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 Owing to time and scene constraints, a significant number of sectional maps exist in paper 
form. These maps contain a vast amount of data and hold high information value. However, they 
often suffer from issues such as annotations, stains, deformation, and missing content during 
preservation. Traditional processing methods require a large amount of manual image 
registration, which is extremely inconvenient. In this study, a map image labeling program is 
designed using OpenCV to prepare a map image dataset, and the U2Net-p algorithm for map 
segmentation is trained on this dataset. Furthermore, a comprehensive method for automatically 
merging sectional maps is designed and implemented, which can repair and process sectional 
maps and seamlessly integrate them into target grids according to map sheet numbering rules. 
This method has been applied to the production of base maps for natural resource demarcation 
projects, achieving a stitching accuracy of 96.67% on marked anchor points and considerably 
improving processing speed. This indicates that our approach has broad application value in the 
field of automatic stitching and fusion of sectional map images.

1. Introduction

 At the beginning of the 21st century, with the rapid development of digital technology, the 
surveying and mapping industry has gradually transitioned from the traditional manual or 
machine drawing method to advanced data acquisition technology. As information technology 
continues to progress, many paper maps have been converted into electronic image data by 
scanning.(1–3) However, for large paper maps, complete preservation is often cost-prohibitive 
owing to their oversized dimensions, leading to their storage in the form of rectangular 
sections.(4–6) These old maps contain valuable geographic information data that holds significant 
value in many key fields such as urban planning iteration, urban history research, cultural 
heritage protection, and natural resources right confirmation.(7,8) Thus, making full use of these 
old maps will have a far-reaching impact.
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 Before utilizing sectional maps, it is typically necessary to concatenate and merge them to 
form a complete map. Currently, there are two main methods to merge sectional maps. The first 
involves vectorizing sectional maps and then creating a full map based on the vector map.(9) The 
second method directly merges raster images to form a full map.(10) However, when dealing with 
complex map elements in the first method, it is difficult to achieve automatic vector work and 
extra manual intervention cannot be avoided. On the other hand, although the second scheme 
currently has a relatively mature raster map image fusion technology, it necessitates that the 
segmented map be clear, standard, and non-defaced.  
 Unfortunately, owing to the constraints of the times, many old maps suffer from various 
issues such as the lack of geographical coordinates in the map outline, the lack of accurate 
geographical concepts, and excessive labeling and defacing during preservation and use. 
Additionally, limited by the scanning technology at that time, the scanning process may also 
produce shadows and deformities, which further complicate the utility of sectional maps. At 
present, there are few studies on utilizing these low-quality sectional map images, and the 
mainstream processing method involves manually marking feature points and carrying out 
image registration using ArcGIS or Photoshop to calibrate, cut, and assemble graphics into a 
usable map form.(11) This process is not only cumbersome and requires prior knowledge, but also 
results in significant repetitive work. As a result of these challenges, handling sectional maps has 
become burdensome under current strict map usage standards, making it difficult to utilize them 
effectively. 
 In recent years, there has been rapid development in computer vision technology, and the 
image segmentation algorithm has become more mature and continuously applied in various 
fields such as face recognition and medical imaging.(12,13) To effectively make use of old 
sectional maps, we aim to utilize computer vision technology to train a high-performance map 
image segmentation algorithm model in the field of mapping, use various computer graphics 
methods to repair and restore the distortion of segmented map images, and finally achieve 
automatic segmentation map fusion throughout the entire process.  
 In project implementation, we have also designed a method of matching marker anchor points 
to evaluate the effectiveness of the merged map image. The accuracy rate of the final assembly 
reached 96.67%, which was significantly higher than that achieved through manual processing. 
This demonstrates that the automatic merging scheme proposed in this paper not only 
considerably improves the efficiency but also enhances the precision of map fusion. It also 
proves that our proposed automatic merging scheme can effectively leverage historical data 
resources, injecting new vitality into their utilization while meeting actual production needs. 
Therefore, it holds significant promotional value.

2. Related Methods

 In this section, the deep neural network model and computer graphics method used in this 
study are introduced.
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2.1 U2Net and U2Net-p

 U2Net is a salient object detection method that performs well in the foreground-background 
segmentation field.(14) This method adopts an encoder-decoder structure, with each encoder-
decoder module consisting of a U-Net network. The algorithm architecture is shown in Fig. 1, 
where the encoder downsamples the image to extract its features, and the decoder then 
upsamples these features while integrating cross-layer connections from the encoder to achieve 
effective target detection capabilities. Through multi-scale feature fusion and skip connection 
mechanisms, U2Net can effectively identify salient objects in images and has been widely used 
in tasks such as image segmentation and object detection.  
 U2Net-p also uses an encoder-decoder structure but reduces network depth and computational 
load, serving as a lightweight version of U2Net. By lowering model complexity, U2Net-p enables 
the rapid processing of images with high detection accuracy even when computational resources 
are limited. 

2.2	 Affine	transformation	and	projective	transformation

 Affine and projective transformations are two commonly used geometric transformation 
techniques in computer vision.(15) Affine transformation maintains the relative angles and 
proportions between images through operations such as translation, rotation, and scaling. In map 
image processing applications specifically, affine transformation is used to correct distortions 

Fig. 1. Diagram of U2Net architecture.
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and tilts in images. On the other hand, projective transformation changes the angular 
relationships between images and addresses distortions caused by the scanning perspective, 
enabling the accurate extraction of geographic information.

2.3	 Image	interpolation	methods

 Image interpolation is an important image processing technique in computer vision, used for 
enlarging or reducing images, improving image quality, or filling in gaps within images.(16) 
Common image interpolation methods include nearest-neighbor interpolation, bilinear 
interpolation, and bicubic interpolation. In map image processing, image interpolation is mainly 
used to fill missing areas in map images, enhancing the completeness and usability of the 
images.

3. Base Map Preparation Based on Sectional Maps: Content and Process

 A large number of old map images do not conform to the standard map format and require 
certain processing before use. Figure 2(a) illustrates the general process of preparing a base map 
from sectional map images.
1. Mark and segment the map area from the original image.
2.  Register the segmented image areas according to the standards for map usage, adjusting to 

make the map format uniform.
3. Assemble and merge multiple images to form a base map.

Fig. 2. Comparison between (a) manual and (b) automated map production processes.

(a) (b)
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 In traditional production processes, map area marking relies on tools such as Photoshop or 
ArcGIS, where individuals manually annotate the vertices of map edges, marking out map areas 
in closed sets of vertices for segmentation. The segmented map areas are typically irregular and 
require manual dragging and vertex adjustment for image registration to conform to the 
standardized map format. Finally, standard map images are stitched together with tools such as 
Photoshop or ArcGIS. The manual graphic processing workflow requires the handling of each 
map image individually, with workload linearly increasing with map size and image count, 
leading to insufficient processing accuracy and significant repetitive workload. Moreover, the 
parallel processing of a massive number of graphic files during multi-image stitching imposes a 
heavy burden on graphic processing software, resulting in poor merging performance and longer 
processing times as the number of sectional maps to be stitched increases.(17)

 To address this issue, we propose an automated base map preparation method. This method, 
based on computer vision and deep learning technologies, automatically registers and merges 
old map images to form a base map. The preparation process is depicted in Fig. 2(b). First, data 
annotation is performed to create a map image dataset, and the U2Net-p for salient target 
segmentation is trained to realize the automatic segmentation of map areas. In image registration, 
various transformations including affine transformation, projective transformation, and several 
interpolation algorithms are implemented to fine-adjust images; thus, automated image 
registration is achieved, and the cut irregular graphics are mapped to the standard format. In the 
standard map assembling stage, scripting language is used to realize automatic image stitching, 
This approach avoids the challenge of loading a large number of images into computer memory 
and achieves the full-process automation of base map stitching, which greatly improves 
efficiency while reducing manual intervention and errors. 

3.1 Dataset preparation

 On the basis of the map storage and distribution platform of the Beijing Institute of Surveying 
and Mapping, we made a historical map image dataset using a total of 1,000 sectional maps of 
various types and scales in Beijing from 1990 to 2007. Using OpenCV, we employed a semi-
automated method to prepare the labeled images for the training dataset. A labeled image is a 
binary image of two categories, where the map area contours are marked by closed shapes 
formed by vertex sets and the foreground (map area) is filled with 0, while the map background 
(other area) is filled with 1. 
 Figure 3(a) shows the flowchart of label production, and the specific process is as follows.
1.  Perform morphological transformations. Use the cv2.morphologyEx() function to enhance 

the directional features of the image. Set the kernel to [0,0,0,1,0,0,0] for the horizontal 
direction and its transpose for the vertical direction. Apply both erosion and opening 
operations on the image to remove noise and reinforce the horizontal and vertical features, as 
shown in Step 1 of Fig. 3(b).

2.  Detect map contours. Use the cv2.findContours() function to detect and filter the horizontal 
and vertical boundaries of the image. Then, calculate the intersection of these edges to 
approximate the boundary of the map area, as shown in Steps 2 and 3 of Fig. 3(b).
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3.  Manual vertex fine-tuning. In cases where poor image quality or interference causes errors in 
boundary detection, manual adjustments are required. The map’s boundary is represented by 
a series of vertices. In the visual annotation tool, such as LabelMe, manually adjust the 
number and positions of these vertices to better align with the actual map edges, as illustrated 
in the two examples in Step 3 of Fig. 3(b).

4.  Execute pixel filling. Fill the map region inside the boundary (the foreground) with a pixel 
value of 255 and the area outside the boundary (the background) with a value of 0. This 
process creates a binary label image, where the map foreground is white and the background 
is black, as shown in Step 4 of Fig. 3(b).

 To enhance the map image dataset and improve the model’s generalization ability, various 
data augmentation methods are employed to expand the original dataset.
1.  Geometric enhancement: utilizing operations such as rotation, flipping, and scaling to 

simulate deformations that maps might encounter in real-world usage.
2.  Affine transformation: This is utilized to replicate distortions caused by angle changes 

during the scanning process. 
3.  Adding noise and random erasure: This is performed to mimic missing or blurred information 

on maps, helping the model better understand and handle uncertainties.

Fig. 3. (a) Flowchart and (b) diagram of label preparation.

(a) (b)
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 By applying a combination of various data augmentation methods, the original map dataset 
expands threefold, providing ample data samples for subsequent model training. To ensure the 
effectiveness of training, the dataset is divided into a training set and a test set in a ratio of 9:1.

3.2	 Algorithm	training

 The task of map image segmentation can be classified as a binary classification problem of 
foreground–background separation. The distinction between the foreground and background in 
map images is relatively clear, making it possible for the U2Net-p algorithm to meet requirements 
with limited resources. The training process utilizes the cross-entropy loss function to calculate 
the corresponding loss for each decoder layer’s output as well as the final output saliency map’s 
loss, and a weighted sum of each layer’s loss is used as an overall loss function:

 
1   ,M m m

fuse fusemL w l w l
=

= +∑  (1)

where lm is the loss of the m layer decoder, wm is the corresponding weighting, and 𝑀 = 6 is the 
number of decoder layers. wfuse and lfuse are the loss and weighting of the final fusion output 
saliency, respectively. In each training epoch, the original image is input into the algorithm, and 
the loss between the output and the label image is calculated. After each training batch, the loss 
is backpropagated and the model is updated. The training environment and hyperparameter 
configuration used in this study are shown in Table 1.
 After 250 epochs of training with the prepared training dataset, the model basically 
converged. The loss convergence curve is shown in Fig. 4.

Table 1
Hyperparameter configuration of the experiment.
Option Optimizer Learning rate Batch size No. of epochs
Value Adam 0.05 60 250

Fig. 4. Convergence curve of model training.
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 The loss convergence curve indicates that the model maintains an overall converging trend. 
In the first 50 iterations, the model’s fitting ability is poor, resulting in a larger loss value and 
thus a higher loss reduction speed. In subsequent training, the model achieves stable 
convergence, and after approximately 200 iterations, the loss reduction trend approaches a stable 
state.

3.3	 Model	evaluation

 To comprehensively evaluate the performance of the U2Net-p model in the map segmentation 
task, the mean Intersection over Union (mIoU) was proposed as an evaluation metric, which is 
defined as the average classification accuracy of each type of pixel.(16) Classification accuracy is 
further defined as the ratio of the number of correctly predicted pixels to the total number of 
pixels in that category.
 On the test dataset, our trained U2Net-p model achieved an mIoU value of 98.63%, indicating 
exceptional performance in map area segmentation ability. Considering that the foreground part 
occupies the vast majority of the total area of the images, this high mIoU strongly demonstrates 
the effectiveness and accuracy of U2Net-p, and few minor segmentation errors at the edges of 
some maps are likely caused by annotation errors in the dataset or limitations in model training.

3.4	 Fully	automated	map	production	process

 On the basis of the accurate segmentation capabilities of the trained U2Net-p, we further 
designed and implemented an automated base map production process, as shown in Fig. 5. 
U2Net-p receives the raw map image and outputs a binary mask of the map area. Using OpenCV, 
we extracted the boundary of the mask and represented it as a closed set of vertices. With this set 
of boundary vertices, the map region is segmented and registered. The specific process is as 
follows.

Fig. 5. Automated base map production.
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1.  Take raw map images as input, and U2Net-p produces binary masks where the map area 
(foreground) is white and the background is black. The mask is used to segment the map area 
and compute the boundary vertices, denoted as N = {n1, n2, ..., ni, ..., n|N|}.

2.  The vertex set N is classified into four groups on the basis of the edges they belong to, 
resulting in four sets, N1, N2, N3, and N4, each corresponding to one of the four sides of an 
approximate quadrilateral.

3.  Apply the RANSAC algorithm(18) to four vertex sets and fit the four straight-line equations l1, 
l2, l3, and l4. Then, calculate the intersection points to obtain the four vertices d1, d2, d3, and 
d4 of the quadrilateral.

4.  For each vertex ni, its projection point in′ on the corresponding fitted line is calculated. The 
vertex vectors [n1, n2, ..., n|N|] are projected onto the quadrilateral as [ 1n′, 2n′ , …, | |Nn′ ]. Then, 
perspective transformation is performed and the map region is mapped to the quadrilateral.

5.  The height h and width w of a standard rectangular map frame are defined. The transformation 
matrix for projecting the quadrilateral’s vertex matrix [d1, d2, d3, d4] onto the standard 
rectangular frame [[0,0],[w,0],[w,h],[0,h]] is calculated. Apply projection transformation, and 
map the map region to the standard rectangular map format, thereby restoring the original 
image to the standard map style.

 The map image after registration becomes a standard rectangular map frame, as  shown in 
Fig. 6. Finally, on the basis of the map sheet numbering of sectional maps, automated map 
stitching is executed in the script program, avoiding the substantial graphic computation 
requirements involved in image reading, display, and manual operations, thus completing the 
fully automated map sheet stitching process.

4.	 Implementation	Verification

 In the project of unified natural resource confirmation and registration, the automated base 
map preparation method proposed in this study has been implemented and verified. The scheme 
involved stitching together 928 historical sectional topographic maps of Beijing to form a base 

Fig. 6. (Color online) Map segmentation and registration.
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map of the natural resource distribution in Beijing. On the basis of the pretrained U2Net-p model 
capability, 928 sectional maps were processed into standard map sheet formats. 
 In the base map stitching process, a five-digit coding rule was applied for sectional map 
numbering, structured as A–B–C, where A represents the region code, using a one-digit code, 
with values ranging from 1 to 4 to divide the Beijing map into four regions horizontally and 
vertically; B and C represent the row and column numbers in the respective regions, respectively, 
using two-digit codes with values ranging from 01 to 99. With this rule, the program is able to 
automatically identify and stitch sectional topographic maps. The effect of stitching is shown in 
Fig. 7; owing to resolution limitations, the full map cannot display the stitching effect in detail. 
Therefore, a portion of the full map has been extracted, and one specific area has been enlarged 
to clearly show the stitching result. The enlarged area corresponds to the sectional maps depicted 
in Fig. 6.
 To better evaluate the quality of stitching, we adopted the method of marking anchor point 
pairs for evaluation. In adjacent sectional maps to be stitched, several prominent corresponding 
points were manually selected as anchor point pairs, as shown in Fig. 8. After automatic stitching 
was performed, the pixel displacement of the corresponding anchor points on both sides was 
detected. If the displacement fell within three pixels, it was considered as aligned; otherwise, as 
misaligned. Two indicators were defined to quantitatively evaluate the stitching effect of the 
maps: (1) stitching accuracy and (2) average pixel displacement variance. Stitching accuracy is 
defined as the ratio of the number of aligned anchor points to the total number of anchor points.

 100%aP
A

P
= ×  (2)

Here, P represents the set of anchor point pairs and Pa the set of aligned anchor point pairs. 
Stitching accuracy determines the quality of the stitching effect without any systematic bias. The 
higher the accuracy, the higher the usability of the stitched base map.

Fig. 7. (Color online) Map segmentation and registration.
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 When measuring the pixel displacement of anchor points, the left and bottom edges of the 
images to be stitched are regarded as benchmarks, with upward and leftward displacements 
recorded as positive, while downward and rightward displacements recorded as negative. We 
recognize that the displacement of anchor point pairs may result from systematic errors during 
map image scanning processes or AI detection, leading to a consistent displacement direction 
and a similar displacement amount. Such systematic errors can be corrected through further 
pixel filling and translation transformation. Thus, we mainly focused on the chaotic displacement 
without significant characteristics. To compare the displacement degree caused by different 
interpolation methods, we used the variance of pixel displacement as a statistic to avoid 
influence from the mean value and reflect differences among pixel displacement data to the 
greatest extent. For all anchor points on the same edge, the variance is calculated, and the 
average pixel displacement variance is defined as the mean variance of pixel displacement on all 
stitched edges.

 ( )2

, 1

1 1 d

avg i
e E d e i

D
E d

δ δ
∈ ∈ =

= −∑ ∑  (3)

Here, 𝐸 is the set of edges to be stitched, e ∈ E is an edge to be stitched, 𝑑 ∈ e is the set of all 
anchor points on edge e, δi is the displacement of the 𝑖th anchor point on edge e, and δ  is the 
average displacement of anchor points on edge e.
 To compare the effect of the automated map stitching method with that of manual processing, 
100 sectional maps from the same batch were manually stitched into a 10×10 map, and the 
stitching accuracy and average pixel displacement variance were calculated using the same 
method. The comparison results with the automated scheme are shown in Table 2. The stitching 
effect is shown in Fig. 9; the automated processing method avoids many operational errors 
during manual processing. Therefore, the values of stitching accuracy and average pixel 
displacement variance are both higher than the manual processing results, indicating that the 
stitching accuracy of the automated scheme is significantly superior to that of manual processing.

Fig. 8. (Color online) Marked anchor point pairs on adjacent sectional maps.
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5. Conclusions

 On the basis of computer vision technology, we designed the automatic fusion scheme of the 
sectional map and carried out the implementation verification in the natural resources unified 
ownership registration project. On the basis of the semi-automatic map data annotation method, 
we prepared the map dataset and trained the U2Net-p model of map foreground segmentation. 
The mIoU of the model reached 98.37%. By using the model’s accurate recognition ability, the 
automatic base map splicing process was further designed and realized, and the splicing 
performance was evaluated through the annotation of anchor points. The implementation result 
showed that the splicing accuracy reached 96.67%, compared with the 73% accuracy of manual 
processing. Compared with traditional manual processing, the automatic base map fusion 
method proposed in this paper significantly enhances efficiency and reduces manual intervention 
and errors, ensuring the accuracy and consistency of the processing results.

Fig. 9. (Color online) Part of stitched map.

Table 2
Manual and automated scheme comparison.

Dataset 
preparation and 
model training

Image 
segmentation and 

registration
Map stitching Stitching 

accuracy

Average pixel 
displacement 

variance
Automatic 
processing 20 days 0.3 s/image 0.45 s 96.67% 106

Manual 
processing — 30 min/image 7.3 h 73% 2186
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