clinical trials.(11) Wu reviewed the current state of high-fidelity blood flow and blood 
damage simulation methods, including CFD, employed in the development and evaluation of 
rotary blood pumps.(12) Shida et al. presented a research methodology to determine the time 
resolution and accuracy of the dynamic movement of a levitated impeller.(13) Their investigation 
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demonstrated that the target levitated impeller blood pump is suitable for use as a ventricular 
assist device, operating at speeds exceeding 1800 rpm above the resonant frequency. The rotor’s 
dynamic forces (ranging from 0.03 to 0.14 N) on the impeller suppressed its rotational movement, 
indicating a stable dynamic motion.(13) Ranganath et al. conducted a review focusing on the 
theoretical design and operational principles of mechanical bearings in blood pumps.(14) They 
discussed the challenge of thrombosis within these mechanical bearings, highlighting it as an 
inherent design parameter issue beyond the control of clinicians.(14) Fox et al. designed a 
centrifugal blood pump by employing CFD to analyze the blood flow within the pump.(15) They 
conducted transient CFD analysis, including quasi-steady and transient rotating sliding 
interfaces, to assess the pump’s dynamic performance under various conditions.(15) Li et al. 
investigated the impact of rotor design configuration on the hemodynamic characteristics, blood 
compatibility, and dynamic balance of a blood pump.(16) They utilized CFD to analyze how rotor 
types (closed and semi-open impellers), gap height, and back blades affect the pump’s 
performance.(16) Several other studies have focused on the local performance of centrifugal 
maglev blood pumps and the factors that affect them.(17–21)

 From the previous literature review, it is evident that most studies have focused on 
investigating the factors affecting blood pump performance or on designing blood pumps with 
optimal functionality. These include studies on the optimal design of rotor components such as 
blades, utilizing methods such as CFD or experiments. However, there are few comprehensive 
discussions on the factors affecting the performance of pulsatile blood pump bearings.
 Therefore, we intend to introduce the finite element method combined with sensor-based 
experimental measurements to examine three key factors affecting the stability of pulsatile 
blood pump bearings: the size of the permanent magnet, the nutation angle, and the levitation air 
gap. The aim is to explore the effects of these factors on the levitation stability of the blood pump 
rotor.

2. Analysis of Motion State of Magnetically Levitated Rotors

2.1 Euler angle equation

 The magnetically levitated blood pump rotor consists of an upper and lower ball pair and a 
nutation disc fixed together. Permanent magnets are embedded in the upper and lower ball pairs, 
aligned with magnetic poles in the upper and lower covers, generating repulsive forces to 
suspend the rotor. Seven axially magnetized fan-shaped permanent magnets are arranged at the 
rotor’s edge, all with the same magnetic pole direction. Two driving permanent magnets, 
arranged symmetrically with opposite magnetic poles, attract magnets on one side of the 
nutation disc and repel those on the other side, causing the nutation disc to tilt. This disc 
maintains linear contact with the inner conical surfaces of the upper and lower covers. As the 
driving magnets rotate, the nutation disc undergoes directed nutation oscillation, facilitating 
directed blood flow inside the pump. The pump and rotor structure are depicted in Fig. 1.
 To describe the motion of the blood pump rotor, we established two sets of coordinate 
systems: a rigid rotor kinematic coordinate system and a fixed coordinate system, as shown in 
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Fig. 2. The blood pump rotor can be viewed as a rotating rigid body symmetrical to its rotation 
axis. Its kinematic coordinate system is firmly attached to the rotor, with the rotor’s main axis 
known as the inertia main or polar axis. The axis perpendicular to the symmetry axis is called 
the equatorial axis. The moment of inertia around the rotor axis is termed the polar moment of 
inertia, while taht around the equatorial axis as the reference axis is called the equatorial 
moment of inertia.
 Generally, any rotational motion of a rigid body in an inertial coordinate system must follow 
the familiar theorem of angular momentum conservation. However, in the case of the rigid-body 
rotor in this study, its rotational inertia and inertial product with respect to the inertial coordinate 
system are time-varying. This necessitates real-time coordinate transformations, making the 
application of the theorem of angular momentum conservation cumbersome in computation.
 Instead, Euler’s kinetic equations utilize a dynamic coordinate system, simplifying the 
analysis and calculation. By using this dynamic coordinate system as the reference, we can 
describe the angular momentum conservation theorem applicable to the rotational motion of the 
blood pump rotor as follows.
 For the motion of the blood pump rotor, we assumed that O is the origin of the dynamic 
coordinate system, and i, j, and k are the unit vectors in the x-, y-, and z-directions of the 
Cartesian coordinate system. The angular momentum of the blood pump rotor can be expressed 
in the dynamic coordinate system as

 x y z = H  + H  + HH i j k . (1)

Then, the relationship between the applied moment and the angular momentum can be expressed 
as
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Fig. 1. (Color online) Layout of magnetic nutation blood pump and its inner rotor.
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 We assumed that the angular velocity of the dynamic coordinate system O-xyz with respect to 
the inertia coordinate system O-ξηζ is ω1; then, di/dt, dj/dt, and dk/dt in Eq. (2) can be expressed 
as
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Substituting Eq. (3) to Eq. (2), we have

 M H H =  + 
d

dt
�1� . (4)

Equation (4) demonstrates that, for the blood pump rotor subjected to an external moment, the 
rate of change in angular momentum expressed in the inertial coordinate system can be 
separated into two components. One component represents the rate of change in angular 
momentum in the dynamic coordinate system, whereas the other component represents the rate 
of change in angular momentum generated by the angular velocity of the dynamic coordinate 
system relative to the inertial coordinate system. Equation (4) of the external moment expressed 
in the dynamic coordinate system, when projected onto the right-angle coordinate system, can 
be expressed as
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Fig. 2. (Color online) Coordinate systems of blood pump rotor.



4210 Sensors and Materials, Vol. 36, No. 10 (2024)

Equation (5) can be written in the form of a system of scalar equations, as follows.

 x y z z y xH H H Mω ω+ − = , 

 y z x x z yH H H Mω ω+ − = , (6)

and

 z x y y x zH H H Mω ω+ − = . 

 The set of scalar Eq. (6) is the kinetic equation of the fixed point motion of the blood pump 
rotor, also known as Euler’s equation. We assumed that the rotor of the blood pump, relative to 
the inertial coordinate system, rotates around its central axis Oη with an angle, angular velocity, 
and angular acceleration of α, α, and α, respectively. We also assumed that the rotor of the blood 
pump, relative to the inertial coordinate system, rotates around the axis Oξ with an angle, 
angular velocity, and angular acceleration of β , β, and β respectively. The projections of the 
angular velocity and angular acceleration of the dynamic coordinate system O-xyz relative to the 
inertial coordinate system O-ξηζ on the x-, y-, and z-axes of the inertial coordinate system are 
ωx, ωy, ωz and zx yω ω ω  ,  ,  , zx yω ω ω  ,  ,  , x y zω ω ω  ,  ,  , respectively. We further assumed that the applied moments on the 
blood pump rotor with respect to the central axes Oη and Oξ are Mx and My, respectively. On the 
basis of the inertia theorem of moments, when the blood pump rotor is rotating, the relationships 
among the rotational moment of inertia, gyroscopic moment, angular velocity, and angular 
acceleration can be expressed as

 = Ix xxM I α−  , (7)

 =Iy yyM I β−  , (8)

 =GxM Hβ−  , (9)

 = GyM Hα . (10)

 From the conservation of moment for a blood pump rotor in motion, we obtain the following 
kinetic equations:

 + + =  + = 0Ix Gx x xx xM M M I H Mα β− − 

 , (11)

 + + =  +  + = 0Iy Gy y yy yM M M I H Mβ α− 

 . (12)
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2.2 Motion analysis of blood pump rotor

 We further characterize the coordinate systems describing the state variables of the blood 
pump rotor in motion. First, assuming that the rotor of the blood pump rotates around a fixed 
point O, we can establish an inertial coordinate system O-ξηζ and a momentum moment 
coordinate system O-XYZ on the basis of the origin O, as shown in Fig. 3. The Z axis of the 
momentum moment coordinate system is consistent with the direction of the momentum 
moment vector H of the rigid rotor relative to the origin O. Assuming that the original inertial 
coordinate system O-ξηζ rotates around the axis ξ by an angle α, we call this new coordinate 
system as O-ξ1η1ζ1. Then this coordinate system rotates around the axis η1 by an angle β, and we 
call the obtained coordinate system as O-XYZ.
 The orientation relationship between the momentum moment coordinate system O-XYZ and 
the inertial coordinate system O-ξηζ can be expressed as an orientation cosine matrix:

 
cos 0 sin

sin sin cos sin cos
cos sin sin cos cos

ξ

β β
α β α α β
α β α α β

 
 = − 
 − 

XC . (13)

The momentum moment vector of the blood pump rotor can be expressed as 

 0H=H Z . (14)

As the orientation of the momentum moment H changes, the coordinate system O-XYZ will 
change accordingly and its rotational velocity is denoted as ωH, which can be expressed as

 ��H �  

� � � � �cos sinX Y Z0 0 0 +  + . (15)

Fig. 3. (Color online) Momentum moment coordinate system and orientation of momentum moment vector. 
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Assuming that there is a combined moment M with respect to the point O acting on the rotor of 
the blood pump, its projection in the coordinate system O-XYZ can be expressed as 

 0 0 0 =  +  + X Y ZM M MM X Y Z . (16)

In accordance with the general relationship between the moment and the angular momentum, 
using Eqs. (14)–(16), we obtain

  = XH Mβ , (17)

 cos YH Mα β = − , (18)

and

 ZH M= . (19)

To describe the motion of the blood pump rotor relative to the momentum moment coordinate 
system O-XYZ, we use Euler angles ψ, ϑ, and φ to describe the rotor’s rotational positions. As 
shown in Fig. 4, first, the momentum moment coordinate system O-XYZ is rotated about the 
Z-axis by an angle ψ to obtain a new coordinate system O-X1Y1Z1. Then, it is rotated about the 
X1-axis by an angle ϑ to obtain another coordinate system fixed on the rotor. Since the dynamic 
blood pump rotor has no spin, its spin angle φ about the Z-axis is zero.
 The transformation cosine matrix from the coordinate system O-xyz to the momentum 
moment coordinate system O-XYZ can be written as

 
cos cos sin sin sin
sin cos cos sin cos

0 sin cos

ψ ϑ ψ ϑ ψ
ψ ϑ ψ ϑ ψ

ϑ ϑ

− 
 = − 
 
 

x
XC . (20)

Using the transformation Eq. (20), we can transform the momentum vector from the coordinate 
system O-XYZ to the coordinate axis system O-xyz to obtain

 H j k� H (sin cos )� � + . (21)

Assuming that the relative equatorial and polar moments of inertia of the blood pump rotor with 
respect to the point are represented by A and B, respectively, its momentum moment vector H 
can be represented as

  = (  + ) + x y zA Bω ω ωH i j k . (22)
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In the above equation, ωx, ωy, and ωz are the projections of the absolute velocity ω of the contact 
line between the rotor and the upper and lower pump covers onto the x-, y-, and z-axes of the 
coordinate system O-xyz, respectively, and can be expressed as

 
 =  + cos cos  + sin
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3. Dynamic Stability Analysis of Blood Pump Rotor via CFD

 Because the use of the finite element method (FEM) in CFD to analyze rotor motion in blood 
pumps has been proven to have high calculation accuracy and reliability in previous studies, we 
are now using this FEM to investigate the dynamic levitation stability of blood pump rotors. 
First, we establish a structural finite element model of the magnetically levitated nutation blood 
pump. Then, the motion state equations of the rotor are solved using FEM to understand the 3D 
motion state of the blood pump rotor. There are two types of material used in the investigated 
blood pump. First, sintered NdFeB N40 is used for the driving part, which includes the driving 
permanent magnet and the permanent magnet at the edge of the swing disc. Second, sintered 
NdFeB N30 is used for the magnetic levitation part, which includes the permanent magnet ring 
in the pump cover and the swing disc ball pair. The pump body material is selected as stainless 
steel 316, and other components are considered to be air. Transient solutions for the related 
physical parameters are obtained by solving the equations mentioned above using FEM.

Fig. 4. (Color online) Euler angles of rotor relative to momentum moment coordinate system.
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3.1 Magnetic density distribution around the blood pump rotor

 Through FEM calculations, we obtain the magnetic flux density around the blood pump 
rotor. The 3D distribution of the magnetic density vector and its projection onto the O-yz plane 
around the pump rotor, which significantly affect the levitation stability of the blood pump, are 
schematically shown in Figs. 5 and 6, respectively. We found that the magnetic flux near the 
edge of the rotor is significantly different from elsewhere, and the magnetic field variation here 
has a significant impact on the stability of the rotor levitation.

Fig. 5. (Color online) 3D magnetic density distribution around the pump rotor obtained using CFD.

Fig. 6. (Color online) Magnetic density distribution (projected onto the O-yz plane) around the pump rotor 
obtained using CFD.
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3.2	 Effect	of	bearing	permanent	magnet	size	on	levitated	magnetic	force

 The levitation of the internal rotor of a blood pump bearing is achieved through the magnetic 
force generated in the biased permanent magnet rings. Therefore, the size of the permanent 
magnet rings is directly related to the levitated force magnitude and will impact the levitation 
stability of the rotor. In this section, keeping the size of the static magnetic ring of the bearing 
constant, we employed FEM to calculate changes in the magnetic force of the dynamic magnetic 
ring inside the rotor at different axial heights and radial thicknesses. The results are depicted in 
Figs. 7 and 8.
 From the results shown in Figs. 7 and 8, it is evident that the magnetic force experienced by 
the blood pump rotor within one oscillation cycle is generally stable, with small changes of about 
0.7 N for different ring heights and 0.4 N for different ring thicknesses. The comparison of the 

Fig. 7. (Color online) Variation of magnetic force with time at different heights of magnetic ring.

Fig. 8. (Color online) Variation of magnetic force with time at different radial thicknesses of magnetic ring.
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effects of changes in ring height shows that the radial thickness has a minimal effect on the 
levitated magnetic force. Furthermore, note that the levitated magnetic force undergoes a sudden 
change at the moment of 0.0375 s for different ring heights and thicknesses, lasting approximately 
0.0105 s, with a sudden change difference of approximately 0.93 N. This sudden change in 
levitated magnetic force is due to an opening in the swing disc of the suspended rotor, where it is 
not possible to install magnets. As the driving magnets rotate to this position, one end of the 
swing disc opening experiences zero magnetic force, while only the other end, symmetrically 
opposite to the opening, experiences levitated magnetic force. This leads to a sudden change in 
the levitated magnetic force of the rotor.

3.3	 Effect	of	nutation	angle	on	the	levitated	magnetic	force	and	moment

 The nutation angle is a crucial parameter that affects the optimal structure of a blood pump. 
With a constant radial size of the blood pump, a larger nutation angle corresponds to a greater 
axial space and a larger volume of the blood pump cavity. Additionally, the nutation angle is 
significant in determining the stability of the magnetically levitated blood pump. Given these 
considerations, we will later concentrate on studying the stability of the blood pump rotor at 
various nutation angles.
 Under the same conditions of driving speed, magnetic suspension bearing size, and levitation 
gap as in Sect 3.2, we are currently investigating the variations of levitated magnetic force and 
moment over time for five different blood pump structures at various nutation angles. Since the 
proper axial size of the blood pump is directly related to the nutation angle, it is suggested that 
the nutation angles should all be within 10° on the basis of empirical considerations. Finally, 
through FEM calculations, we have obtained the variations of magnetic force and moment over 
time at different nutation angles, as shown in Figs. 9 and 10, respectively.
 Figure 9 illustrates that when the nutation angle remains constant, the levitated magnetic 
force fluctuates over time between −0.8 and 0.6 N. There appears a local minimum of the 

Fig. 9. (Color online) Variation of magnetic force with time at different nutation angles.



Sensors and Materials, Vol. 36, No. 10 (2024) 4217

levitated magnetic force occurring near t = 0.0375 s, corresponding to the position of the opening 
of the nutation disc. With the increase in nutation angle, the levitated magnetic force also 
increases. This is because as the nutation angle increases, the gap between the permanent 
magnet at the edge of the disc and the driving magnet decreases, resulting in an increase in 
driving magnetic force on the disc, and thus, the total levitation magnetic force of the rotor 
increases. Furthermore, as the nutation angle increases, the difference in the sudden change of 
the levitated magnetic force, where a local minimum occurs, also increases. This is because with 
a larger nutation angle, the driving magnetic force acting on the disc itself increases. Therefore, 
the difference in the sudden change of the magnetic force at the disc opening position is also 
larger.
 Figure 10 indicates that the difference in magnetic moment is relatively small under various 
nutation angles. The greater the nutation angle, the higher the peak value of the magnetic 
moment. The magnetic moment of the rotor, overall, tends to decrease at approximately three-
quarters of the time cycle and tends to increase for the remainder of the time cycle. The sudden 
drop in magnetic moment near t = 0.014 s is due to the fact that at this moment, the driving 
magnet rotates to the disc opening of the nutation. Since there is no magnet installed at the 
opening, the disc is subjected to an unbalanced force, with only one end of the magnet being 
driven. This imbalance leads to a steep drop in magnetic moment.

3.4	 Effect	of	levitation	gap	on	levitated	magnetic	force

 Under the combined action of the external and internal permanent magnets of the bearing, 
the levitation gap significantly affects the dynamic stability of the blood pump rotor. To explore 
this effect, we conducted a study on four different blood pump structures at various levitation 
gaps. Through FEM calculations, we obtained the relationship between the levitated magnetic 
force of the blood pump rotor and time under different levitation gaps, and the results are shown 
in Fig. 11.

Fig. 10. (Color online) Variation of magnetic moment with time at different nutation angles.
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 Figure 11 shows that under the four different levitation gap conditions, the trend of levitated 
magnetic force over time is stable and consistent, with only a maximum change of about 0.6 N. 
The levitated magnetic force clearly increases as the levitation gap decreases. However, when 
the driving magnet rotates to the disc opening of the nutation, there is a sudden change in 
magnetic force similar to previous cases, but the difference in sudden change under different 
levitation gaps remains uncharged at approximately 0.925 N.

4.	 Experimental	Measurement	and	Verification

 To validate the FEM calculation results regarding the dynamic stability of the blood pump 
rotor, we constructed a hydraulic experimental system and conducted cyclic measurements on 
the blood pump. To simulate real blood flow, we used a 33% glycerol solution mixed with 
physiological saline as the test fluid, diluted to a viscosity similar to blood. Additionally, we 
established an experimental system for the real-time measurement and monitoring of the 
levitated state of the blood pump rotor, as shown in Fig. 12. This system integrates all types of 
required sensor: first, an electronic turbine flowmeter sensor connected to the outlet of the blood 
pump to measure the instantaneous output flow rate of the test fluid as the output flow rate of 
the blood pump; second, a pressure differential sensor to measure the pressure at the inlet and 
outlet of the blood pump; third, a photoelectric switch sensor to measure the speed of the blood 
pump; fourth, a noncontact eddy current sensor to measure the axial displacement of the rotor; 
fifth, force and moment sensors are used to measure the buoyancy and moment of the blood 
pump rotor, respectively.
 The overall experiment is divided into two parts. The first part involves measuring the basic 
physical parameters of the blood pump, including the pressure difference, flow rate, and axial 
displacement. The measurement results can be used as input parameters for theoretical 
calculations. The second part involves measuring the magnetic force of the blood pump rotor, 
and the measurement results can be compared with the theoretical calculation results. The 
measurement results are shown in Table 1, which also includes the data obtained from previous 
FEM calculations. The table shows that the maximum error between the measured and FEM-

Fig. 11. (Color online) Variation of magnetic force with time at different levitation gaps. 
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obtained magnet forces is 8%. This comparison result indicates that the data obtained from the 
FEM calculations are sufficiently accurate, meaning that the results of the stability analysis of 
the blood pump rotor via FEM calculations are highly reliable and valuable.

5. Conclusion

 We successfully established the Euler angle equation to describe the motion of the 
magnetically levitated rotor in a blood pump. Through FEM calculations, we thoroughly 
analyzed the factors affecting the dynamic levitation stability of the blood pump rotor. Moreover, 
we investigated the regularity and effects of three key factors, namely, the nutation angle, the 
height and thickness of the permanent magnet rings in the nutation blood pump bearing, and the 
levitation gap, on the levitation stability of the blood pump rotor. A significant finding is that the 
opening of the ring disc causes a sudden drop in levitated magnetic force as well as moment 
when the rotor is rotating. This could lead to a problematic situation when a blood pump is used 
for medical purposes. A comparative investigation shows that a maximum error of 8% was 

Fig. 12. (Color online) Sensor-based experimental setup.

Table 1
Measurement and calculation results of the magnetic force of the blood pump rotor at s = 5, h = 3.5, and g = 2 (1 
cycle time: 0.05 s).
Magnetic force t = 0.01 s t = 0.03 s t = 0.04 s t = 0.05 s
Measurement (N) 0.636 0.63 −0.68 0.567
Calculation (N) 0.67 0.65 −0.74 0.6
Error (%) 5 7 8 5.5
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found between the measured and calculated magnetic forces, indicating that the results of the 
stability analysis of the blood pump rotor via FEM calculations are highly reliable and valuable. 
The results of this study can further enhance our understanding of the blood pump’s functionality 
and provide insights into the parameters affecting a well-designed blood pump.
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