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 With the continuous development of science and technology, automatic assisted driving is 
becoming a trend that cannot be ignored. The You Only Look Once (YOLO) model is usually 
used to detect roads and drivable areas. Since YOLO is often used for a single task and its 
parameter combination is difficult to obtain, we propose a Taguchi-based YOLO for panoptic 
driving perception (T-YOLOP) model to improve the accuracy and computing speed of the 
model in deteching drivable areas and lanes, making it a more practical panoptic driving 
perception system. In the T-YOLOP model, the Taguchi method is used to determine the 
appropriate parameter combination. Our experiments use the BDD100K database to verify the 
performance of the proposed T-YOLOP model. Experimental results show that the accuracies of 
the proposed T-YOLOP model in deteching drivable areas and lanes are 97.9 and 73.9%, 
respectively, and these results are better than those of the traditional YOLOP model. Therefore, 
the proposed T-YOLOP model successfully provides a more reliable solution for the application 
of panoramic driving perception systems.

1. Introduction

 Nowadays, many automobile manufacturers have invested in the research and development 
and application of autonomous driving assistance technology. However, with the complexity of 
the road environment and the increasing number of vehicles, autonomous driving assistance 
systems are facing various challenges. In actual driving situations, there are often twists and 
turns on roads and sudden lane reductions due to construction ahead. These factors may affect 
the normal operation of an autonomous driving system. Under such circumstances, it is difficult 
for vehicles to maintain an ideal distance, which may lead to traffic accidents, and drivers need 
to react quickly to rapidly changing conditions. Therefore, while developing autonomous driving 
technology, we must deeply consider various real-world scenarios to ensure the overall 
performance and safety of the system.
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 Drivable area detection and lane detection are key and indispensable technologies for self-
driving systems. Their main purpose is to ensure that vehicles only drive on legal and safe roads 
to avoid entering prohibited or dangerous road sections and reduce potential safety hazards. 
Aggarwal et al.(1) proposed detecting the drivable area of vehicles. They used first-person 
perspective images to identify floor areas. To adapt to the challenges of complex scenes, their 
method integrates surface cue classification, density cues for floor locations, and geometric 
cues. This comprehensive analysis helps construct a walkable floor area mask. Furthermore, this 
method uses the Grabcut algorithm for multiple iterations to refine the area definition. Long et 
al.(2) proposed a widely recognized semantic segmentation method called fully convolutional 
networks (FCNs), which is specifically used to deal with the problem of semantic segmentation. 
The core of this method is to directly use the ground truth obtained from image segmentation as 
supervision information to conduct complete network training from input to output. This 
training process enables the network to accurately predict each pixel, thereby greatly improving 
the accuracy and reliability of segmentation. In terms of lane detection, Canny(3) proposed a 
comprehensive and accurate target framework aimed at defining and detecting edges in images. 
This framework not only includes criteria for edge detection and localization, but also 
emphasizes unique responses to single edges to avoid multiple detections. Furthermore, on the 
basis of these goals, they developed an efficient algorithm that can optimize edge detection at 
different scales. The core of this method is to use gradient-based technology combined with 
Gaussian smoothing to process the image, and then accurately identify edges by marking the 
maximum value of the gradient amplitude. Dong et al.(4) used the Canny method on the road to 
monitor whether the car deviated from the lane and to detect lane markings in the images 
obtained by the forward-looking vehicle camera. The purpose of this algorithm is to detect the 
two lanes closest to the car and obtain a more accurate departure warning.
 In deep learning, object position detection and classification methods are divided into one-
stage and two-stage methods. Early deep learning methods are mainly two-stage methods, such 
as Region-based Convolutional Neural Networks (RCNNs), Fast-RCNN, and Faster RCNN. 
However, because object position detection and classification are performed separately, there are 
certain limitations in speed. To improve the two-stage detection speed problem, the one-stage 
deep learning method is used to detect and classify object position at the same time, such as You 
Only Look Once (YOLO).(5) The YOLO model is widely used in the field of image classification 
and recognition. Wang et al.(5) proposed the YOLOv4 model for real-time object detection and 
semantic segmentation. The YOLOv4 model uses CSPDarkNet53 as its backbone network. This 
network structure is not only powerful but also efficient and capable of processing large amounts 
of data and producing results rapidly. In addition, it uses PANet for feature fusion, and features 
extracted from different levels can be better combined together, thereby improving detection 
accuracy. The YOLOv4 model adopts a regression strategy to improve the flexibility of 
bounding box regression. This strategy solves a significant limitation in traditional object 
detection methods, which is the inability to effectively consider objects with asymmetric 
features. By considering the center of gravity in the feature map, the YOLOv4 model can better 
capture feature distribution, thereby achieving more accurate and detailed object detection and 
segmentation. 
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 Generally, the YOLO model focuses on a single task. To improve training efficiency, 
multitask training methods of traditional YOLO have begun to receive attention. Wu et al.(6) 
proposed an innovative panoramic driving perception network, called the YOLOP model, whose 
design goal is to simultaneously perform the three key tasks of traffic object detection, drivable 
area detection, and lane detection. The network structure of the YOLOP model includes a shared 
encoder and three decoders dedicated to different tasks, thereby effectively integrating the 
multitask learning process. Huang(7) improved the volume base and pooling layers on the 
original YOLOP architecture and used module changes and the reduction of convolutional layers 
to improve the accuracy of the model. That is, the original convolution layer is changed into a 
convolution, batch normalization, exponential linear unit (ELU) function (CBE) module, and the 
rectified linear unit (ReLU) excitation function is changed into an ELU function. Although this 
can reduce training time, the training speed is still relatively low.
 Because determining the parameters of a YOLOP model is difficult, some researchers(6,7) 

have applied the trial-and-error method. However, the parameter design in the network 
architecture is also a key factor related to the overall performance. In engineering, the Taguchi 
method is often used to optimize system parameters. The Taguchi method(8) is performed by 
statistically controlling the experimental and production processes to achieve the dual objectives 
of improving the quality and reducing the cost of an experiment. This method utilizes orthogonal 
tables to provide a complete factorial design for limited experiments. The accuracy of the results 
obtained through the Taguchi method also makes it an option for numerous optimization 
problems in engineering and other fields. Therefore, in this study, we applied the Taguchi 
method to determine the optimal parameter combination of a YOLOP.
 In this study, we propose a Taguchi-based YOLO for a panoptic driving perception 
(T-YOLOP) model to improve the accuracy and computing speed of the model in detecting road 
and drivable areas, making it a more practical panoptic driving perception system. The major 
contributions of this study are as follows:
1) To improve the training efficiency of the traditional YOLO model, the YOLOP model is used 

for multitask training methods.
2) To determine the appropriate parameter combination of the YOLOP model, the Taguchi 

method is used.
3) Experimental results show that the accuracies of the proposed T-YOLOP in detecting drivable 

area and lanes are 97.9 and 73.9%, respectively, and these results are better than those of the 
traditional YOLOP model.

 The remainder of this paper is organized as follows. In Sect. 2, we present the proposed 
T-YOLOP model for drivable area segmentation and lane detection. In Sect. 3, we introduce the 
experimental results of the proposed T-YOLOP model. We also compare our model to other 
models. In Sect. 4, we provide our conclusions.

2. Materials and Methods

 In this section, the network architecture of the T-YOLOP model is introduced. The specific 
experimental process and steps are shown in detail in Fig. 1. First, we use the Taguchi method to 
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analyze the parameters of the T-YOLOP model and determine its appropriate parameter 
combination. This process is designed to improve the accuracy of the model. Next, we will apply 
these selected optimal parameter combinations to the T-YOLOP model.

2.1 Signal preprocessing

 YOLOP’s network architecture is divided into three parts, namely, backbone, neck, and 
detect head, as shown in Fig. 2. Backbone is the backbone network, whose main function is to 
extract feature information from the input image. YOLOP utilizes YOLOv4’s CSPDarknet(9) as 
its backbone network because YOLOv4 performs well in object detection. Neck fuses features 
generated by backbone, which consists of spatial pyramid pooling (SPP)(10) and feature pyramid 
network (FPN).(9) SPP generates and fuses features at different resolutions, whereas FPN fuses 
semantic features at different levels. The generated features have both multiresolution and 
multilevel semantic information. Detect head includes drivable area detection and lane detection. 
Lane detection and drivable area detection use an anchor-based multi-resolution detection 
method combined with path aggregation network (PAN) and FPN. PAN is a bottom-up network 
structure used to transfer positioning features, whereas FPN transfers semantic features from 
top to bottom. By combining both PAN and FPN, better feature extraction results are obtained. 
The low-level output of FPN is introduced into the segmentation branch, and after three 
upsamplings, the output is restored to the original image size.

Fig. 1. (Color online) Network architecture of T-YOLOP model.
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2.2 Taguchi method

 The application of statistical methods in engineering aims to improve product quality and 
reduce production costs. The Taguchi method(8) is an experimental design technique that 
effectively conducts experiments through statistical methods. The Taguchi method not only 
significantly reduces the number of experiments, manpower, and time costs required, but also 
improves the quality of the product. The Taguchi method mainly designs the internal parameters 
of the model (such as design factors and their level values) by selecting an appropriate orthogonal 
array (OA). The signal-to-noise (S/N) ratio is used to analyze and evaluate the specific impact of 
different design parameters on model quality, and then determine the optimal parameter 
combination. The steps of the Taguchi method are shown in Fig. 3.

2.2.1	 Problem	definition

 When this experiment was conducted, we set the initial parameters of the T-YOLOP model. 
However, the suitability of these parameters for classification applications has not yet been 
confirmed. Therefore, we used the Taguchi method to optimize the model parameters. Through 
this optimization process, we not only reduce the number of experiments but also analyze the 
interactions between different factors. The optimal combination of parameters is determined, 
which is crucial to improving the stability and accuracy of the model architecture.

Fig. 2. (Color online) Network architecture of YOLOP model.
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2.2.2 Selection of factors and levels

 In the T-YOLOP model, we focus on the selection of parameters in the output convolutional 
layer of the network. To improve the overall performance of the model by optimizing these 
parameters, we identified four main factors: Conv_256, Conv_64, Conv_32, and Conv_8. These 
factors are selected because they have a significant impact on the model’s output and improve 
the model’s feature extraction capability and accuracy at different levels.
 On the basis of past experience and prior knowledge, we set three different levels for each 
factor to explore changes in model performance under different settings. These levels reflect the 
performance of each factor under different parameter settings, and the impact of each factor on 
the model output is fully evaluated. Detailed information is shown in Table 1.

Fig. 3. Steps of Taguchi method.
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2.2.3 Choosing a suitable OA

 OA is an efficient statistical tool widely used in experimental design and parameter 
optimization. OAs have uniform distribution and balance properties, which not only ensure that 
experiments cover a wide range of scenarios, but also significantly reduce experimental costs. 
Especially when multiple variables and levels should be considered, the application of OAs is 
particularly important.

2.2.4 Conduct of experiments to collect data

 According to Table 1, the L9 OA was selected and experiments were conducted. Then, the 
average S/N ratio of each factor at different levels was calculated to evaluate the impact on the 
experimental results. We use the large characteristic, that is, the larger the S/N ratio, the greater 
the impact on the experimental results. The formula for the S/N ratio is as follows:
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where n is the number of repetitions of the experiment and y is the observed value of the ith 
repeated experiment.

2.2.5 Determination of the best parameter combination

 After calculating the S/N ratio of each of the different parameter combinations, the S/N 
response map and the optimal parameter combination were obtained.

3. Experimental Results

 To verify the proposed T-YOLOP model, we use the BDD100K data set(11) to conduct 
experiments. This data set contains a large number of high-quality images and precise 
annotations. Confusion matrices were used to evaluate the results of classification experiments. 
Finally, the proposed T-YOLOP model is compared with other models.

Table 1
Impact factors and their levels.
No. Abbreviation Factor Level 1 Level 2 Level 3
A C1 Conv_256 1 3 5
B C2 Conv_64 1 3 5
C C3 Conv_32 1 3 5
D C4 Conv_8 1 3 5
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3.1 Data set

 The BDD100K data set is the largest and most diverse driving image data released by UC 
Berkeley in 2018. The main characteristics of these data are large scale, diverse, and collected on 
real streets, as shown in Fig. 4. These image data include ten tasks: image labeling, lane 
detection, drivable area segmentation, road object detection, semantic segmentation, instance 
segmentation, multi-object detection and tracking, multi-object segmentation tracking, domain 
adaptation, and imitation learning. In this study, we used data from the two tasks of lane 
detection and drivable area segmentation as experimental bases. The total data is 80000 images. 
We divided the image data into 56000 images as training data and the remaining 24000 images 
as verification data.

3.2 Evaluation methods

 To evaluate the results of classification experiments, we adopted a confusion matrix, as 
shown in Table 2. The accuracy, true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN) of the confusion matrix are used to judge the performance of model 
identification.
 When the performance of lane and drivable area markings is evaluated, indicators such as 
accuracy, intersection over union (IOU), and mean IOU (mIOU) are usually used. Accuracy is a 

Fig. 4. (Color online) Day and night data sets.

Table 2
Confusion matrix.

Actual output
Positive Negative

Predictive output Positive TP FP
Negative FN TN
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measure of the predictive power of a classification model, which reflects the model’s ability to 
make correct predictions across all test samples. The formula of accuracy is as follows:

 .TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (2)

 In the image segmentation task, IOU is called the Jaccard index, which is an important 
indicator for evaluating model performance. It is measured by calculating the ratio of the 
intersection and union between the binary segmentation results predicted using the model and 
the actual binary segmentation labels. IOU provides an intuitive way to understand the degree of 
overlap between model predictions and the real situation. IOU is calculated by dividing the 
intersection area of the prediction result and the real label by their union area. The higher the 
IOU, the higher the accuracy of the prediction. The formula for IOU is as follows:

 ,GTIOU
DR

=  (3)

where GT represents the intersection of prediction and real results, and DR represents the union 
of prediction and real results.
 mIOU is a commonly used performance evaluation metric in multicategory image 
segmentation tasks. It is used to calculate IOU for each category separately, and then to average 
these IOU values to obtain a comprehensive performance index. mIOU provides a way to 
measure the overall performance of a model when processing images with multiple categories of 
objects. It takes into account performance across all categories to make performance evaluations 
more comprehensive and balanced. This evaluation method is particularly important to 
understand the consistency and reliability of the model across different categories. mIOU is 
calculated by summing up the IOU values of all categories and dividing the sum by the total 
number of categories. This way, an average can be obtained, which reflects the overall 
segmentation effect of the model on all categories. The formula for mIOU is as follows:

 1   2     ,class IOU class IOU classNIOUmIOU
N

+ + +
=

  (4)

where class is the category and N is the total number of categories.

3.3 Experimental results using the proposed T-YOLOP

 In this experiment, we obtained the S/N ratio of each factor and level for each experiment. 
The S/N ratios of the detection results in the drivable areas and lanes are shown in Tables 3 and 
4, respectively.
 Through the S/N ratio of each factor and level combination, Tables 5 and 6 indicate the 
optimal level and optimal parameter combination for drivable area detection and lane detection. 
If the difference in S/N ratio is large, the effects of this factor and level are significant. The 
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Table 3
S/N ratio of drivable area detection results.

No. Factors Results
C1 C2 C3 C4 Y1 Y2 Y3 Yave S/N ratio

1 1 1 1 1 0.883 0.88 0.882 0.881 −1.09394
2 1 3 3 3 0.900 0.898 0.899 0.899 −0.92482
3 1 5 5 5 0.912 0.904 0.911 0.909 −0.82892
4 3 1 3 5 0.906 0.900 0.905 0.903 −0.87994
5 3 3 5 1 0.913 0.91 0.912 0.911 −0.80330
6 3 5 1 3 0.916 0.915 0.913 0.914 −0.77477
7 5 1 5 3 0.917 0.911 0.915 0.914 −0.77801
8 5 3 1 5 0.917 0.915 0.916 0.916 −0.76210
9 5 5 3 1 0.923 0.92 0.922 0.921 −0.70855

Table 4
S/N ratio of lane detection results.

No. Factors Results
C1 C2 C3 C4 Y1 Y2 Y3 Yave S/N ratio

1 1 1 1 1 0.602 0.630 0.631 0.621 −4.14440
2 1 3 3 3 0.656 0.655 0.655 0.655 −3.67076
3 1 5 5 5 0.713 0.712 0.712 0.712 −2.94634
4 3 1 3 5 0.689 0.685 0.688 0.687 −3.25673
5 3 3 5 1 0.695 0.690 0.694 0.693 −3.18546
6 3 5 1 3 0.694 0.690 0.691 0.691 −3.20214
7 5 1 5 3 0.702 0.730 0.731 0.721 −2.84590
8 5 3 1 5 0.710 0.708 0.710 0.709 −2.98302
9 5 5 3 1 0.713 0.712 0.712 0.712 −2.94634

Table 5
Best combination of parameters in drivable area detection.
Factors levels C1 C2 C3 C4
1 −0.9492 −0.9173 −0.8769 −0.8686
2 −0.8193 −0.8301 −0.8378 −0.8259
3 −0.7496 −0.7707 −0.8034 −0.8237
Delta 0.1997 0.1466 0.0735 0.0449
Rank 1 2 3 4
Best levels 3 3 3 3
Optimal parameter 
combination 5 5 5 5

Table 6
Best combination of parameters in lane detection.
Factors levels C1 C2 C3 C4
1 −3.587 −3.416 −3.443 −3.425
2 −3.215 −3.280 −3.291 −3.240
3 −2.925 −3.032 −2.993 −3.062
Delta 0.662 0.384 0.451 0.363
Rank 1 2 3 4
Best levels 3 3 3 3
Optimal parameter 
combination 5 5 5 5
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results indicate that the optimal parameter combination for both drivable area detection and lane 
detection is C1(Conv_256) = 5, C2(Conv_64) = 5, C3(Conv_32) = 5, and C4(Conv_8) = 5.
 Table 7 shows the experimental results of the proposed T-YOLOP model with the optimal 
parameter combination for drivable area detection and lane detection. In Table 7, the evaluation 
index consists of accuracy, IOU, and mIOU. The experimental results indicate that the accuracy, 
IOU, and mIOU of the proposed T-YOLOP model with the optimal parameter combination are 
97.9, 87.5, and 92.8% in the drivable area detection and 73.9, 27.8, and 63.1% in the lane 
detection, respectively. Compared with the traditional YOLOP model, the accuracy, IOU, and 
mIOU of the proposed T-YOLOP model are improved by 0.6, 1.7, and 1.3 percentage points in the 
drivable area detection and by 4.2, 1.6, and 0.2 percentage points in the lane detection, 
respectively. 
 The detection results in the drivable areas and lanes are shown in Figs. 5 and 6, respectively. 
The proposed T-YOLOP model is significantly better than the traditional YOLOP model. In 
terms of drivable area detection, we found that the proposed T-YOLOP model is significantly 
better than the traditional YOLOP model at longer distances and special angles, as shown in Fig. 
5. In terms of lane detection, we found that the proposed T-YOLOP model can clearly mark the 
portion close to the side road or the stop line, as shown in Fig. 6.

Table 7
Comparison results of YOLOP and T-YOLOP.

Model Accuracy (%) IOU (%) mIOU (%)
Drivable area 
detection results

YOLOP 97.3 85.8 91.5
T-YOLOP 97.9 87.5 92.8

Lane detection results YOLOP 69.7 26.2 62.6
T-YOLOP 73.9 27.8 63.1

Fig. 5. (Color online) Drivable area detection results: (a) ground truth, (b) YOLOP, and (c) T-YOLOP.

(a) (b) (c)
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3.4 Comparison results with other models

 In this subsection, we compare the proposed T-YOLOP model with other models in the 
drivable area detection and lane detection. In the drivable area detection, the proposed T-YOLOP 
model is compared with some models, such as MultiNet,(12) DLT-Net,(13) PSPNet,(14) and 
YOLOP.(6) Comparison results of various models in the drivable area detection are shown in 
Table 8. Experimental results indicate that the accuracy, IOU, and mIOU of the proposed 
T-YOLOP model outperform those of the other models.

(a) (b) (c)

Fig. 6. (Color online) Lane detection results: (a) ground truth, (b) YOLOP, and (c) T-YOLOP.

Table 8
Comparison results of various models in drivable area detection.
Model Accuracy (%) IOU (%) mIOU (%)
MultiNet — — 71.6
DLT-Net — — 71.3
PSPNet — — 89.6
YOLOP 97.3 85.8 91.5
Improved-YOLOP 97.6 87 92.1
T-YOLOP 97.9 87.5 92.8

Table 9
Comparison results of various models in lane detection.
Model Accuracy (%) IOU (%) mIOU (%)
ENet 34.1 14.6 34.1
SCNN 35.8 15.8 35.7
ENet-SAD 36.6 16.0 36.5
YOLOP 69.7 26.2 62.6
Improved-YOLOP 73.6 27.5 62.9
T-YOLOP 73.9 27.8 63.1
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 In the lane detection, the proposed T-YOLOP model is compared with some models, such as 
ENet,(15) SCNN,(16) ENet-SAD,(17) and YOLOP.(6) In the BDD100K data set, each lane is usually 
marked by two lines on its left and right sides, but this marking method is not ideal for direct 
application to the detection model. Therefore, our method first calculates the center line of the 
lane on the basis of these two annotation lines, and then to better simulate actual road conditions, 
the width of the lane is set to 8 pixels, which improves the accuracy of detection and 
generalization ability. Comparison results of various models in the lane detection are shown in 
Table 9. Experimental results indicate that the accuracy, IOU, and mIOU of the proposed 
T-YOLOP model outperform those of the other models.

4. Conclusions

 In this study, we proposed a T-YOLOP model to improve the accuracy and computing speed 
of the model in detecting drivable areas and lanes, making it a more practical panoptic driving 
perception system. In the T-YOLOP model, the Taguchi method was used determine the 
appropriate parameter combination. Experimental results indicated that the accuracy, IOU, and 
mIOU of the proposed T-YOLOP model with the optimal parameter combination are 97.9, 87.5, 
and 92.8% in the drivable area detection and 73.9, 27.8, and 63.1% in the lane detection, 
respectively. Compared with the traditional YOLOP model, the accuracy, IOU, and mIOU of the 
proposed T-YOLOP model are improved by 0.6, 1.7, and 1.3 percentage points in the drivable 
area detection and by 4.2, 1.6, and 0.2 percentage points in the lane detection, respectively.
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