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 The assessment of early laryngeal cancer and pre-neoplastic lesions is subjective and depends 
on doctors’ experience, leading to missed diagnoses in primary institutions. Our objective was 
to develop and validate a deep learning algorithm for the real-time identification of early 
laryngeal cancer and pre-neoplastic lesions, aiming to enhance diagnostic accuracy. The 
challenge observed in the domain of deep learning arises from overlooking contextual 
information. In response, we introduce in this paper a learning methodology that advances from 
acknowledging the surrounding context to integrating it, providing a resolution to this problem. 
Initially, we introduce side-aware features to capture relevant characteristics. Subsequently, we 
employ a rectangular selection technique for accurately determining regions of interest. To 
assess the effectiveness of our approach in object detection, we perform evaluations on a clinical 
dataset. Our deep learning approach exhibits robust performance in discriminating cancer. The 
images were randomly divided into training (80%), testing (10%), and validation (10%) sets. The 
testing was performed on a laryngoscope dataset consisting of 1123 samples. When compared 
with other advanced detection models, our methodology surpassed them, demonstrating superior 
results in laryngoscope detection, including mAP, accuracy, recall, and F1 score. In this study, 
we identified a learning method conducive to polyp detection in video laryngoscopy under both 
white-light and narrow-band imaging. The promising detection performance holds the potential 
to improve diagnostic proficiency and decrease the likelihood of missed diagnoses among 
primary otolaryngologists.

1. Introduction

 Laryngeal cancer stands out as one of the most prevalent tumors in the head and neck.(1,2) 
The possibility of early diagnosis and treatment permits larynx-preserving approaches and 
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correlates with an improved prognosis, contributing to a heightened five-year survival rate.(3) 
However, early laryngeal cancer and pre-neoplastic lesions frequently present as subtle mucosal 
alterations during white-light transnasal flexible electronic endoscopy, resulting in overlooked 
diagnoses even by seasoned endoscopists.(4) Lesions featuring diverse grades of dysplasia may 
display analogous mucosal white plaques under conventional white-light endoscopy. The 
histological diversity of lesions further complicates the process of diagnosis and treatment 
planning.(5) Recently developed image-enhanced endoscopic techniques, such as narrow-band 
imaging(6) and iSCAN,(7) offer a more detailed visualization of epithelial and subepithelial 
microvessel patterns. Owing to a relatively prolonged learning curve, the detection and diagnosis 
of laryngeal cancer and pre-neoplastic lesions pose considerable challenges in primary 
institutions or among inexperienced physicians.(8,9)

 Recent studies have consistently shown the exceptional capabilities of deep learning 
algorithms in image detection and recognition,(10–13) aiding physicians in the detection 
and identification of specific lesions. This, in turn, enhances the accuracy and efficiency 
of disease diagnosis.
 An artificial intelligence assistance system is crucial for laryngoscope examinations, 
aiding clinical physicians in detecting frequently overlooked cancers and providing 
characterizations.(14,15) Deep learning models and methods consistently exhibit 
remarkable performance in AI-assisted diagnostics, especially when applied to extensive 
datasets.(16,17) With the ongoing evolution of deep learning, various object detection 
techniques, which are adaptable for endoscopic image analysis, have emerged.(18–20) Pacal 
et al.(21) introduced a single-stage regression-based object detector utilizing the You-
Only-Look-Once (YOLO) convolutional neural network (CNN) architecture for polyp 
detection, employing bounding boxes in endoscopic images. Furthermore, Eelbode et 
al.(22) enhanced polyp segmentation accuracy by integrating a temporal architecture, 
implementing a recurrent neural network (RNN) atop a CNN. Shin et al.(23) adopted a 
region-based object detection approach using Faster R-CNN, complemented by post-
learning methods for localizing polyp lesion positions. A recent innovative approach(24) 

reported the use of 3D-CNNs for polyp detection, introducing spatiotemporal features 
through consecutive frames of polyps to enhance detection performance.
 In this manuscript, we present SA-Detect, a method specifically designed for detecting 
tissue frames in laryngoscope videos, with a primary focus on cancer detection. This 
approach relies on learning regional edge features to precisely define bounding boxes. 
The model takes video data as input, performs initial data preprocessing to enhance 
detection performance, and then extracts image features using a CNN. SA-Detect is 
subsequently applied to obtain side-aware features for detection and localization. The 
implementation of SA-Detect demonstrates a significant improvement in precision, 
surpassing other detectors by 91.4% on the clinical dataset. These findings highlight SA-
Detect’s potential as a seamlessly integrable solution with minimal computational 
overhead, contributing to enhanced boundary delineation.
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2. Data, Materials, and Methods

2.1 Data acquisition

 The dataset comprises patients who underwent laryngeal endoscopy from August 2020 to 
December 2022 at the Endoscopy Center within the Otolaryngology Department, the Second 
Affiliated Hospital of Zhejiang University School of Medicine. Endoscopic images were 
captured using iSCAN Defina EPK-3000 series endoscopes (Pentax Corporation, Japan). 
Inclusion criteria stipulated that the lesion be situated in the glottis area with corresponding 
postoperative pathological results. Exclusion criteria encompassed the following: (1) poor image 
quality (e.g., occlusion, blurring and out of focus) and (2) patients with a history of head and neck 
radiation therapy. The dataset comprised 239 patients with a total of 1123 images. 

2.2 Image detection network

 Building upon YOLOv5 with CSP Darknet as the backbone, our innovative architectural 
framework significantly enhances localization capabilities by efficiently propagating robust 
responses from low-level patterns, highlighted in red. These responses, often corresponding to 
edges or specific instance parts, contribute substantially to precise instance localization. As 
illustrated in Fig. 1, our proposed SA-Detect relies on a fusion of CNNs and a Feature Pyramid 
Network (FPN) for object detection. The backbone network employs convolutional operations to 
extract object-related information, spanning multiscale visual features. Subsequently, the neck 
network consolidates these multiscale features from the backbone network, concluding with 
classification and discrimination scores for distinct objects. The input image’s spatial resolution 
is set at 300 × 300 pixels. We employ Layers 1, 2, and 3 as feature levels, each with dimensions 
of 76 × 76 × 255, 38 × 38 × 255, and 19 × 19 × 255, respectively.

Fig. 1. (Color online) Overview of SA-Detect. We first trained an image network with CSP Darknet to create a 
feature vector describing the input image. Following this, the SA-Detect framework combines features from regions 
of interest to produce side-aware features. The classification network is tasked with identifying cancerous regions.
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2.3 Surrounding-to-aggregating learning

 In tasks involving object detection, frameworks predominantly depend on bounding box 
regression for object localization. The conventional approach often focuses on predicting object 
centers and sizes,(25–27) potentially constraining overall detection performance, especially in 
scenarios with substantial displacements and variances between anchor points and target objects. 
For example, when an anchor point is positioned at the edge of a target object, its detection might 
be impacted by relative scaling factors, leading to background features outweighing those 
related to the object. To overcome this limitation, we present SA-Detect, which relies on side-
aware boundary features.
 SA-Detect comprises CNN and RNN components, taking FPN features as input. After four 
convolutional layers, the model learns classification and localization features separately, 
effectively capturing directional information about regions of interest—a crucial step for 
generating side-aware features within SA-Detect. When presented with a candidate bounding 
box, denoted as (Rleft, Rright, Rtop, Rdown), 

we expand this candidate region by a scale factor α 
(where α > 1) to encompass the entire object. The candidate region is then divided into 2k 
rectangular regions along the x- and y-axes, with each boundary corresponding to k rectangles. 
In the rectangle selection stage, a binary classifier based on side-aware features determines 
whether each boundary lies inside one of the side rectangles or is closest to a particular side 
rectangle. Additionally, a regressor predicts the offset from the centerline of the selected 
rectangle to the true boundary, enabling finer regression. Finally, confidence estimation for 
rectangles indicates the reliability of predicted positions. To maintain more accurate bounding 
boxes during nonmaximum suppression (NMS),(28,29) localization confidence guides the 
process by computing average confidence scores for the four boundaries of the rectangles. 
Multiclass classification scores are adjusted by multiplying them with the average localization 
confidence for candidate ranking during NMS. This scoring mechanism plays a crucial role in 
preserving the best boxes with high classification confidence and precise localization.

2.4 Loss design

 We have formulated a singular task objective for training SA-Detect, integrating the 
confidence loss ℒconf, rectangle loss ℒrec, and fine regression loss ℒreg. Recognizing the impact 
of distinguishing samples of varying difficulty on detection outcomes, we address the potential 
imbalance in scenarios with numerous easily distinguishable negative samples that may lead to 
the neglect of positive samples throughout the entire training process. To alleviate this issue, we 
introduce a modulation factor. Consequently, ℒconf is expressed as

 ( ) ( ) ( ) 1 log ,conf x x xτ=− −  (1)

where −(1 − x) amplifies the loss ratio for challenging-to-distinguish samples. We have replaced 
the conventional bounding box regression loss with the rectangle loss ℒrec and included the fine 
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regression loss ℒreg. Specifically, the rectangle loss employs the Cross-Entropy Loss,(30) whereas 
the fine regression loss utilizes the Smooth L1 Loss.(31) In summary, the overall loss function is 
denoted as

 ( )1.5  rec reg= +   . (2)

2.5 Surrounding-to-aggregating learning

 We comprehensively evaluated our proposed model using various metrics derived from the 
counts of true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) 
samples.
 The Intersection over Union (IoU) metric quantifies the overlap between the predicted 
bounding box and the ground truth bounding box. A TP is registered when the IoU is greater 
than or equal to 0.5. The IoU can be mathematically expressed as

 Predicted result   
Predicted result   

Ground trueIoU
Ground true

∩
=

∪
. (3)

 The mean Average Precision (mAP) serves as a comprehensive metric for assessing the 
performance of object detection models. It is defined as

 0 
n

ii AP
mAP

n
==∑ , (4)

where n represents the number of classes.
 Precision (P) evaluates the accuracy of positive predictions and can be expressed as

  TPPrecision
TP FP

=
+

. (5)

 Recall (R) measures the model’s ability to correctly identify all relevant instances (true 
positives) and can be calculated as

  TPRecall
TP FN

=
+

. (6)

 The F1 Score, offering a balance between precision and recall, is computed as
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3. Results

3.1 Equations

 We performed a comparative analysis involving SA-Detect and various prior and 
contemporary approaches. Table 1 provides a summary of their components and performances 
characteristics based on the clinical dataset. The performance metrics presented in this study are 
obtained from released implementations and models.
 In this study, we systematically assessed the overall performance of our methodology in 
detecting diverse abnormalities within a clinical dataset. The outcomes, illustrated in Table 1, 
highlight the exceptional performance of our detection model in multiclass tasks, achieving 
notable metrics with a recall of 87.6%, a precision of 91.4%, and an F1 score of 89.5%. These 
metrics validate the efficacy of our proposed network in multi-object detection. Note that each 
region category occupies a distinct proportion of the image, leading to a notable presence of 
negative regions that may impact the precise prediction of positive regions. Nevertheless, SA-
Detect has demonstrated its adaptability in addressing challenges presented by imbalanced data.  
In particular, SA-Detect yields outstanding results in both precision and mAP scores. In contrast, 
other methods frequently neglect correlations between instances and disregard the balance 
between positive and negative samples. Additionally, SA-Detect surpasses all other competing 
methods, showing a significant increase of 1.5% in mAP and a 3.7% boost in accuracy compared 
with the second-best method. Note that YOLO-based methods often struggle to capture 
contextual information, whereas FCOS exhibits the ability to grasp extensive global contextual 
information. The experimental results emphasize the benefits of side-aware boundary feature 
learning in object detection. Figure 2 effectively illustrates the challenges posed by images with 
diverse colors and textures. In comparison with alternative models, our approach adeptly 
recognizes cancer categories and accurately labels cancerous regions.

Table 1
Tracking performance based on the clinical dataset.
Model Dataset mAP@.5 P Recall F1
YOLOv4(32) clinical dataset 83.6 83.8 78.8 81.2
YOLOv5s clinical dataset 86.4 81.7 84.0 82.8
CornerNet(33) clinical dataset 87.9 87.8 86.3 87.0
YOLOv5n clinical dataset 86.5 85.5 81.1 83.2
YOLOv5x clinical dataset 86.2 82.4 81.2 81.8
YOLOv5s clinical dataset 88.0 85.3 83.6 84.4
YOLOv5m clinical dataset 88.1 81.2 84.0 82.6
YOLOv5l clinical dataset 88.5 85.0 83.8 84.4
FCOS(34) clinical dataset 89.2 87.7 86.9 87.3
PP-YOLOE(35) clinical dataset 89.8 88.3 87.1 87.6
PE-YOLO(36) clinical dataset 88.3 86.4 85.7 85.8
SA-Detect (Ours) clinical dataset 90.7 91.4 87.6 89.5
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 Figure 3 presents the confusion matrix of the training data for the SA-Detect model. Clearly, 
in the multiclass object detection task, the model demonstrates exceptional overall accuracy 
across all four classes, achieving accuracies for the chronic inflammation of mucosa or 
squamous hyperplasia, low-grade dysplasia, high-grade dysplasia, and invasive carcinoma.

Fig. 2. (Color online) Examples of detection output from a challenging clinical dataset. The identities for each 
object are denoted on boxes. 0, 1, 2, and 3 represent the chronic inflammation of mucosa or squamous hyperplasia, 
low-grade dysplasia, high-grade dysplasia, and invasive carcinoma, respectively.
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3.2 Ablation study

 As shown in Table 2, to further investigate the contribution of the SA-Detect module to 
overall performance, we conducted a series of ablation studies on the clinical dataset. The top-
down feature augmentation consistently enhances mAP and precision, confirming the efficacy 
of low-level feature information (region edges). We introduce the Confidence Class (CC) to 
adjust classification scores, inherently ref lecting the model’s confidence in boundary 
localization. The application of CC further enhances AP performance. As depicted in Fig. 4, we 
applied Surrounding-to-Aggregating Learning (SAL) to bring the detection boxes closer to 
reality. This method significantly improved performance from 85.7 to 90.7%, emphasizing the 
crucial role of feature learning for each boundary in object detection.

3.3 Boosting existing detection

 The performance of SA-Detect with various detectors is presented in Table 3. We utilized 
Faster R-CNN and Mask R-CNN as two-stage detectors. Following the recent convention for 
single-stage methods, SA-Detect was incorporated after their backbone networks. This 
integration resulted in improvements, increasing the mAP of Faster R-CNN from 87.6 to 89.4% 
and the mAP of Mask R-CNN from 86.9 to 88.6%. For single-stage detectors, applying SA-
Detect to YOLOv3 consistently enhanced performance. SA-Detect closely aligned with the 
labels in terms of box accuracy. The visualization of detection results before and after integrating 
SA-Detect into the model can be found in Fig. 5.

Fig. 3. (Color online) Confusion matrix of SA-Detect. 0, 1, 2, and 3 represent the chronic inflammation of mucosa 
or squamous hyperplasia, low-grade dysplasia, high-grade dysplasia, and invasive carcinoma, respectively.
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4. Discussion

 In this study, we developed a deep learning algorithm for detecting laryngeal lesions in 
laryngoscope images. In practical clinical settings, patients with suspicious lesions detected by 
conventional white-light endoscopy in outpatient offices are recommended to undergo enhanced 
endoscopy examinations, such as iSCAN or NBI endoscopy, to further screen potential lesions 
and predict the pathological type of lesions for treatment planning.(40) Physicians need to search 
for erythema, leukoplakia, and subtle changes in intraepithelial capillary loops during  
examination. The main goals of physicians are twofold: (1) to detect as many lesions as possible 
without missing any and (2) to accurately infer the pathological type of lesions. Achieving these 

Fig. 4. (Color online) Comparison of qualitative results between FA, CC, and SAL based on the clinical dataset. 0, 
1, 2, and 3 represent the chronic inflammation of mucosa or squamous hyperplasia, low-grade dysplasia, high-grade 
dysplasia, and invasive carcinoma, respectively.

Table 3
Performance of the proposed SA-Detect using different backbone networks.
Model SA-Detect mAP@.5 P Recall
Faster R-CNN(37) 87.6 84.1 83.9
Mask R-CNN(38) 86.9 85.5 82.2
YOLOv3(39) 85.9 85 83.3
Faster R-CNN ✓ 89.4 87.1 85.6
Mask R-CNN ✓ 88.6 86.9 83.7
Yolov3 ✓ 88.0 85.6 84.2

Table 2
Effectiveness of various designs. FA, CC, and SAL denote Feature Augmentation, Confidence Class, and 
Surrounding-to-Aggregating Learning, respectively.
SAL CC FA mAP@.5 P Recall F1

85.7 83.5 81.3 82.4 
✓ 88.5 88.6 85.2 86.9 
✓ ✓ 89.1 89.0 86.6 87.8 
✓ ✓ ✓ 90.7 91.4 87.6 89.5 
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goals demands that physicians maintain sustained attention, sharp insight, and profound 
experience. However, meeting any of these requirements is challenging, especially for physicians 
in primary institutions with less experience. With the assistance of our proposed model, 
physicians can identify lesions that might have been easily missed in the past. Even physicians 
with limited experience in identifying intraepithelial capillary loops can correctly identify 
laryngeal cancer and pre-neoplastic lesions. This tool significantly alleviates the burden on 
physicians.
 Despite previous research endeavors to develop artificial intelligence systems for detecting 
laryngoscope images, the diagnostic performance and processing speed have not met the 
requirements for real-time applications. One primary goal of this study is to explore the 
feasibility of SA-Detect in real-time video laryngoscope image diagnosis, addressing the 
practical needs of supporting medical professionals in their diagnoses. In practical terms, 
validating video streams is feasible. Given that laryngoscope examinations typically occur 

Fig. 5. (Color online) Visualizations of various backbone networks before and after implementing SA-Detect. 0, 1, 
2, and 3 represent the chronic inflammation of mucosa or squamous hyperplasia, low-grade dysplasia, high-grade 
dysplasia, and invasive carcinoma respectively..
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within a range of 2–30 ms, with an average time of 38 ms, the YOLO model can analyze a video 
frame in just 33 ms. The original YOLOv5 comprises 2.6 million parameters, whereas YOLOv5 
with SA-Detect applied reduces this to 2 million parameters. Consequently, SA-Detect 
diminishes the computational complexity of the model, resulting in an acceleration of detection.
 Moreover, we performed an analysis of the average number of positive boxes per image at 
various IoU thresholds (e.g., IoU ≥ 0.5). SA-Detect consistently yielded a reduced number of 
positive boxes across all thresholds, especially for higher IoU thresholds. Note that AP is 
impacted not solely by localization accuracy but also by classification precision, and SA-Detect 
demands bounding boxes with high IoU. To augment mAP further, additional efforts should be 
focused on other facets.
 In this investigation, we present an AI-assisted real-time laryngoscope detection approach 
that utilizes lateral feature learning. SA-Detect showcases its efficiency across diverse images 
and videos in different models. Our approach exhibits exceptional laryngoscope detection 
performance, showcasing superior accuracy, recall, and mAP@0.5. Technically, we highlight the 
importance of side-aware feature learning, specifically emphasizing boundary content for 
precise localization. We underscore the pivotal role of side-aware features in the realm of video 
image detection, particularly in endoscopy.

5. Conclusions

 In this paper, we introduced side-aware boundary learning for real-time laryngoscope 
detection, aiming to narrow the gap between top-level and bottom-level feature layers for the 
efficient transmission of informative cues. Our learning approach, centered on side-aware 
features, placed a crucial emphasis on capturing boundary information aligned with ground 
truth labels. Notably, our proposed SA-Detect model demonstrated excellent performance in 
terms of accuracy, recall, and calculation time. It has the potential to provide real-time assistance 
in the diagnosis of laryngeal cancer and pre-neoplastic lesions, thereby reducing the likelihood 
of missed diagnoses. This tool enables primary institutions and junior physicians to diagnose 
and treat laryngeal cancer and pre-neoplastic lesions with expertise, leading to enhanced clinical 
outcomes for patients.

References

 1 M. Falco, C. Tammaro, T. Takeuchi, A. M. Cossu, G. Scafuro, S. Zappavigna, A. Itro, R. Addeo, M. Scrima, A. 
Lombardi, F. Ricciardiello, C. Irace, M. Caraglia, and G. Misso: Cancers 14 (2022) 1716. https://doi.
org/10.3390/cancers14071716

 2 A. M. Cossu, L. Mosca, S. Zappavigna, G. Misso, M. Bocchetti, F. De Micco, L. Quagliuolo, M. Porcelli, M. 
Caraglia, and M. Boccellino: Int. J. Mol. Sci. 20 (2019) 3444. https://doi.org/10.3390/ijms20143444 

 3 G. Marioni, R. Marchese-Ragona, G. Cartei, F. Marchese, and A. Staffieri: Cancer Treatment Reviews 32 
(2006) 504. https://doi.org/10.1016/j.ctrv.2006.07.002

 4 M. A. Zwakenberg, G. B. Halmos, J. Wedman, B. F. van Der Laan, and B. E. Plaat: Laryngoscope 131 (2021) 
E2222. https://doi.org/10.1002/lary.29361

 5 J. Chen, Z. Li, T. Wu, and X. Chen: Laryngoscope Investigative Otolaryngology 8 (2023) 508. https://doi.
org/10.1002/lio2.1049  

 6 N. Mohamed, R. L. Almutairi, S. Abdelrahim, R. Alharbi, F. M. Alhomayani, B. M. Elamin Elnaim, A. A. 
Elhag, and R. Dhakal: Cancers 16 (2023) 181. https://doi.org/10.3390/cancers16010181

https://doi.org/10.3390/cancers14071716
https://doi.org/10.3390/cancers14071716
https://doi.org/10.3390/ijms20143444
https://doi.org/10.1016/j.ctrv.2006.07.002
https://doi.org/10.1002/lary.29361
https://doi.org/10.1002/lio2.1049
https://doi.org/10.1002/lio2.1049
https://doi.org/10.3390/cancers16010181


4662 Sensors and Materials, Vol. 36, No. 11 (2024)

 7 R. Gabbiadini, F. D’Amico, A. De Marco, M. Terrin, A. Zilli, F. Furfaro, M. Allocca, G. Fiorino, and S. 
Danese: J. Clin. Med. 11 (2022) 509. https://doi.org/10.3390/jcm11030509

 8 H. Irjala, N. Matar, M. Remacle, and L. Georges: Eur. Archiv. Oto-Rhino-Laryngology 268 (2011) 801. https://
doi.org/10.1007/s00405-011-1516-z 

 9 X. Ni, G. Wang, F. Hu, X. Xu, L. Xu, X. Liu, X. Chen, L. Liu, X. Ren, Y. Yang, L. Guo, Y. Gu, J. Hou, J. Zhang, 
Y. Yang, B. Xing, J. Ren, and H. Guo: Clin. Otolaryngology 44 (2019) 729. https://doi.org/10.1111/coa.13361

 10 A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun: Nature 547 (2017). https://
doi.org/10.1038/nature21056 

 11 B. Zhang, Z. Jin, and S. Zhang: Lancet Digital Health 3 (2021) e410. https://doi.org/10.1016/S2589-
7500(21)00108-4 

 12 S. Foersch, M. Eckstein, D. C. Wagner, F. Gach, A. C. Woerl, J. Geiger, C. Glasner, S. Schelbert, S. Schulz, S. 
Porubsky, A. Kreft, A. Hartmann, A. Agaimy, and W. Roth: Annals of Oncology 32 (2021) 1178. https://doi.
org/10.1016/j.annonc.2021.06.007 

 13 J. Yu, T. Ma, H. Chen, M. Lai, Z. Ju, and Y. Xu: IEEE Trans. Syst. Man Cybern.: Syst. 53 (2023) 7099. https://
doi.org/10.1109/TSMC.2023.3290205

 14 B. A. Tama, G. Kim, S. W. Kim, and S. Lee: Clin. Exp. Otorhinolaryngology 13 (2020) 326. https://doi.
org/10.21053/ceo.2020.00654  

 15 G. Urban, P. Tripathi, T. Alkayali, M. Mittal, F. Jalali, W. Karnes, and P. Baldi: Gastroenterology 155 (2018) 
1069. https://doi.org/10.1053/j.gastro.2018.06.037  

 16 K. Kumar, P. Kumar, D. Deb, M. L. Unguresan, and V. Muresan: Healthcare 11 (2023) 207. https://doi.
org/10.3390/healthcare11020207  

 17 J. Yu, T. Ma, Y. Fu, H. Chen, M. Lai, C. Zhuo, and Y. Xu: Comput. Med. Imaging Graphics 107 (2023) 102230. 
https://doi.org/10.1016/j.compmedimag.2023.102230  

 18 M. Żurek, K. Jasak, K. Niemczyk, and A. Rzepakowska: J. Clin. Med. 11 (2022) 2752. https://doi.org/10.3390/
jcm11102752  

 19 M. Misawa, S. Kudo, Y. Mori, K. Hotta, K. Ohtsuka, T. Matsuda, S. Saito, T. Kudo, T. Baba, F. Ishida, H. Itoh, 
M. Oda, and K. Mori: Gastrointestinal Endoscopy 93 (2021) 960. https://doi.org/10.1016/j.gie.2020.07.060  

 20 J. Jeong, E. M. Song, C. Ha, H. J. Lee, J. E. Koo, D. H. Yang, N. Kim, and J. S. Byeon: Sci. Rep. 10 (2020) 8379. 
https://doi.org/10.1038/s41598-020-65387-1 

 21 I. Pacal, A. Karaman, D. Karaboga, B. Akay, A. Basturk, U. Nalbantoglu, and S. Coskun: Comput. Biol. Med. 
141 (2022) 105031. https://doi.org/10.1016/j.compbiomed.2021.105031  

 22 T. Eelbode, I. Demedts, R. Bisschops, P. Roelandt, C. Hassan, E. Coron, P. Bhandari, H. Neumann, O. Pech, A. 
Repici, and F. Maes: Gastrointestinal Endoscopy 89 (2019) AB618. https://doi.org/10.1016/j.gie.2019.03.1075 

 23 Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland, and I. Balasingham: IEEE Access 6 (2018) 40950. https://doi.
org/10.1109/ACCESS.2018.2856402 

 24 L. Yu, H. Chen, Q. Dou, J. Qin, and P. A. Heng: IEEE J. Biomed. Health. Inf. 21 (2016) 65. https://doi.
org/10.1109/JBHI.2016.2637004 

 25 K. Nguyen, N. T. Huynh, P. C. Nguyen, K. D. Nguyen, N. D. Vo, and T. V. Nguyen: Electronics 9 (2020) 583. 
https://doi.org/10.3390/electronics9040583  

 26 S. Oh, A. Chang, A. Ashapure, J. Jung, N. Dube, M. Maeda, D. Gonzalez, and J. Landivar: Remote Sens. 12 
(2020) 2981. https://doi.org/10.3390/rs12182981  

 27 C. B. Murthy, M. F. Hashmi, N. D. Bokde, and Z. W. Geem: Appl. Sci. 10 (2020) 3280. https://doi.org/10.3390/
app10093280 

 28 Z. Xu, X. Xu, L. Wang, R. Yang, and F. Pu: Remote Sens. 9 (2017) 1312. https://doi.org/10.3390/rs9121312  
 29 J. Ding, J. Zhang, Z. Zhan, X. Tang, and X. Wang: Remote Sens. 14 (2020) 844. https://doi.org/10.3390/

rs14030663 
 30 B. Jin, P. Liu, P. Wang, L. Shi, and J. Zhao: Entropy 22 (2020) 844. https://doi.org/10.3390/e22080844
 31 L. Wei, C. Zheng, and Y. Hu: Remote Sens. 15 (2023) 1350. https://doi.org/10.3390/rs15051350 
 32 A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao: arXiv preprint 2004 (2020) 10934. https://doi.org/10.48550/

arXiv.2004.10934
 33 H. Law and J. Deng: arXiv preprint (2018) 734. https://doi.org/10.48550/arXiv.1808.01244
 34 Z. Tian, C. Shen, H. Chen, and T. He: International Conference on Computer Vision (ICCV, 2019) 9627. https://

doi.org/10.1109/ICCV.2019.00972  
 35 S. Xu, X. Wang, W. Lv, Q. Chang, C. Cui, K. Deng, G. Wang, Q. Dang, S. Wei, Y. Du, and B. Lai: arXiv 

preprint 2203 (2022) 16250. https://doi.org/10.48550/arXiv.2203.16250  

https://doi.org/10.3390/jcm11030509
https://doi.org/10.1007/s00405-011-1516-z
https://doi.org/10.1007/s00405-011-1516-z
https://doi.org/10.1111/coa.13361
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/S2589-7500(21)00108-4
https://doi.org/10.1016/S2589-7500(21)00108-4
https://doi.org/10.1016/j.annonc.2021.06.007
https://doi.org/10.1016/j.annonc.2021.06.007
https://doi.org/10.1109/TSMC.2023.3290205
https://doi.org/10.1109/TSMC.2023.3290205
https://doi.org/10.21053/ceo.2020.00654
https://doi.org/10.21053/ceo.2020.00654
https://doi.org/10.1053/j.gastro.2018.06.037
https://doi.org/10.3390/healthcare11020207
https://doi.org/10.3390/healthcare11020207
https://doi.org/10.1016/j.compmedimag.2023.102230
https://doi.org/10.3390/jcm11102752
https://doi.org/10.3390/jcm11102752
https://doi.org/10.1016/j.gie.2020.07.060
https://doi.org/10.1038/s41598-020-65387-1
https://doi.org/10.1016/j.compbiomed.2021.105031
https://doi.org/10.1016/j.gie.2019.03.1075
https://doi.org/10.1109/ACCESS.2018.2856402
https://doi.org/10.1109/ACCESS.2018.2856402
https://doi.org/10.1109/JBHI.2016.2637004
https://doi.org/10.1109/JBHI.2016.2637004
https://doi.org/10.3390/electronics9040583
https://doi.org/10.3390/rs12182981
https://doi.org/10.3390/app10093280
https://doi.org/10.3390/app10093280
https://doi.org/10.3390/rs9121312
https://doi.org/10.3390/rs14030663
https://doi.org/10.3390/rs14030663
https://doi.org/10.3390/e22080844
https://doi.org/10.3390/rs15051350
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.1808.01244
https://doi.org/10.1109/ICCV.2019.00972
https://doi.org/10.1109/ICCV.2019.00972
https://doi.org/10.48550/arXiv.2203.16250


Sensors and Materials, Vol. 36, No. 11 (2024) 4663

 36 X. Yin, Z. Yu, Z. Fei, W. Lv, and X. Gao: Artificial Neural Networks and Machine Learning – ICANN 2023 
(2023) 163. https://doi.org/10.1007/978-3-031-44195-0_14  

 37 R. Girshick: International Conference on Computer Vision (ICCV, 2015) 1440. https://doi.org/10.1109/
ICCV.2015.169 

 38 K. He, G. Gkioxari, P. Dollár, and R. Girshick: International Conference on Computer Vision (ICCV, 2017) 
2961. https://doi.org/10.1109/ICCV.2017.322 

 39 J. Redmon, and A. Farhadi: arXiv preprint 1804 (2018) 02767. https://doi.org/10.48550/arXiv.1804.02767 
 40 J. Galli, S. Settimi, D. A. Mele, A. Salvati, E. Schiavi, C. Parrilla, and G. Paludetti: J. Clin. Med. 10 (2021) 

1224. https://doi.org/10.3390/jcm10061224 

About the Authors

Huang Yangyiyi received his B.S. degree from the College of Life Sciences of Zhejiang 
University, China, and his M.D. degree from Zhejiang University School of Medicine, China. He 
completed his residency training at the Second Affiliated Hospital of Zhejiang University School 
of Medicine and has been serving as an attending physician at the same hospital and a secretary 
of the residency training in the department. His research interests are in the application of 
artificial intelligence in otolaryngology-head and neck surgery diagnosis and treatment, and the 
application of VR and 3D printing in medical teaching otolaryngology-head and neck surgery. 
(2317155@zju.edu.cn)]

Jinchao Ge received her master's degree in Software Engineering from Zhejiang University of 
Technology, Hangzhou, China, in 2020. She is currently pursuing her Ph.D. at the University of 
Adelaide, Australia. Her research interests include computer vision and deep learning. 
(jinchao.ge@adelaide.edu.au)

Weiming Fan holds a bachelor’s degree from Luoyang University of Technology, China, and a 
master’s degree from Shenyang Ligong University, China. He is currently a research assistant in 
Binjiang Institute of Zhejiang University, China. His research interests revolve around deep-
learning-based detection methods in the field of medicine. (weiming@stu.sylu.edu.cn)

YiQun Zheng is currently a senior researcher of Hangzhou TUYA Information Technology Co., 
Ltd., focusing on AI and IoT solution. (eqin@tuya.com)

Changting Lin received his Ph.D. degree in computer science from Zhejiang University, China, 
in 2018. His is currently a researcher in Binjiang Institute of Zhejiang University, China. His 
research interests include AI and AI security. (linchangting@zju.edu.cn)

https://doi.org/10.1007/978-3-031-44195-0_14
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.3390/jcm10061224
mailto:2317155@zju.edu.cn
mailto:jinchao.ge@adelaide.edu.au
mailto:weiming@stu.sylu.edu.cn
mailto:eqin@tuya.com
mailto:linchangting@zju.edu.cn



