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	 In this study, we developed a residue number system (RNS), a numeral system consisting of 
an arbitrary number of pairwise coprime integers representing a specific integer by its value. We 
discovered that this system reduced the runtime or training speed of image processing. In 
addition, we observed that the characteristic operations of the core functions of the decentralized 
congruential system derived from the proposed system reduced the overall execution time or 
training speed of image processing. Both the speed of calculation and the properties of the 
congruential system ensured the accuracy and security of information after distributed 
processing. Overall, this approach enabled the use of different algorithms on microdevices while 
ensuring confidentiality. In summary, we developed a system capable of increasing the operation 
speed of image processing by 50% through core function precomputation, with a modified 
image data input, a modified core function, and a reverse core function.

1.	 Introduction

	 Over the past decade, public-key cryptosystems installed on hardware devices have been 
widely examined.(1–3) Various approaches have been proposed to accelerate the implementation 
of the residue number system (RNS). To achieve various deciphering goals, a well-known 
solution has been used to independently conduct calculations for process variables and 
reconstruct the final results through the Chinese remainder theorem (CRT).(4) To the best of our 
knowledge, these efforts represent the first attempt to apply CRT in the development of RNSs. In 
previous solutions,(5–7) RNSs have been used with Montgomery multiplication for calculation. 
Although this approach facilitates the full implementation of an RNS, the message delivered is 
never regarded as a binary number. Therefore, messages should be calculated as a whole and 
cannot be separately computed. An RNS is a number representation system based on modular 
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arithmetic. This system converts large numbers into several smaller numbers, which represent 
the remainders when the large number is divided by different moduli. This technique is efficient 
in computer arithmetic because it enables large number computations to be broken down into 
independent small number operations, thereby increasing computational speed and reducing 
complexity. In an RNS, modified core functions are used to optimize calculations and data 
processing, particularly to enhance and accelerate key operations such as addition, subtraction, 
multiplication, and division within the RNS framework. When the enhanced computational 
efficiency and data processing capabilities of RNS and modified core function (MCF) are 
integrated, more efficient and accurate results can be obtained from the processing and analysis 
of multivariate data.
	 In recent years, with the development of science and technology, an increasing trend has been 
observed in the utilization of digital image processing technology in daily activities, such as in 
facial recognition for access control and in the automatic purchase of food ingredients by smart 
refrigerators. This degree of convenience has now become an entrenched norm in everyday life. 
Image processing has spurred many advances in science and technology. In particular, new 
technologies, such as image processing, often drive synthesis between domains and between 
cutting-edge and legacy solutions. Software and hardware are tightly intertwined in image 
analysis, image transmission, and image recording, and image preprocessing has undergone 
major advances with improvements in deep learning. Consequently, several preprocessing 
techniques, such as blurring,(8) filtering,(9,10) smoothing,(11) padding,(12) and sharpening,(13,14) 

have been developed. In addition, with the exponential growth observed in the number of pixels, 
particularly from 800 × 600 to 1024 × 768, 1920 × 1080, and 4096 × 2160 (i.e., 4K), an increase 
has also been observed on the load placed on the size of the data itself, with the ability of 
processors to handle the computational workload playing a key role. Therefore, further research 
is required to increase the speed of basic digital computation. Technologies such as unmanned 
driving and computer vision are gradually transforming everyday life, with the problem of high 
resource consumption, as is the case in artificial intelligence and computer vision, being a key 
topic in this area. An RNS is a system that uses distributed processing to reduce the overall 
computational time or training speed of image processing or deep learning, ensuring the 
accuracy of image processing and processed information.
	 During the training and execution processes in computer vision, various image processing 
techniques are typically used. These techniques are computationally expensive and require 
advanced graphic processing units (GPUs). In addition, the central processing unit should be 
adapted to support image processing in case the GPU fails.
	 In this study, we utilized the simplified functions of an RNS for operators in various types of 
standard algorithm to increase the speed of image processing. To examine the function of 
hardware-accelerated image processing, we explored various widely used image processing 
technologies. According to the literature, edge detection, smoothing, and sharpening are the 
most commonly used techniques for image processing. In this study, we examined the 
effectiveness of Laplacian operators in edge detection,(15) Sobel operators in sharpening, and 
Gaussian filters in smoothing.
	 Although RNSs can be traced back to 496 BC in China, these residual systems did not attract 
the interest of computer engineers until the 1950s, when their technical applications were 
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gradually expanded into cryptography, network biosecurity, machine learning, signal processing, 
and fault-tolerant signal processing. Previous studies have explored RNSs as systems that use a 
few bits to represent a larger number of bits. These residual number representation systems can 
considerably shorten the execution speed of certain linear algorithms in signal processing. 
Therefore, they have been extensively used as a research tool in examining extreme learning 
machine algorithms. In this study, we examined the correctness of the homomorphism of RNSs 
in the presence of various kernel operators of image processing.

2.	 Materials and Methods

	 In this study, we examined methods for increasing the computational speed of image 
processing and calculating the modulus of the product of two separate numbers. We utilized a 
commonly used equation of fundamental computation in digital image processing. This 
calculation process has four elements: core function precomputation, a modified image data 
input, a modified core function, and a reverse core function.
	 Core function precomputation is used to provide a basis for a modified core function. This 
step involves calculating frequently used constants that can be calculated once the channels of 
the RNS are set. These constants can also be used as a hybrid template for many RNSs to 
operate, thereby minimizing the RNS’ memory and space requirements. A modified image input 
is treated by merging the three elements of RGB colors in a binary power form to offer low 
memory and space requirements and a certain degree of confidentiality. A modified core 
function is used to optimize the algorithm. Many channels are used to minimize the data and 
increase the speed of repetitive arithmetic. A reverse core function is used to transform the RNS 
expression into a common decimal expression, enabling the retrieval of results for image 
enhancement.(16)

2.1	 RNS and core function

	 In this study, a modified technique was used to shorten the time required to calculate the 
modulus of the product of two numbers through hardware. The following equation was used to 
calculate this modulus:(17)

	 X (mod M) = X − Y × M,	 (1)

where M is the modulus of the product of two numbers. RNSs comprise a set of co-prime 
moduli.(18) In an RNS, the residue of a nonnegative integer X is represented in N channels, where 
N is the number of moduli M in the system. Each number has a unique representation, with the 
range of the system being 0 ≤ X ≤ D, where D is the product of all channel moduli, also referred 
to as the dynamic range of the system. Each residue represented in each channel is related only 
to its own channel modulus. In other words, unlike in traditional decimal numerical systems, in 
which each integer is weighted, integers in RNSs are not weighted. Therefore, they can be 
randomly scrambled and still yield the same results as long as the residue and channels are not 
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mixed. In an RNS, arithmetic homomorphism comprises three processes: addition, subtraction, 
and multiplication (no division).
	 Given that the entire operation involves a transformation from a decimal or binary system to 
an RNS and back to a decimal or binary system, two methods can be used to calculate this 
transformation. In the first method, the respective residue of the nonnegative integer in each 
channel is simply selected. In the second method, a technique referred to as CRT is used.(19) This 
approach facilitates the establishment of an RNS as follows:
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where an is the residue of the nonnegative integer X in moduli mn in each channel and M is the 
product of all moduli. CRT can be used to easily convert between a decimal or binary system 
and an RNS.

2.2	 Core function and precomputation(20)

	 The following is the core function of an RNS system:(21) 
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where xi is the channel residue of X through moduli mi and wi represents arbitrary constants 
referred to as the channel weights of the system. Substituting M into the aforementioned 
function, the product of the moduli, yields the following:
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Dividing each side by M, the dynamic range of the system, yields the following:
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Substituting Eq. (5) into Eq. (3) yields the following common expression for the core function:
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	 This equation is commonly used to describe core functions. Its function is similar to that of a 
linear plot of C(X) against X with a slope of C(M)/M.(22) However, its plot is not perfectly linear 
because of the noise at the end of the equation, which arises because wi is not a single 
independent constant. To improve readability, this noise can be neglected as follows:

	 ( ) ( ) ( ).C X Mag X Noise X= − 	 (7)
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	 Therefore, using our core function and neglecting noise, we can ignore the quotient Q of the 
two nonnegative integers Q and M, which are presumably very large. Instead, we can calculate 
the quotient of their counterparts C(X) and C(M) with our own number scale and obtain similar 
results.
	 In the modified version of the core function, many calculations involving this function 
incorporate values that can be precomputed. These values remain constant provided that the 
number and values of all channel moduli do not change during the calculation process. These 
precomputed results serve as a look-up table, simplifying the calculation process by avoiding 
complex modulo operations and division. These values are precomputed as follows:
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	 The value obtained for L primarily depends on the assumption that C(M) = 2h < P.(23)
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with a maximum error of ( ) ( )
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2.3	 Modification of image RGB values by RNS

	 In this section, we introduce a novel technique for modifying the data fed to a core function 
system, specifically with RGB values. Convolution(24) is central to many deep learning 
algorithms and is constituted by addition and multiplication operations, and occasionally 
subtraction if the kernel requires negative integers. An RNS is regarded as suitable for 
convolution if division is not required. Given the ability of RNSs to handle large integers within 
a dynamic range, our novel technique merges all three RGB values into a single integer to save 
transfer time and presumably increase the system’s efficiency without corrupting individual 
RGB values. In this study, after the pixels were spilled up and treated, the results were combined 
into a set (Fig. 1).
	 To establish a combined set B(p), the following steps must be followed:
Step 1.	 Divide the image data into pixels. 
Step 2.	 Convert each RGB value into a binary form.
Step 3.	 Add a number of zeros in between each value to use as a buffer and avoid corrupting 
other values.
Step 4.	 Combine each treated pixel B(pn) into set B(p).

Fig. 1.	 Structure of the El-Gamal hybrid function.
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	 In Step 3, the number of zeros can be adjusted depending on the kernel size and kernel values 
used in the convolution of the deep learning algorithm. However, the three sets of zeros must be 
the same for clarity.

2.4	 FPGA circuit implementation

	 As described in this section, we integrated a modified core function into a field-
programmable gate array (FPGA), an integrated circuit containing an array of programmed or 
reprogrammed logic blocks to enable flexible and reconfigurable computation as in computer 
software. In addition, an intellectual property (IP) core is designed using Vivado high-level 
synthesis. Units such as a subtractor, an adder, and a multiplier are integrated into the production 
unit. Python Productivity for Zynq (PYNQ) is a developmental version of the ZYNQ architecture 
that supports Python. In this study, PYNQ-Z2 was used as a developmental framework for 
PYNQ (Fig. 2). PYNQ is characterized by its built-in interactive logic that enables compatibility 
with ARM processors and FPGAs. Users can directly edit programs, and programmable logic 
circuits can be used as hardware libraries to provide hardware acceleration.	
	 In this study, an FPGA was used to implement the proposed modified core function and the 
modified digital image data through two image processing techniques. These techniques relied 
on two distinct kernels for convolution. Figures 3 and 4 depict the flow chart and wiring diagram 
of the FPGA, respectively. The first step in the process was to establish channels, including the 
setup of pi, h, and M. Once these values were established, precomputation was implemented, 
yielding four constants essential for subsequent calculations in a fixed modulus scenario. 
Following this initial setup, digital image data were input to implement the modified image data 
method. Unlike one-time precomputation, this process has to be repeated with each new image 
input. Subsequently, the modified core function utilized the precomputed values of deno and 
deno_B, and processed the image data in accordance with the method outlined for the modified 
image data in an RNS. To access the processed results, the RNS was transformed into a binary 
or decimal system, and the modifications applied in the image data method were undone.

Fig. 2.	 (Color online) PYNQ-Z2.
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Fig. 3.	 Flow chart of an FPGA.

Fig. 4.	 (Color online) Wiring diagram of an FPGA.
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3.	 Experimental Results

	 In this section, we present the outcomes of the modified binary overlay method for image 
data. Figure 5 depicts the red component of the first 1000 RGB pixels in the original image. The 
values of the pixels range from 0 to 255, potentially exposing them to unauthorized decryption. 
Figure 6 illustrates the data processed using the modified binary overlay method, indicating that 
the values have become indecipherable.
	 To demonstrate the amount of chaos introduced by the modified binary overlay method in 
image data processing, we attempted to reverse the image to its original RGB format and 
recreate it by using brute force. This process yielded Figs. 7–9, none of which could be 
recognized by conventional means. This approach can be used to encrypt images.
	 In this study, we implemented modified image processing through two distinct image 
enhancement techniques: Laplacian sharpening(25) and Gaussian blur.(26) These techniques are 
integrated into a modified core function that serves as both a speed booster and a confidentiality 
tool. The performance results for these techniques are illustrated in Figs. 10–13.
	 As shown in Figs. 12 and 13, we calculated the increase in operation speed using the 
following formula:

(a) (b)

(c)

Fig. 5.	 (Color online) Original distribution of RGB elements (1000 pixels). (a) Red, (b) green, and (c) blue.
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Fig. 6.	 Modified distribution of RGB elements (10000 pixels).

Fig. 7.	 Reversed image (red) through brute force. Fig. 8.	 Reversed image (green) through brute force.

Fig. 9.	 Reversed image (blue) through brute force.
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	 ( )      
  

original operationtime newoperationtime
original operationtime

− .	 (15)

	 Given the importance of the modified core function, by reducing the values of data through 
multiple channels, we considerably increased the speed of repetitive arithmetic operations. 
Subsequently, we used the reversed core function to transform the RNS expression into a 
decimal expression, thereby achieving image enhancement. Figures 14–16 depict the differences 
between the numbers of pixels obtained using the conventional method and the modified method 
for image enhancement, indicating a maximum difference or error of ±3, which is considered 
acceptable.

Fig. 10.	 (Color online) Gaussian blur comparison 
(operation time).

Fig. 11.	 (Color online) Laplacian sharpening 
comparison (operation time).

Fig. 12.	 (Color online) Gaussian blur comparison 
(operation speed increase).

Fig. 13.	 (Color online) Laplacian sharpening 
comparison (operation speed increase).
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4.	 Conclusions

	 In this study, we established a digital image processing framework by using a modified core 
function based on an RNS. By implementing modified algorithms, we achieved major 
improvements in Gaussian blur and Laplacian sharpening, thereby increasing operation speed by 
at least 50%. In addition, we increased the speed of the core function through precomputation to 
establish a modified core function and applied image data modified binary overlay to this 
function. In evaluation experiments, we applied our modified core function in image 
enhancement with image data modification in an FPGA.
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