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	 Commuting flows refer to the regular movement of people from their homes to workplaces. 
The spatial heterogeneity of commuting flows indicates the uneven spatial distribution of places 
of residence, employment, or job–residence connections. Understanding the characteristics of 
spatial heterogeneity in commuting flows is vital for effective transportation planning. However, 
limited by the scarcity of flow data, traditional research on commuting flows predominantly 
focuses on the spatial distribution of employment, residence, and job–residence connections 
individually, which fails to unveil the spatial heterogeneity of commuting flows. In this study, 
we examined the spatial heterogeneity of commuting flows in Beijing using mobile phone data. 
We analyzed the degree of heterogeneity and the aggregation scale of commuting flows. The 
results showed that (1) the degree of spatial heterogeneity varies between different regional 
pairs, and (2) the aggregation scale of commuting flows varies with distance; moreover, the 
longer the distance, the larger the aggregation scale of commuting flow distribution, and 
dominant heterogeneous clusters expand from the center to the periphery. These findings 
enhance the strategic planning of public transit. In less densely populated areas such as those 
outside the Fifth Ring Road, efficiency can be boosted by new bus routes. In contrast, denser 
areas such as those within the Third Ring Road, may benefit from an integrated approach: 
establishing new rail systems alongside expanded bus services to optimize commuting.

1.	 Introduction

	 Commuting flows refer to the movement of individuals from their residences to their places 
of employment, constituting one of the most significant flows within urban areas.(1) Commuting 
accounts for the largest proportion of transportation demand within cities. Comprehensive 
transportation surveys in major Chinese cities indicate that commuting trips on average 
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constitute 40–50% of daily travel during the workweek; a substantial volume of these trips is 
concentrated during the morning and evening peak hours, leading to congestion that is a primary 
cause of traffic jams in urban peak periods.(2) Furthermore, as one of the most common types of 
daily travel, commuting flows are also significant pathways for transmitting infectious 
diseases.(3–5) Moreover, excessive commuting distances and increased travel times due to 
congestion significantly diminish the well-being of individuals. Therefore, research on 
commuting flows is vital for ensuring the efficient operation of urban transportation, 
safeguarding the health and safety of urban residents, and enhancing the overall sense of well-
being among the populace. 
	 The emergence of commuting flows is attributed to the phenomenon of job–residence 
separation among urban residents, where workplaces are located beyond the boundaries of 
residential communities.(6,7) On one hand, with the rapid pace of urbanization, urban spaces 
have been continuously expanding, leading to an imbalanced development of urban functions, 
particularly in the allocation of employment and residential spaces, resulting in a spatial 
mismatch between living and working areas. On the other hand, the “suction effect” of central 
business districts and surrounding large cities on employment functions and core infrastructures 
has diminished the significance of distance as the sole consideration for residents when choosing 
employment.(8) Consequently, the phenomenon of job–residence separation in cities has become 
increasingly pronounced, with residents’ commuting distances and times gradually increasing, 
leading to a range of urban issues such as traffic congestion, environmental pollution, and a 
decline in the quality of life. 
	 Traditional research on commuting flows has been constrained by the scarcity of flow data. 
For instance, studies on commuting flows based on census data are typically limited by the low 
spatial resolution of the data, allowing for analysis only from the macroperspective of cities or 
the mesoperspective of districts and counties, without capturing the microlevel individual 
variations in commuting behavior and their underlying mechanisms.(9,10) Research based on 
transportation survey data, while capable of obtaining detailed individual attribute information 
tailored to research needs, is fraught with issues such as high costs and limited representatives of 
the sample.(11)

	 The advent of the big data era has presented opportunities for the study of commuting flows. 
With the advancement of communication, networking, and location-aware technologies, along 
with the widespread application of various sensors and intelligent terminals in urban areas, 
large-scale human activity trajectory data are being recorded in different forms at the individual 
level. Examples are the Global Positioning System (GPS) trajectories of residents recorded by 
taxis or ride-hailing services,(12) the station information of people boarding and alighting from 
buses or entering and exiting subways recorded by smart transportation cards,(13–15) and the real-
time or call locations of users recorded by mobile phones, social media check-in locations,(16,17) 
as well as the locations of internet and app requests.(18) These multisource, fine-grained, and 
large-scale trajectory data are experiencing explosive growth in cities, providing a rich source of 
flow data for the study of commuting flows and offering opportunities for in-depth research on 
the spatial distribution patterns and dynamic mechanisms of commuting from the perspective of 
commuting flows. Therefore, in this study, we aim to extract residential and employment 
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locations from the trajectory information of residents in mobile phone signal data, express 
commuting flows in the form of origin–destination (OD) flows, and thereby study the spatial 
distribution characteristics of commuting flows.
	 The spatial heterogeneity of commuting flows refers to the uneven distribution of places of 
residence, employment, or job–residence connections in space. Investigating the characteristics 
of spatial heterogeneity in commuting flows can help identify areas within cities where the 
distribution of commuting flows is more concentrated, thereby addressing issues of localized 
traffic congestion.(19) Current research on the heterogeneity of commuting flow distribution 
primarily focuses on two aspects. On one hand, it examines the distribution characteristics of 
employment or residence individually and measures the spatial matching relationship between 
places of residence and employment through indicators such as the job-to-residence ratio and 
self-sufficiency within certain geographical units.(20–22) On the other hand, it pays attention to 
the distribution characteristics of commuting volume, distance, or commuting time formed by 
job–residence connections, characterizing the spatial differentiation of job–residence 
connections through visualization or network analysis methods. For instance, on the basis of 
points of interest (POI) and housing price data, Zhang et al. analyzed the commuting distance 
distribution of ten megacities in China with a resident population exceeding ten million using 
kernel density analysis and found that there is a clear spatial agglomeration of commuting 
distances in all cities, with residents in central areas and their vicinity typically having shorter 
commuting distances.(23) Yang et al. identified residents’ places of residence and employment in 
Shenzhen using mobile phone data and constructed a commuting demand network, applying 
community detection algorithms to analyze the community structure of the commuting demand 
network, revealing that Shenzhen not only exhibits a polycentric structure overall but also 
contains polycentric structures within each community.(24)

	 However, current research on the heterogeneity of commuting flows predominantly focuses 
on the spatial distribution heterogeneity of employment, residence, and job–residence 
connections individually. There is a lack of studies that consider the spatial distribution 
heterogeneity of commuting flows holistically, such as the degree of spatial heterogeneity and 
the scale of aggregation. Understanding this heterogeneity is crucial for several reasons. First, it 
allows planners to identify areas with high commuting intensity, which are likely to experience 
traffic congestion. By pinpointing these areas, planners can develop targeted solutions, such as 
improving public transportation networks or creating incentives for alternative commuting 
methods. Second, the spatial distribution of commuting flows can guide the strategic placement 
of new transportation infrastructure. For instance, areas with large-scale aggregation of 
commuting flows may benefit from new rail systems, while those with smaller aggregation 
scales might require enhanced bus services. Third, recognizing the heterogeneity of commuting 
patterns can help in the planning of mixed-use developments that bring together residential, 
commercial, and recreational spaces. This can reduce the need for long-distance commuting and 
associated traffic congestion. Lastly, our research provides a granular analysis that moves 
beyond macrolevel assessments. By examining the spatial heterogeneity at a microlevel, we can 
uncover hidden patterns and nuances that traditional, aggregate studies might overlook. This 
detailed understanding can lead to more nuanced and effective urban planning strategies.
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	 Therefore, in this study, we intend to investigate the geometric heterogeneity (overall 
distribution) and attribute heterogeneity (flow volume, flow length) of commuting flows by 
examining the scale of aggregation and spatial differences in flow volume and flow length, 
thereby providing references for urban and transportation planning.	

2.	 Methods

	 The spatial heterogeneity of commuting flows refers to the degree to which the spatial 
distribution of these flows deviates from complete spatial randomness in a clustered form. We 
characterized the heterogeneity of commuting flows in two aspects. First, by using the 
heterogeneity metric FA-w, we delineated the degree of heterogeneity in the distribution of 
commuting flows, thereby understanding the imbalance in the distribution of commuting flows 
among different urban areas. Second, we characterized the scale of heterogeneity in the 
distribution of commuting flows (the maximum scale of spatial aggregation of commuting 
flows), thereby understanding the scope of concentrated commuting within the city and 
providing a reference for corresponding transportation planning.

2.1	 Definition and expression of commuting flows

	 We define commuting flows as the movement between the home and the workplace of an 

individual. Commuting flows can be mathematically expressed as ( ) ( )( ), , ,O O D D
i i i i if x y x y= , in 

which ( ),O O
i ix y  is the coordinate of the location of residence and ( ),D D

i ix y  is the location of the 
workplace.

2.2	 Definition of distance between flows
	
	 Since both the degree of heterogeneity and the scale of heterogeneity of flows involve the 
measurement of flow distance, We define flow distance in this section. According to Shu et al., 
there are two definitions of flow distance, namely, maximum distance and additive distance.(25) 
The maximum distance refers to the greater value of the Euclidean distance between the origins 
and the destinations, and the additive distance refers to the sum of the Euclidean distances 
between the origins and the destinations. In this study, we used maximum distance to measure 
the degree and aggregation scale of the spatial heterogeneity of flows. The maximum distance 
between flows is calculated as 

	 ( )max , ,f O D
ij ij ijd d d= 	 (1)

where f
ijd  is the maximum distance between fi and fj, 

O
ijd  is the Euclidean distance between the 

origins, and D
ijd  is the Euclidean distance between the destinations. We chose the maximum 

distance because it is suitable for measuring the spatial extents of a flow cluster.(25) In this paper, 
the maximum distance is used to measure the aggregation scale of commuting flows, which is 
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helpful for understanding the extent of residence or work place cluster, so as to put forward the 
corresponding traffic planning. 

2.3	 Measurement of the degree of spatial heterogeneity of flows

	 The spatial heterogeneity of commuting flows is defined as the degree of deviation from a 
random or uniform distribution. According to Shu et al., FA-w has been demonstrated to be a 
robust statistic in quantifying the heterogeneity of flows.(26) Therefore, we used the FA-w 
statistic to quantify the heterogeneity in the spatial distribution of commuting flows. FA-w is 
defined as the ratio of the mean first-order nearest neighbor distance of the observed flow 
dataset to the expected first-order nearest neighbor distance of a completely spatially random 
flow dataset of the same intensity. The calculation formula is(26)

	
( ) ( )
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where W  is the mean first-order nearest neighbor distance of observed flows, and E(W) is the 
expected first-order nearest neighbor distance of a completely spatially random flow dataset of 

the same intensity. For completely spatially random flows, FA-w follows a normal distribution, 
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. Consequently, the FA-w of the observed flow dataset can be 

calculated using Eq. (1) to assess the degree of spatial heterogeneity: a higher FA-w indicates a 
lower degree of spatial heterogeneity in the flow distribution.

2.4	 Measurement of the aggregation scale of flows

	 Aggregation is one of the most common heterogeneous patterns of geographical flows. The 
aggregation scale characterizes the radius of maximal aggregation.(25) Quantifying the scale of 
aggregation of commuting flows is important for transportation planning. For example, in areas 
with a small scale of aggregation, such as those with scales smaller than the distance that a bus 
can travel in 15 min during off-peak hours, commuting efficiency can be enhanced by adding 
bus lines; in areas with a large scale of aggregation, such as those with scales larger than the 
distance that a bus can travel in 15 min during off-peak hours, the commuting demands over a 
wide range can be met by a composite approach involving the construction of new rail transit 
systems and the addition of bus lines. Therefore, we aim to measure the aggregation scale of 
commuting flows on the basis of the L function of flows proposed by Shu et al. The L function 
is the derivative of the K function, which is calculated using(25)

	 ( ) ( ),
ˆ/ , ( , 1,2,..., ; )F ij Fi jK r r n i j n i jσ λ= = ≠∑ ∑ ,	 (3)
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where r is the distance (i.e., the aggregation scale), n is the number of flows in the study area A, 
ˆ /f An Vλ = , and VA is the volume of the research flows being studied. When the distance between 

the flows fi and fj is not larger than r, then σf,ij(r) = 1; otherwise, on the basis of the K function of 
flows, the L function of flows can be calculated as 
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where L(r) is the L function of flows and Li(r) is the local L function of each flow. The relevant 
variables in Eqs. (4) and (5) have the same meanings as those in Eq. (3).
	 On the basis of the above formula, we extract the dominant commuting flows of different 
levels through the L function and the derivative of the L function. These include three main 
steps. First, determine the dominant cluster’s aggregation scale. Calculate the L function of the 
commuting flows and record the maximum of the L function as [Lmax]; then, the first local 
minimum on the right of L'([Lmax]) of the derivative of the L function is the aggregation scale rm 
of the dominant cluster. Second, extract the dominant cluster. Calculate the local L function 
values of all flows under rm and find the top 20 flows with local L function values and the flows 
within the rm range of these flows, that is, the dominant cluster. Third, sequentially extract 
dominant clusters. Exclude the dominant clusters identified in step (2) and continue to repeat 
steps (1) and (2). Using these three steps, we can obtain different levels of aggregated commuting 
flows. Figure 1 shows the flow chart of the process of calculating aggregation scales and 
dominant clusters. 
	 To illustrate the process of calculating aggregation scales and dominant clusters, we simulated 
a flow distribution and calculated its aggregation scales and extracted its dominant clusters. 
Figure 2 shows the simulated flow distribution [Fig. 2(a)] and the results of dominant clusters 
[Figs. 2(d) and 2(h)]. The simulated flows include 1000 flows, which are composed of 400 
randomly produced flows, 400 concentrated flows with an aggregation scale of 0.2, and 200 
concentrated flows with an aggregation scale of 0.1. The method of generating 400 aggregated 
flows with an aggregation scale of 0.2 is as follows: continuously generate a random flow, if the 
distance between the randomly generated f low and the predefined central f low of 

( ) ( )( )1 0.1,0.8 , 0.8,0.1f =  is less than 0.1, it will be retained; otherwise, it will continue to 
generate random flows until the number of flows reaches 400. By the same method, the 200 
concentrated flows with an aggregation scale of 0.1 are also produced, whose predefined central 
flow is ( ) ( )( )2 0.3,0.2 , 0.6,0.6f = . For the original flow distribution, we first calculated its L(r), 
Li(r), and L'(r). The results of L(r) and L'(r) are shown in Figs. 2(b) and 2(c), respectively. 
According to the curve of L(r), we found that the local maximum of L(r) is 1.5; therefore, [Lmax] 
is 1.5. Further consider the curve of L'(r), and find the first local minimum of L'(r) to the right of 
[Lmax], which is 0.2; therefore, Rm is 0.2. On the basis of Rm, we then found the top 20 flows with  
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Fig. 1.	 (Color online) Flow chart of the process of calculating aggregation scales and dominant clusters.

Fig. 2.	 (Color online) Illustration of calculating aggregation scales and dominant clusters.
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Li(0.2) and the flows with a distance of less than 0.2 from the top 20 flows, and these flows 
composed the dominant cluster, which represents the statistically significant clustering flows. 
After excluding the first level of a dominant cluster, we repeated the above steps for the 
remaining flows [Fig. 2(e)] and obtained the second level of the dominant cluster [Fig. 2(h)]. 
After excluding the second dominant cluster, there is no local minimum of L(r); therefore, there 
is no other dominant cluster. 

3.	 Study Area and Datasets

	 We took Beijing as the study area. On the basis of the mobile phone data collected in Beijing, 
we identified the commuting flows of mobile phone users and quantified the heterogeneous 
characteristics of commuting flows.

3.1	 Study area

	 Beijing is one of the megacities in China, with a permanent urban population exceeding 10 
million. With the rapid urbanization and the continuously growing demand for commuting 
traffic, the traffic congestion problem in Beijing has become increasingly prominent, 
considerably reducing the efficiency of the city’s normal functioning. Therefore, we took Beijing 
as an example to analyze the heterogeneous distribution characteristics of commuting flows.
	 When analyzing the spatial heterogeneity of commuting flows, we divided the area within 
the Sixth Ring Road of Beijing into different subzones and characterized the spatial heterogeneity 
of commuting flows between different zones. Specifically, on the basis of the boundary of the 
administrative district of Beijing, the adjacent small administrative districts were merged, and 
finally, 10 subdistricts were obtained. Figure 3 shows the study area.

Fig. 3.	 (Color online) Study area.
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3.2	 Datasets

	 In this paper, we mainly used mobile phone signaling data from Beijing, which were collected 
from September 1 to September 30, 2019. Table 1 shows the location information recorded in the 
mobile phone signaling data. The data mainly include the encrypted unique identifier of the user, 
the longitude and latitude of the base station, and the timestamp when the base station was 
connected. 
	 On the basis of location trajectory records in the mobile phone signaling data, we used the 
visit frequency method to identify the residence and workplace of mobile phone users, thereby 
obtaining the commuting flows of individual users. The identification principle of the visit 
frequency method is to regard the base station where the user appears most frequently between 
22:00 and 06:00 as the location of home, and the base station where the user appears most 
frequently between 09:00 and 11:00 as well as between 14:00 and 17:00 on weekdays (Monday to 
Friday) as the workplace. 
	 Since the peak congestion in Beijing is mainly concentrated within the Sixth Ring Road, in 
this study, we selected commuting flows within the Sixth Ring Road of Beijing for statistical 
analysis. Besides, the commuting that causes traffic congestion is mainly nonwalking distance 
commuting; therefore, we were mainly concerned with commuting flows with a distance (i.e., 
the length of the commuting flow) exceeding 800 meters.

4.	 Results and Discussion

	 We first analyzed the degree of the spatial heterogeneity of commuting flows among different 
subregions. Then, we compared the aggregation scales of commuting flows of different lengths 
and discuss the implications of the results.

4.1	 Degree of spatial heterogeneity of commuting flows

	 We aggregated the commuting flows with each region shown in Fig. 1 and obtained the 
aggregated commuting flows between 10 × 10 = 100 regional pairs. The results of 1-FA-w 
statistics are shown in Table 2, in which the higher the value of 1-FA-w, the more heterogeneous 
the commuting flows. From Table 2, the heterogeneity of regional pairs shows significant 
differences, and the distribution of commuting flows shows asymmetric spatial heterogeneity. 
Among the regional pairs, the pairs with high heterogeneity (higher than 0.7) of commuting flow 

Table 1
Sample of mobile phone signaling data.
User Id Longitude of base station Latitude of base station Timestamp 
6baf34***24069d 116.5***4 39.7***2 2019-09-16 00:00:09
6baf34***24069d 116.5***7 39.7***7 2019-09-16 00:00:19
… … … …
6baf34***24069d 116.3***9 39.8***1 2019-09-16 23:59:17
6baf34***24069d 116.3***8 39.8***4 2019-09-16 23:59:31
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distribution are Fengtai–Haidian, Fangshan–Shijingshan, and Fangshan–Shunyi; the pairs with 
low heterogeneity (lower than 0.5) of commuting flow distribution are Dongcheng–Fengtai, 
Fengtai–Chaoyang, and Daxing–Haidian.
	 To understand the difference in the spatial heterogeneity of commuting flows between 
regions, we visualized the commuting flows between the above six regions with high and low 
heterogeneities. Figure 4 shows the result of visualization. From Fig. 4, the commuting flows 
with high heterogeneity are mainly distributed among regional pairs on the west side of the Sixth 
Ring Road. Among them, the high heterogeneity of commuting flow distribution in Fangshan–
Shunyi may be related to the airport in Shunyi District, and the flows from other districts to the 
airport are relatively concentrated, resulting in high heterogeneity. However, the commuting 
flows with low heterogeneity are mainly distributed in the middle region of the Sixth Ring Road, 
and the distributions of their homes and workplaces are large and dispersed, so the distribution 
of flows is relatively random, and the heterogeneity is low.

4.2	 Aggregation scales of commuting flows

	 To compare the aggregation scales of commuting flows of different lengths, we divided the 
commuting flows in the Sixth Ring Road into four categories according to different distances: 
short distance (≤1.5 km), median-short distance (1.5–5 km), median–long distance (5–10 km), 
and long distance (10–20 km). The aggregation scales of these four types of flow were obtained 
by using the L function defined in Eq. (4) and the derivative of the L function defined in Eq. (5). 
The results are shown in Fig. 5. In Fig. 5, grey and other colored lines represent commuting 
flows, the other colored lines are clusters identified by the local L function, and the thick red 
lines are the top 10 commuting flows ranked by the value of the local L function.
	 From Fig. 5, the aggregation scale of commuting flows varies with distance, and the longer 
the distance, the larger the aggregation scale of commuting flow distribution, and the dominant 
heterogeneous cluster expands from the center to the periphery. Among the dominant clusters, 
the aggregation scale of commuting flows in short distances (≤1.5 km) is 10.5 km, and the 
dominant heterogeneous cluster is within the Third Ring Road, especially in the northwest 
corner of the Third Ring Road. This result may be caused by the universities clustered in the 

Table 2
Heterogeneity of commuting flows among different regions in Beijing.
1-FA-w Core area Chaoyang Haidian Shijingshan Fengtai Changping Shunyi Tongzhou Daxing Fangshan
Core area 0.58 0.60 0.56 0.52 0.50 0.54 0.64 0.61 0.54 0.54 
Chaoyang 0.58 0.61 0.56 0.53 0.42 0.58 0.62 0.54 0.51 0.66 
Haidian 0.57 0.57 0.58 0.61 0.75 0.58 0.68 0.60 0.49 0.66 
Shijingshan 0.55 0.60 0.56 0.59 0.49 0.57 0.64 0.61 0.52 0.74 
Fengtai 0.49 0.59 0.62 0.56 0.61 0.64 0.71 0.64 0.62 0.61 
Changping 0.55 0.62 0.56 0.57 0.58 0.66 0.62 0.59 0.51 0.69 
Shunyi 0.52 0.58 0.54 0.56 0.59 0.64 0.62 0.51 0.50 0.72 
Tongzhou 0.52 0.66 0.60 0.58 0.62 0.70 0.64 0.59 0.71 0.70 
Daxing 0.52 0.61 0.59 0.51 0.59 0.65 0.67 0.65 0.64 0.70 
Fangshan 0.65 0.60 0.58 0.56 0.60 0.67 0.63 0.67 0.58 0.72 
Note: the columns of the table are the origins and the rows of the table are the destinations.
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(a) (b)

Fig. 4.	 (Color online) Distribution of commuting flows with (a) low and (b) high heterogeneities.

(a) (b)

(c) (d)

Fig. 5.	 (Color online) Aggregation scales of different distances of commuting flows: (a) short distance (10.5 km), 
(b) median-short distance (12.2 km), (c) median-long distance (14 km), and (d) long distance (17.2 km).

Core area–Fengtai area
Fengtai area–Chaoyang area
Daxing area–Haidian area

Fengtai area–Haidian area
Fangshan area–Shijingshan area
Fangshan area–Shunyi area
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corner, such as Beijing Normal University, Beijing University of Aeronautics and Astronautics, 
Renmin University of China, Beijing Jiaotong University, Zhongguancun Campus of Beijing 
Institute of Technology, and University of Science and Technology Beijing. It shows that the 
clusters of short-distance commuting flows are mainly caused by the commuting of college 
students between the dormitory and the classrooms. The aggregation scales of commuting flows 
at median-short distances (1.5–5 km) and median-long distances (5–10 km) and long distances 
are 12.3 and 14 km, respectively, and their respective dominant cluster distributes at a similar 
range of space, both within the Third Ring Road or at the edge of the Third Ring Road. These 
areas are mainly the “unit courtyard” in Beijing. Before the 1880s, these regions were 
characterized by large compounds where living and working spaces were combined. In the post-
1880s, the traditional structure of these institutional compounds began to disintegrate, yet many 
organizations retained the condition of proximity between the residential buildings and the 
workplaces for their employees. As a result, the commuting distances within these areas 
remained relatively short. For the long-distance commuting flows (10–20 km), their aggregation 
scale is 17.2 km, and their heterogeneous cluster is mainly in the Fourth Ring Road. This result 
may be due to the higher population density in the Fourth Ring Road than in other areas. 
Therefore, the commuting flows within the Fourth Ring Road form the cluster. 
	 To further understand the clustering pattern of the commuting flows of different distances, it 
is necessary to unveil the hierarchical clustering of the commuting flows. Taking the commuting 
flows at median-short distances (1.5–5 km) and the commuting flows at long distances (10–20 
km) as examples, the step-by-step clustering extraction method introduced in Sect. 2.3 is 
adopted. The first-level dominant clustering is first identified, then the first-level dominant 
clustering is eliminated, and the second-level dominant clustering is extracted for the remaining 
flow. This is repeated until a preset condition (such as a maximum level limit or a limit on the 
number of remaining streams) is met. The following introduces the hierarchical clustering 
patterns of median-short-distance and long-distance commuting flows.

4.2.1	 Aggregation scales of median-short-distance commuting flows

	 Figure 6 shows the step-by-step cluster identification results of commuting flows at median-
short distances. From Figs. 6(a) to 6(i), the dominant clusters from levels 1 to 9 are respectively 
shown by red lines. Dominant clusters at all levels gradually spread from the center to the 
periphery, the range of dominant clusters at all levels gradually decreased, and the flow density 
gradually decreased.
	 Figure 7 shows all the nine-level dominant clusters of commuting flows at median-short 
distances. It shows that the distribution of the dominant cluster at all levels basically covers all 
commercial centers in Beijing, such as the core area within the Third Ring Road, the central area 
between the Third Ring Road and the Fifth Ring Road, the extension line of Chang ‘an Avenue 
between the Fifth Ring Road and the Sixth Ring Road, the subcenter of the city (Tongzhou), 
Fangshan, Daxing, Yizhuang, and other commercial districts.
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4.2.2	 Aggregation scales of long-distance commuting flows

	 Figure 8 shows the identification results of the first three levels of the dominant cluster for 
long-distance (10–20 km) commuting flows. As can be seen from Fig. 8, the scale of dominant 
clusters of the first three levels of long-distance commuting flows gradually decreases. These 
dominant clusters cover two important “commuter corridors” within the Sixth Ring Road, such 
as Tiantongyuan–downtown and downtown–Tongzhou. Another common commuter corridor, 
Huilongguan–Zhongguancun, was not recognized, possibly because its average commute 
distance is longer than 20 km.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6.	 (Color online) Step-by-step cluster identification results of commuting flows at median-short distances 
(1.5–5 km). (a) Level 1: 12.2 km. (b) Level 2: 8.9 km. (c) Level 3: 9.5 km. (d) Level 4: 9.5 km. (e) Level 5: 9.7 km. (f) 
Level 6: 8.7 km. (g) Level 7: 8.3 km. (h) Level 8: 7.0 km. (i) Level 9: 8.3 km.
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4.3	 Implications for public transportation planning

	 The findings on the spatial heterogeneity and aggregation of commuting flows offer several 
key insights that can inform the rational planning of public transportation systems in Beijing. 
Given the varying levels of commuting flow aggregation across different regions and the nature 
of these clusters, we provide several recommendations for enhancing the public transportation 
system.
	 First, target infrastructure investment in high-heterogeneity areas is needed. In this study, we 
identified regions with high spatial heterogeneity in commuting flows, such as Fangshan–
Shunyi and Fengtai–Haidian. These areas exhibit concentrated flow patterns that highlight 
bottlenecks in current transportation networks. Addressing these issues requires the following: 

Fig. 7.	 (Color online) Distribution of hierarchical dominant clusters identified from median-short-distance (1.5–5 
km) commuting flows.

(a) (b) (c)

Fig. 8.	 (Color online) Step-by-step cluster identification results of commuting flows at long distances (10–20 km). 
(a) Level 1: 17.2 km. (b) Level 2: 11.7 km. (c) Level 3: 9.7 km.



Sensors and Materials, Vol. 36, No. 10 (2024)	 4469

(1) High-capacity transit solutions: In regions such as Fangshan–Shunyi, where commuting 
flows are concentrated, investment in high-capacity transit solutions such as dedicated bus rapid 
transit (BRT) lanes or light rail can significantly alleviate pressure. The strategic placement of 
these systems along identified high-flow corridors will reduce congestion, especially during 
peak hours. Improving last-mile connectivity: high-heterogeneity areas often suffer from poor 
last-mile connectivity. (2) Expanding local bus services to feed into major transit hubs or adding 
bike-sharing systems near rail stations can improve accessibility. This will particularly benefit 
areas where the heterogeneity is driven by concentrated workplace destinations such as airports 
or business centers.
	 Second, a more flexible transportation strategy is needed for dispersed commuting in low-
heterogeneity areas. We find that there are some areas with low spatial heterogeneity, such as 
Dongcheng–Fengtai regions. In such regions, expanding and optimizing bus routes will be more 
efficient than focusing solely on rail systems. Implementing dynamic, demand-responsive bus 
systems that adapt to real-time commuting data can offer flexible solutions. For example, 
microtransit services using smaller vehicles that adjust routes on the basis of commuting demand 
can serve dispersed residential and employment zones more effectively. Since commuting 
patterns are less predictable in low-heterogeneity areas, encouraging the use of integrated 
mobility platforms, where commuters can seamlessly transition between various transport 
modes (e.g., ride-sharing, public transit, bike-sharing), can improve transport efficiency and 
reduce reliance on single-mode transport solutions. These platforms can provide commuters 
with a range of options tailored to their specific routes.
	 Third, the transit system can be enhanced by considering the specific need of commuters 
with different commuting distances. For long-distance commuters, especially those traveling 
between suburban and central districts, three planning strategies deserve consideration: (1) 
Extending existing rail lines. Extending metro or suburban rail networks into densely populated 
outer zones, such as the Fourth Ring Road and beyond, will provide relief to existing road 
networks. This can reduce reliance on personal vehicles and enhance the overall sustainability of 
the transportation system. (2) Focusing on “commuter corridors”. The study highlights specific 
commuter corridors such as downtown to Tongzhou. Investment in express rail lines or high-
speed bus services along these routes can significantly reduce travel times and congestion. For 
example, dedicated buses or priority lanes for long-distance commuters can help avoid peak-
hour bottlenecks. For short-distance commuters, dedicated short-distance transit services and 
pedestrian and cycling infrastructure should be enhanced. The results indicate that short-
distance commuting flows are concentrated within specific regions, such as the areas 
surrounding major universities. Introducing frequent shuttle services or small electric buses that 
cater to short-distance commuters, such as university students or local employees, will be an 
effective solution. This can reduce the pressure on larger public transit systems by diverting 
short commutes to smaller, localized networks. Moreover, for areas where short-distance 
commuting is prevalent, enhancing pedestrian pathways and dedicated cycling lanes can 
promote active transport modes. For example, creating “bicycle highways” between densely 
packed residential and employment centers (such as university campuses) will support 
sustainable transport and reduce the need for short bus trips.
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5.	 Conclusions

	 In this study, we investigated the spatial heterogeneity of commuting flows in Beijing using 
mobile phone data, analyzing the degree of heterogeneity and the aggregation scale of 
commuting flows. The three main findings are as follows:
(1) The degree of spatial heterogeneity varies between different regional pairs; while Fengtai–

Haidian, Fangshan–Shijingshan, and Fangshan–Shunyi have high heterogeneity, Dongcheng–
Fengtai, Fengtai–Chaoyang, and Daxing–Haidian have low heterogeneity.

(2) The aggregation scale of commuting flows varies with the distance, and the longer the 
distance, the larger the aggregation scale of commuting flow distribution, and the dominant 
heterogeneous clusters expand from the center to the periphery. 

(3) The dominant cluster of commuting flows at median-short distances is mainly composed 
of commercial centers in Beijing, and the dominant cluster of commuting flows at long 
distances is mainly composed of “commuter corridors” within the Sixth Ring Road.

	 These findings can guide the rational planning of public transportation: in areas with a small 
scale of aggregation, such as scales smaller than the distance that a bus can travel in 15 min 
during off-peak hours, enhancing commuting efficiency can be achieved by adding bus lines; in 
areas with a large scale of aggregation, such as scales larger than the distance that a bus can 
travel in 15 min during off-peak hours, the commuting demands over a wide range can be met by 
a composite approach involving the construction of new rail transit systems and the addition of 
bus lines. However, this study also has some limitations. For example, we mainly focused on the 
spatial heterogeneity of commuting flows with distances shorter than 20 km, which may ignore 
the possible heterogeneity caused by longer commuting flows. In the future, longer commuting 
flows can be analyzed and compared to better understand the spatial distribution characteristics 
of commuting flows.
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