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	 Nowadays, more and more people are wearing smartwatches in their daily lives. The various 
sensors embedded in smartwatches bring the ability to evaluate users’ status as well as the risk 
of privacy issues. For example, if users are typing on keyboards while wearing smartwatches, 
the attacker can know the typed contents from the sensor data collected by the malicious 
applications that are installed on the targets’ smartwatches. In this paper, we propose 
WatchLogger, a framework using audio and accelerometer signals to recognize the English 
words being typed, to demonstrate how to implement the smartwatch-based side-channel attack. 
In contrast with previous studies that focused on the recognition of each key or pair of keys 
being pressed, WatchLogger aims to perform recognition on the scale of words. To achieve this 
goal, WatchLogger exploits the audio signals for segmentation and the accelerometer signals for 
classification. In addition, we propose an ensemble classification model to deal with the problem 
caused by too many words. Finally, we build the WTW-100 dataset (Wearable Typed Words 
dataset with 100 classes of words) using data from four participants and conduct experiments on 
the basis of this dataset. The experimental results show accuracies of 98.31 and 99.62% and F1 
scores of 0.9745 and 0.9855 for keystroke detection and classification, respectively, and an 
accuracy of 79.76% for word classification, indicating a considerable performance of 
WatchLogger.

1.	 Introduction

	 Smartwatches are becoming ubiquitous in people’s daily lives. These portable smart devices 
are equipped with various sensors, such as an optical sensor, an accelerometer, and a microphone, 
making it possible to provide useful applications for recognizing users’ status, such as heart rate 
monitoring, sports logging, and fall detection. However, these sensors also carry sensitive 
information that could be potentially invasive, especially when the devices are so compact and 
nonintrusive that users could easily neglect them and relax their vigilance. Attackers can collect 
sensor data from target users through a malicious application installed on the smartwatch and 
transmit the data to attackers’ machines so that attackers can infer certain information about the 
targets, posing a threat to the privacy of smartwatch users.
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	 Assuming that a user is typing using a keyboard while wearing a smartwatch, the attacker 
can clearly infer the typed contents from the sensor data of smart devices.(1–3) Intuitively, the 
typing event consists of three types of hand activity, namely, moving toward the key, pressing, 
and releasing. When typing different words, the trajectories of hand movements could be 
different, as well as the fingers used to press keys. These subtle differences are reflected in the 
unique patterns of wrist motions that can be measured by a wrist-worn accelerometer. Therefore, 
the typed contents can be inferred from accelerometer signals. In addition, the sounds of 
keystrokes provide extra information, such as whether someone is typing or not, and can be 
obtained from the microphone embedded in the smartwatch.
	 Most previous works focus on the recognition of each key or pair of keys being pressed. 
Harrison et al.(4) proposed a framework that classifies 36 keystrokes on a MacBook keyboard on 
the basis of their sounds. Maiti et al.(1) examined the hand movement directions while typing and 
inferred the typed words from the series of directions. The advantage of these methods is that 
the number of target classes is small and fixed. However, the keystroke samples are hardly 
distinguishable owing to the short period of pressing one key (e.g., less than 1 s) and are 
vulnerable to external interference, such as environmental noise. Another problem is that using 
accelerometer signals to recognize each keystroke is nearly impossible because the trajectory of 
the hand when pressing one key depends not only on the current key but also on the previous key 
(e.g., the movements of pressing “e” in the words “are” and “be” are different), making it difficult 
to find a solution on the scale of a single key. In conclusion, the deficiency of key-by-key–based 
methods is that the information contained in pressing a single key is limited, making the system 
less robust.
	 In this paper, instead of recognizing each key, we propose WatchLogger, a method that 
recognizes the scale of words using both audio and accelerometer signals. To enable word 
recognition, we propose three assumptions. First, only English words will be recognized. 
Second, all words in a sentence are segmented by the space key. Third, we only focus on the 
keys of lower-case a–z and the space key. Under these assumptions, WatchLogger is able to 
segment the signals into frames that represent each single word by finding all space keystrokes 
and can train a word classifier using the labeled frames. One problem is how to find space 
keystrokes. We note that the sound of pressing a space key is distinct from that of other keys on a 
keyboard, so we can recognize them by audio signals. In this paper, we propose a novel and 
efficient method to find all keystrokes in the audio signals and distinguish the space keystrokes, 
which solves several problems in traditional ways. In addition, the number of words is large in a 
real situation, making it difficult to classify all of the words. Actually, the attacker does not need 
to know every word being typed by the target user, that is, the keywords in the dictionary are 
enough. Considering that the number of keywords could still be large, we design an ensemble 
model that divides the word set into subsets to decrease the number of classes for each submodel. 
This work is an extended version of our previous research(5) and mainly has the following 
contributions:
1)	 We proposed a method to recognize typed words on the basis of audio and accelerometer 

signals.
2)	 We proposed a model to recognize words on the word scale, different from the previously 

used scale of a single key or pair of keys.
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3)	 We designed an ensemble model to decrease the number of classes for each submodel, 
considering that the number of words can be large.

4)	 We built a dataset containing 100 classes of words and 100 samples for each class of words, 
with the corresponding accelerometer and audio signals.

The main changes and extensions in this study include the following:
1)	 We replaced the keystroke recognition algorithm used in our previous work with a novel and 

efficient detection method that finds all keystrokes in the audio signals and distinguishes the 
space keystrokes.

2)	 We extended our dataset from one participant to four participants and ran more comparative 
experiments on the basis of this dataset.

3)	 We gave a simple discussion of how to prevent this type of attack by implementing our 
method.

	 The rest of this paper is organized as follows. In Sect. 2, we review the related works. In Sect. 
3, we present the details of WatchLogger. In Sect. 4, we describe the dataset and settings of the 
experiments, as well as the experimental results. In Sect. 5, we discuss some issues in a real 
situation. Finally, we give a brief conclusion.

2.	 Related Work

	 Side-channel attacks are a class of physical attacks that try to dig up information from 
physical message leakages.(6) For mobile devices, the huge amount of sensitive information 
stored on them makes them more vulnerable to such attacks.(7) Many groups are attempting to 
perform recognition on the basis of the sounds produced during the input process. Shumailov et 
al.(8) proposed a method that can infer the text that users input into their smartphone by 
differentiating the waveform of tapping sounds. In the study by Zhu et al.,(9) acoustic signals 
were used for estimating the physical positions of keystrokes to infer the users’ contents typed 
on a keyboard. In the study by Anand and Saxena,(10) a defense mechanism against keyboard 
acoustic attacks was proposed, wherein masking signals are added to leaking sounds to distort 
the original signals. We can see that if the sounds are contaminated by environmental noise, the 
accuracy of these classes of methods can decrease.
	 The accelerometer signals are another tool for side-channel attacks. De Souza Faria and 
Kim(11) proposed a method aimed at stealing passwords from an ATM keypad by analyzing the 
vibration generated when pressing the keys, using an accelerometer placed near the keypad. In 
the study by Wang et al.,(12) the passwords were inferred by the wrist-worn accelerometer that 
reproduces the trajectories of the user’s hand. In the study by Maiti et al.,(13) the experimental 
results demonstrated that the wrist-worn motion sensors are very effective in narrowing the 
search space for unlocking combination locks. For the keystroke inference, Maiti et al.(1) 
proposed a framework to show how to infer the typed words using smartwatches, which utilizes 
accelerometer signals to recognize the directions of hand movements and infers the words from 
the series of directions. They also noted that the keystroke events can be detected by their sound. 
However, it was only conceptually mentioned in their paper so detailed implementation and 
results were lacking.
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	 Different from the previous work, our method combines both sound and accelerometer 
signals to make the best use of the information from each signal. For the sound signal, since we 
only distinguish the space and nonspace keystrokes, the information contained in the signal of 
pressing a key is sufficient to classify these two types of keystrokes. For the accelerometer 
signal, we use the word-by-word basis because the movement of typing a word is more 
informative than pressing a single key. These make our system more robust with high 
performance.

3.	 System Design

	 The system design is as follows. The audio and accelerometer signals, which are 
simultaneously collected from a smartwatch, are input to the system. The signals are first 
preprocessed to remove the components that are not needed. Then, the keystroke detection 
module finds all the locations on the time axis where keystrokes occur on the basis of the audio 
signals. With these keystroke locations, the segmentation module can segment the accelerometer 
signals into frames that correspond to words. Finally, the trained classification model takes these 
frames as input and outputs the target words. Figure 1 shows the overview of WatchLogger.

3.1	 Preprocessing

	 First, the simultaneously collected audio and three-axis accelerometer signals are 
preprocessed to remove the redundant parts from their waveform. Specifically for the audio 
signals, a three-order Butterworth high-pass filter is adopted to tackle the background noises 
made by surrounding equipment such as the fans in computers and air conditioners. By 
observing the spectrum of the audio signals, the frequency distribution of noises can be 
determined. Therefore, we can set the cut-off frequency of the filter as shown in Fig. 2(a). In this 
study, we set the cut-off frequency to 500 Hz. We also performed downsampling on audio 
signals to reduce the computational cost from the original 8000 to 320 Hz. For the accelerometer 
signals, we can see from Fig. 2(b) that the direct component caused by gravity and the low 
frequency trend caused by macro arm movements are mixed in. Since the information about 
typing activities is only reflected by finger and wrist micromovements, which are represented by 
the fluctuation in accelerometer waveform, the direct and low-frequency components are 
unwanted and adverse for recognition and should be removed. Wavelet decomposition is a useful 
method in this situation as it can decompose the signals into detailed and approximate parts that 
represent high- and low-frequency components, respectively, at several levels.(14) By removing 
the approximate parts and reconstructing signals using the detailed parts, the direct and low-

Fig. 1.	 Overview of WatchLogger.
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frequency components can be suppressed, as shown in Fig. 2(b). In this study, we adopted the 
db4 wavelet(15) to decompose the signals into six levels and remove the approximate part at level 
6.

3.2	 Audio-based keystroke detection

	 In the keystroke detection module, the targets are defined as finding all keystrokes on audio 
signals and recognizing the space keystrokes among all keystrokes. Since the sound of pressing a 
space key is different from that of pressing other keys, it is possible to train a model to distinguish 
them from the audio signals. The traditional way, which was also adopted in our previous 
study,(5) is to apply a sliding window to group the audio signals into frames and use a trained 
three-class classifier on each frame to recognize the sounds of nonspace keystrokes, space 
keystrokes, and frames other than keystrokes. However, the previous work was focused on the 
accuracy of classification results of all frames while the positions and numbers of keystrokes 
were minimally considered. In fact, it is difficult for the sliding-window-based method to 
precisely locate keystrokes on audio signals even if the classifier has high accuracy. The main 
reason is that the intervals between two consecutive keystrokes can be short if the user is typing 
rapidly; in this situation, the sliding window always contains keystrokes and the classifier tends 
to predict a positive result. Therefore, the actual positions and numbers are difficult to evaluate. 
In addition, the sliding-window-based method also has other problems such as the multiclass and 
window size problems,(16) making it difficult to build a reliable module for our system.
	 In this paper, we propose a novel and efficient method to find all keystrokes in the audio 
signals and distinguish the space keystrokes. This method is inspired by the classic object 
detection model You Only Look Once (YOLO),(17) which predicts positions, sizes, and classes of 
objects in an image in one process. We modify YOLO for keystroke detection on audio segments 
in a simpler way than in the object detection version. As shown in Fig. 3, we divide the input 
audio segment into a 1 × S grid. The grid cell that contains the center of a keystroke will be used 
for predicting that keystroke. Each grid cell will predict the values of p, c, and l, where p is the 
probability that this cell contains a keystroke and c is the conditional probability of each class 
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Fig. 2.	 (Color online) Preprocessing of (a) audio and (b) accelerometer signals.
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considering that this cell contains a keystroke. Here, it is a binary classification of space and 
nonspace keys. l ranges from 0 to 1, used to represent the relative location of the keystroke in a 
grid cell. Note that the length of keystrokes is not predicted because it does not provide any 
information for our system. The loss function L can be expressed as 

	 2 2 2 2

1 1 1 1

ˆ ˆ̂̂( ) ( ) ( ) ( ( ) ( ))
S S S S

obj obj noobj obj
i i i i i i i i i i i i

i i i i j classes

l l p p p p c j c jL ξ α ξ β ξ γ ξ
= = = = ∈

− + − + − + −=∑ ∑ ∑ ∑ ∑ ,	(1)

where ξi
obj represents the condition that the i-th grid cell contains a keystroke, whereas ξi

noobj 
represents no keystroke. We apply three parameters to control the weight of each term: α = 5, 
β = 0.5, and γ = 5.
	 The network architecture that we adopted in this study is a modified VGG model that was 
originally popular in 2D image classification.(18) It contains a stack of convolutional and max 
pool layers, and ends with fully connected layers. We changed all convolutional kernels to be 1D 
to fit the signal processing. For the output layer, the size of the tensor is 1 × S × 3, where for S 
grids, each grid cell needs to predict three values. In this work, we set S to be 10. 

3.3	 Segmentation

	 After the keystroke detection, the positions of keystrokes and whether they are space 
keystrokes or not are known to the system. Under the assumption that we only consider space 
keystrokes as the delimiters in the target sentences, the accelerometer signals can be segmented 
into frames that represent the corresponding words by finding all space keystrokes and 
extracting frames between every two consecutive space keystrokes, as shown in Fig. 4. We also 
performed data augmentation to generate more frames for training. The method involves sliding 
the frame window forward and backward slightly on the accelerometer signals while determining 
the boundaries of a segmentation, as long as the word is not out of the boundaries. Here, we set 
the sliding size to 60 ms and two steps for both left and right, which augments the training set to 
be five times larger. Moreover, the number of keystrokes between two consecutive space 

Fig. 3.	 (Color online) Grid segmentation of audio signals.
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keystrokes can be counted; in other words, the number of characters in a word or the word length 
lenw can be known after the segmentation stage. 

3.4	 Accelerometer-based word classification

	 The last stage is accelerometer-based word classification, where the inputs are the segmented 
three-axis accelerometer frames and the outputs are the corresponding words. The frames are 
first processed by feature extraction to obtain the expression of data as feature vectors, and then 
an ensemble model that consists of 10 similar submodels is used to predict the result words for 
each frame.

3.4.1	 Feature extraction

	 We selected five commonly used features in this study, namely, mean, sum, median, standard 
deviation, and kurtosis, and we applied these five features to both the time and frequency 
domains across the accelerometer signals along all three axes. Moreover, we transformed the 
time and frequency frames into new frames using squaring and first-order difference, and 
applied the above five features to these generated frames to obtain more information from 
inputs. Therefore, there will be 5 × 2 × 3 × 3 = 90 features in total. In addition, lenw is also an 
apparent feature for word classification, considering that the value is known at this stage, as we 
discussed above. However, instead of putting lenw into the feature vector directly, we used it as 
the selector to choose a submodel in the ensemble model for each word, which we will discuss in 
the following subsection. All features will be processed by z-score standardization.

3.4.2	 Ensemble classification

	 We can see from Fig. 5 that different words have slightly different patterns of hand 
movements. Therefore, it is possible to train a word classifier using the labeled accelerometer 
signals collected from the wrist-worn sensor. In this study, the classification model was chosen 
as a three-layer neural network with one hidden layer. Originally, we used the 90 features plus 

Fig. 4.	 (Color online) Example of how to segment accelerometer signals using space keystrokes.
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the additional feature lenw as the input and the words encoded by one-hot vectors as labels to 
train one model for word classification. However, there are a large number of different words in 
the vocabulary, and the number may still be large even if we only pick a subset of words for the 
target user; this can cause a decrease in classification accuracy compared with the result using a 
small dataset.(19) To address this potential issue, we proposed the ensemble classification model 
in which the original single model is split into n similar submodels, as shown in Fig. 6.
	 Intuitively, if the number of classes, nc, is very large in a classification problem, it will be a 
good solution to split the large class set into groups to have a smaller nc in each group and then 
perform classification within these groups as a tree structure, where the rule of how to split the 
class set is highly empirical. Fortunately, for the word classification task, the length of a word is 
a very efficient and off-the-shelf rule with which to address the problem. Specifically, the feature 
of lenw is removed from the input vector; then, the original model is split into n submodels 
{m1, m2, ..., mn}, where , [1, ]i i nm ∈  is trained by the samples {si,1, si,2, ..., si,k}, where all lenw(si,j), 

[1, ]i n∈  and [1, ]j k∈  are equal. In the training phase, we defined the model length lenm(i) for the 
i-th model and picked all samples that meet lenw(sj) = lenm(i) from the dataset as training data. In 
the testing phase, the selector will match each sample si to the model mj where lenw(si) = lenm( j) 
as the input, and the ensemble model will adopt the output from mj as the final output. By this 
method, nc of each submodel can be reduced by n times compared with the original model if we 
assume that all submodels have the same nc, and thus, the problem of having a large nc can be 
alleviated to a certain extent. In this study, we set n to 10 and lenm from 3 to 12.

4.	 Experimental Results

	 In this section, we first introduce the dataset built for evaluating WatchLogger. Then, we list 
the parameters and settings of the experiment. Finally, we give the experimental results and 
analysis.

Fig. 5.	 (Color online) Waveforms of different words.
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4.1	 Data collection

	 To validate our method, we built WTW-100, the Wearable Typed Words dataset with 100 
classes of words and 100 samples for each class of each participant, using data collected from 
four participants. We used the alps LEMT with Android 7.1.1 OS as the smartwatch that has a 
three-axis accelerometer with a sampling rate of 50 Hz and a microphone with a sampling rate of 
8000 Hz. The application running on the smartwatch can simultaneously collect audio and 
accelerometer signals. The keyboard that we used for input is FILCO FILCKTLBT2-33, 
connected to a MacBook via Bluetooth. The reason why we did not use a MacBook keyboard is 
that the sound of the MacBook keyboard is relatively low and will be easily affected by noise. 
Considering that our target is to prove the feasibility of the method, we applied FILCO 
FILCKTLBT2-33, which produces a clearer sound, to build a dataset. To obtain the truth label, 
we ran a keylogger application on the MacBook to log all keystroke events that contain pairs of 
the key content and timestamp. The dataset was uploaded to GitHub and can be searched by 
name.
	 The data are collected as follows. First, we launch the application on the smartwatch and the 
keylogger on the MacBook. Then, the participant wears the smartwatch tightly. After that, the 
participant clicks the start button on the smartwatch and starts typing. When finishing typing all 
the required words, the participant clicks the stop button and the record is saved. Figure 7 shows 
the typing process. To simplify the process, for each record, the participant is asked to type the 
same words a certain number of times. Each participant is asked to type all 100 words 100 times, 
while participant 4 (P4) types each word 100 times in one record, and P1, P2, and P3 type each 

Fig. 6.	 (Color online) Process of how original model splits into ensemble model.
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word 100 times in three to four records. None of the four participants are native English speakers 
(one Chinese person and three Japanese persons). Specifically, for P4, the typing speed and 
rhythm of the same word are controlled to be as consistent as possible to simulate the ideal 
typing situation of native English speakers, while for other participants, there is no limit on the 
typing speed or rhythm; therefore, it is less consistent for the same word collected from P1 to P3.
	 Additionally, the words of WTW-100 have lengths from 3 to 12 letters and 10 words for each 
length. Considering that short words such as “a” and “of” are less informative and less 
distinguishable, we removed words with lengths of one and two letters. We selected the most 
commonly used words of each length as the dictionary of our dataset, on the basis of the word 
frequency derived from the Google Web Trillion Word Corpus.

4.2	 Experimental settings 

	 To evaluate the performance of the keystroke detection module, we analyzed three results, 
namely, the results of keystroke detection, classification, and position. For detection results, we 
used accuracy, precision, recall, and F1 score to evaluate the performance of finding keystrokes, 
eliminating the bias caused by the imbalance between the numbers of grid cells with and without 
a keystroke. For classification results, we evaluated the same values as those of detection because 
the numbers of space and nonspace keystrokes are also unbalanced. For positions, we evaluated 
the average absolute error (AAE) in the time axis. 
	 For the structure of the VGG model in the keystroke detection module, the input is 
downsampled audio segmentation with a length of 1 s. The structure of convolutional layers is 
[64, ’M’, 128, ’M’, 256, 256, ’M’, 512, 512, ’M’], where the numbers refer to the number of out 
channels and ’M’ means the application of max pool. The kernel size is set to 7, and each layer 
adopts the ReLU activation function. The numbers of nodes of fully connected layers are 512, 
1024, and 30, and each layer has a dropout rate of 0.5 and is trained for 100 epochs with a 
learning rate of 0.0001.
	 For the word classification module, we evaluated the accuracy of classification results. We 
also compared the performance of the original single model with that of the ensemble model to 
show the effectiveness of our ensemble method. For the single model, we used a three-layer 
neural network in which the numbers of nodes are 31, 256, and 100. For the ensemble model, we 

Fig. 7.	 (Color online) Typing process.
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used 10 independent three-layer neural networks that have layer sizes of 30, 512, and 10 nodes. 
These models were all trained for 2000 epochs with a learning rate of 0.001. All the models have 
a ReLU activation function in the hidden layer. The cross-entropy loss is adopted as the loss 
function.
	 We used PyTorch 2.0.1 to implement all models and train them on a Windows 11 PC with 
NVIDIA GeForce RTX 4070 Ti GPU, and we applied individual and generalization tests to 
evaluate the training results. For the individual test, each model was evaluated on the dataset 
collected from one participant through k-fold cross-validation that divides the samples into k 
parts and then uses k−1 parts for training and one part for testing. This process was rotated k 
times for each participant. In this paper, we set k to 10 and used the average as the result. For the 
generalization test, to evaluate the generalization performance of our method, we applied leave-
one-out cross-validation where the data of one participant are separated as the test set and those 
of the others are the training set. 

4.3	 Experimental results 

4.3.1	 Individual test

	 Table 1 shows the results of keystroke detection in the individual test. The average accuracy, 
precision, recall, and F1 score of detection are 98.31, 95.98, 98.98, and 0.9745%, respectively, 
indicating a high performance of our model in accurately detecting keystrokes on audio signals. 
For classification, even though the numbers of space and nonspace keystrokes are highly 
unbalanced (about 1:7.5), the results still reached 99.62, 98.77, 98.32, and 0.9855%, respectively. 
In addition, the average AAE of position is 10.41 ms, which is a considerable result for detecting 
the locations of keystrokes. Figure 8 illustrates one of the keystroke detection results for an audio 
segment. 
	 Table 2 shows the result of word classification for each length using ensemble models in the 
individual test. The average accuracy of the ensemble models of all participants reached 79.76%. 
Figure 9 shows the results of the single model and ensemble model tests. We can see that, 
compared with the single model, the ensemble model has an increase in accuracy of 8.51%, 
showing a satisfactory performance in word classification. Another interesting phenomenon is 

Table 1
Results of keystroke detection in individual test.

P1 P2 P3 P4 Avg

Detection

Accuracy (%) 98.12 98.34 98.03 98.75 98.31
Precision (%) 94.92 95.37 96.59 97.05 95.98
Recall (%) 98.93 99.18 99.13 98.66 98.98
F1 score 0.9688 0.9724 0.9784 0.9785 0.9745

Classification

Accuracy (%) 99.39 99.69 99.74 99.67 99.62
Precision (%) 98.42 99.16 98.95 98.56 98.77
Recall (%) 97.70 98.41 98.38 98.80 98.32
F1 score 0.9806 0.9878 0.9866 0.9868 0.9855

Position AAE (ms) 9.95 10.51 10.37 10.82 10.41
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that the accuracy of the ensemble model tends to be higher for longer words than for shorter 
words. The main reason for this could be that the longer words have more combinations of hand 
movements and are thus more distinguishable than the shorter words. 
	 Figure 10 shows the results of top five words that have the highest and lowest error rates. We 
can see once again that the words with the highest error rate tend to have a smaller length than 
those with the lowest error rate owing to the different amounts of information contained in them. 
Specifically, the word “can” has the highest error rate, and it is misrecognized as “new” most of 
the time because there is only one pair of keys on the left side and the pattern of left-hand 
movement is both right to left for “ca” and “ew”, which contains minor information for 
classification. Such an error is inevitable in the acceleration-based system because the similarity 
of words commonly exists, but the results still show a certain ability to classify these words. 

Fig. 8.	 (Color online) Example of keystroke detection results.

Table 2
Accuracy (%) of word classification of each length using ensemble models in individual test.

Len 3 Len 4 Len 5 Len 6 Len 7 Len 8 Len 9 Len 10 Len 11 Len 12 Avg
P1 67.74 73.19 69.86 73.96 72.83 72.32 72.50 78.11 78.34 73.50 73.24
P2 64.91 70.06 71.06 78.17 76.76 77.45 81.15 79.12 79.65 84.20 76.25
P3 64.31 75.86 70.46 74.07 76.91 73.09 75.51 75.55 76.39 85.19 74.73
P4 93.36 94.83 91.39 93.98 96.72 95.52 94.47 95.74 96.01 96.17 94.82
Avg 72.58 78.49 75.69 80.05 80.81 79.60 80.91 82.13 82.60 84.77 79.76

Fig. 9.	 (Color online) Results of single model and ensemble model tests.
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	 In addition, it can be observed that the result of P4 is significantly better than those of the 
other participants. As mentioned above, for P4, the typing speed and rhythm of the same word 
were controlled to be as consistent as possible, while the others were not. Intuitively, an 
inconsistent typing habit would make the result of word classification worse owing to the 
different distributions of some of the training and test sets. To explain this phenomenon, we 
verified our dataset by calculating the time variance of the same words being typed by each 
participant. The average time variances of P1, P2, P3, and P4 were 0.1548, 0.2315, 0.0641, and 
0.0230 s2, respectively, where P4 had a much smaller time variance than the others. Another 
possible reason why the performance was better for P4 than for the others is that all 100 samples 
of a word were collected from one typing experiment in the former case, while in the latter case, 
samples were collected from multiple experiments on different days; this could introduce more 
different distributions of data because the conditions (e.g., the sitting posture) for each 
experiment could be different. Nevertheless, the average accuracy for P1 to P3 still reached 
74.74%, indicating that our method has satisfactory performance in some real-life situations.

4.3.2	 Generalization test

	 Tables 3 and 4 show the results of keystroke detection and word classification in the 
generalization test, respectively. Here, the result for P1 represents the result where the data from 
P1 were used as the test set and those from the others were used as the training set. Compared 
with the results of the individual test, the results of keystroke detection and word classification in 
the generalization test decreased generally, where keystroke detection had a smaller decrease in 
performance because the sound of keystrokes only had subtle changes among different 
participants, whereas word classification had a significant decrease in performance, indicating 
that our method is not suitable for the situation where a model is pretrained and applied to a new 
user. This is reasonable because the motion pattern of typing a word would be unique for each 
person. The best application of our method in the real world is collecting data from the target 
user, which will be discussed in the next section.   

Fig. 10.	 (Color online) Error rates of top five words that have the highest and lowest error rates.
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5.	 Discussion

	 In this section, we discuss some issues that are inevitable to WatchLogger, and we explain 
how our method could be made more reasonable when it is implemented in a real situation.

5.1	 Single-hand problem 

	 As we know, typing involves both hands, but the smartwatch can only record one hand, 
causing missing information for typed word recognition. If different words have the same 
motion patterns of the watch-worn hand, it will be difficult to recognize these words. For 
example, “can” and “cap” have the same pattern of “ca” for the left hand. To avoid the single-
hand problem, on the one hand, the dictionary can be carefully selected by the attacker to avoid 
such collisions. On the other hand, people tend to have a distinct typing preference (e.g., typing 
rhythm) for each word, so the word could be distinguishable even if the two words have the same 
pattern. However, in some cases, the collision will be inevitable, and the system may need some 
more information resources. Sound might be a possible information resource, but the difference 
in the sound of each key is too subtle to distinguish, and we need to investigate how to find the 
best representation of sound signals so that the information of typed words can be dug out. We 
also need to study how to fuse sound signals and acceleration. We plan to acquire more 
information about typing activity from more potentially available sensors in our future research.

Table 3
Results of keystroke detection in generalization test.

P1 P2 P3 P4 Avg

Detection

Accuracy (%) 87.99 89.80 85.19 81.00 86.00
Precision (%) 79.63 80.97 81.92 64.68 76.80
Recall (%) 91.14 91.04 88.18 86.98 89.34
F1 score 0.8500 0.8571 0.8493 0.7419 0.8260

Classification

Accuracy (%) 95.51 95.49 91.98 86.75 92.43
Precision (%) 79.36 80.86 87.43 44.99 73.16
Recall (%) 84.94 83.06 40.55 62.44 67.75
F1 score 0.8206 0.8195 0.5540 0.5230 0.7035

Position AAE (ms) 15.27 15.15 16.57 16.80 15.95

Table 4
Accuracy (%) of word classification of each length using ensemble models in generalization test.

Len 3 Len 4 Len 5 Len 6 Len 7 Len 8 Len 9 Len 10 Len 11 Len 12 Avg
P1 31.15 21.94 26.94 27.72 28.58 28.60 27.46 27.17 27.34 26.63 27.35
P2 27.00 27.56 22.31 30.86 31.35 32.84 38.63 30.81 35.09 33.95 31.04
P3 28.80 29.76 30.97 26.81 35.38 31.74 35.39 30.86 27.69 30.54 30.79
P4 27.43 32.46 40.50 27.16 31.92 27.52 38.26 47.48 36.04 31.78 34.06
Avg 28.60 27.93 30.18 28.14 31.81 30.17 34.94 34.08 31.54 30.73 30.81
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5.2	 Data acquisition problem

	 In a real situation, how to acquire data for training is another problem for WatchLogger. 
Intuitively, we can build the dataset using the data obtained from several participants and attack 
all target users with it. However, different people have different preferences for typing motions, 
and the information the attacker wants to steal from each user may also be different. Therefore, a 
personalized dataset will be more efficient. Here is a potential method. First, the attacker 
disguises WatchLogger as a normal application and lures the target user to install it. Then, the 
attacker can trick the user into typing some given words. For example, it can be disguised as an 
online part-time job that asks the employees to type up a handwritten manuscript. The attacker 
can select a set of keywords as a dictionary for the task. In this way, the attacker can build a 
dataset for this target user.

5.3	 Attack prevention

	 After discussing the full details of our attack method, it is critical to provide corresponding 
solutions to prevent such attacks. There are two types of solution: system side and user side. For 
the system side, assuming the malicious application cannot be recognized, the smartwatch 
system should block all access permissions to sensor data temporarily when typing activities are 
detected. The keystroke detection of our method is a good way of detecting typing activity. The 
system can run the detection program periodically (e.g., every hour) to sample one segment of 
audio and detect keystrokes on it, ensuring both accuracy and cost. For the user side, users 
should be aware that their typing data is also sensitive information just like fingerprints. As 
shown by the results of the generalization test, the motion pattern of typing a word could be 
unique for each person; therefore, it is difficult to achieve such attacks if the attacker cannot 
acquire any typing data from the target user. We should all ensure that our typing data will not 
be leaked easily, as discussed in Sect. 5.2.

6.	 Conclusions

	 In this paper, we proposed WatchLogger, a method that uses both audio and accelerometer 
signals on a smartwatch to recognize English words being typed by a target user. WatchLogger 
applies a novel and efficient audio-based keystroke detection method to find and distinguish all 
space and nonspace keystrokes from their sounds; this was inspired by the YOLO model in 2D 
image object detection, and we modified it to fit our 1D audio signal detection task. Knowing the 
positions of all keystrokes, WatchLogger uses space keystrokes to segment accelerometer signals 
into frames that represent target words. In addition, to classify words from accelerometer signals 
and deal with the problem caused by too many words, we proposed an ensemble classification 
model that splits the model and word set into submodels and subsets, where each submodel has 
fewer classes for classification. 
	 To evaluate WatchLogger, we built the WTW-100 dataset that contains 100 classes of words 
and 100 samples for each class, using the data collected from four participants. The experimental 
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results showed accuracies of 98.31 and 99.62%, and F1 scores of 0.9745 and 0.9855 for keystroke 
detection and classification, respectively, and an accuracy of 79.76% for word classification, 
indicating the satisfactory performance of WatchLogger. Finally, we discussed some issues of 
implementing WatchLogger, including the single-hand and data acquisition problems, and 
explained the feasibility of WatchLogger in a real situation. We also gave a brief discussion 
about preventing attacks on the basis of our method, for both the system and user sides.
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