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	 In this paper, we present an adaptive optimal control algorithm for solving the tracking 
control problem of multiple autonomous surface vehicles under uncertain dynamics and 
unknown external disturbances. The proposed control algorithm uses an adaptive dynamic 
programming technique with optimal compensation terms. A disturbance observer is designed 
to handle the problem of unknown time-varying external disturbances. It is proven that all the 
signals in the closed-loop system are bounded. Simulation results are provided to illustrate the 
effectiveness of the proposed control algorithm.

1.	 Introduction

	 In recent years, autonomous surface vehicle (ASV) research has attracted ever-increasing 
attention in exploring natural resources in the ocean space. An ASV has unique advantages, 
such as low energy cost and high intelligence, compared with traditional surface vehicles.(1) A 
solitary ASV may not suffice to deal with complex tasks in some situations.(2) Thus, the 
coordinated control of multiple ASVs has become a burgeoning research topic.(3–6) Zhang et al. 
investigated the event-triggered controller for maneuver control problems of multiple ASVs.(4) 
Considering environmental disturbances, limited communication resources, and input 
saturation, an adaptive controller is designed on the basis of a radial basis function neural 
network (NN). An event-triggered mechanism is adopted to decrease the frequency of 
information transmission and conserve communication resources. Wu et al. investigated the 
path-tracking control of an underactuated unmanned surface vehicle, considering model 
uncertainties and unknown disturbances by adopting a wireless network.(6) The research 
mentioned above is effective; however, these control algorithms do not consider the issue of 
optimal control.
	 Optimal control is a foundational design principle that can improve the control performance 
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by minimizing the cost function.(7)  In the control area of ASVs, optimal control has been widely 
applied to achieve the control target with less energy consumption. Given the inherent nonlinear 
characteristics of ASV systems, achieving optimal control for ASVs is a complex problem.(8) To 
handle this problem, adaptive dynamic programming (ADP) techniques are adopted.(8,9) This 
framework employs a reinforcement learning (RL) system to dynamically approximate the 
Hamilton–Jacobi–Bellman (HJB) equation.(10,11) Gao et al. investigated ASVs’ optimal dynamic 
positioning problem.(12) The observer based on a fuzzy logic system (FLS) was given to handle 
the problem of unmeasured states of vessels. Wang et al. presented a data-driven RL-based 
controller for addressing the optimal control problem of a single ASV.(13) A model-free control 
method was formulated using a data-driven approach to achieve control optimality and 
prescribed tracking accuracy concurrently. Wang et al. presented an optimal control scheme for 
the RL-based optimal tracking control of a single ASV.(14) Unknown dead-zone input 
nonlinearities and unknown disturbances are considered and handled by using an NN-based 
identifier. These researchers can handle the optimal control problem of a single ASV; however, 
the optimal tracking control problem of multiple ASVs cannot be handled directly using these 
methods.
	 When an ASV operates in a sea environment, the control effectiveness of an ASV can be 
affected by external disturbances such as wind and waves, potentially leading to a failure to 
achieve the control target.(15,16) Furthermore, the issue of disturbance from external environments 
is a crucial factor that requires attention, and it is important to adopt disturbance rejection 
techniques. Thus, adaptive controllers with disturbance observers (DOs) are designed to 
estimate and counteract external disturbances. In recent years, some DO-based controllers have 
been reported.(16–20) Hu et al. investigated the problem of robust leader-follower synchronization 
navigation for ASVs.(16) The problem of unknown external disturbances is solved by adopting 
DOs. Using the dynamic surface control technique, Von Ellenrieder investigated the trajectory 
tracking control problem of ASVs.(20) Time-varying disturbances were considered and estimated 
by a proposed DO. These results are powerful and inspire the authors.
	 Motivated by the abovementioned studies, we addressed the optimal formation tracking 
control problem of multiple ASVs in this study. We adopted an ADP algorithm based on 
shipborne sensors’ feedback signal. First, an adaptive controller was designed using the 
backstepping technique, transforming the optimal tracking control problem into an equivalent 
optimal regulation problem. Subsequently, an optimal compensation term was formulated using 
the policy iteration method. The final controller is the sum of the adaptive controller and the 
optimal compensation term. It was proven that the proposed controller can guarantee that all 
signals in the closed-loop system remain bounded. Simulation results were provided to 
demonstrate the effectiveness of the proposed control algorithm.
	 The main contribution of this work can be summarized as follows.
(1)	�Unlike Refs. 4–6, 21, and 22  that focused on the tracking control problem of multiple ASVs 

without considering optimality, we considered optimality when designing the tracking 
controller. Since the tracking control problem of ASVs often needs to face the tasks related to 
ocean transportation or deep-sea exploration, it is necessary to consider the energy-saving 
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issue. The control method proposed in this paper exhibits an advantage regarding energy 
consumption.

(2)	�Unlike Refs. 13 and 14, an advantage of this study is that we investigated the optimal tracking 
control problem of multiple ASVs. In contrast, in Refs. 13 and 14, only a single ASV’s 
optimal tracking control problem was explored. Therefore, the control task in this paper is 
more challenging than in the previous studies.

	 The rest of this paper is organized as follows. The control problem is formulated in Sect. 2. 
The adaptive controller and optimal compensation term are introduced in Sects. 3.1 and 3.2, 
respectively. Stability analysis is provided in Sect. 3.3. Simulation results are presented in Sect. 
4. Finally, conclusions are given in Sect. 5.

2.	 Problem Formulation

	 To achieve the tracking control problem of multiple ASVs, a body-fixed frame B and an 
earth-fixed frame E are adopted,(23,24) as shown in Fig. 1.
	 Considering the optimal leader-follower formation control problem of multiple ASVs, the 3 
degrees of freedom (3-DOF) system with uncertain dynamics can be described as(22,23)

	
( )
( ) ( ) ( ),

1,2,...,

i i i i

i i i i i i i i i i i i

R

M C D d
i m

η ψ ν

ν ν ν ν ν η ν τ

=

= − − + ∆ + +

=





,	 (1)

where [ , , ]i i i ix yη ψ= , with xi and yi indicating the position of an ASV in the earth-fixed frame, 

Fig. 1.	 (Color online) Reference frames.
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ψi is the heading angle in the earth-fixed frame, [ , , ]i i i iu v rν = denotes the velocity of an ASV in 
the body-fixed frame, 1 2 3[ , , ]i i i iτ τ τ τ=  denotes the control input, and 1 2 3[ , , ]i i i id d d d= denotes 
the unknown time-varying external disturbance. Assume that the time derivative of unknown 
external disturbance di is bounded, i.e., i imd d≤ , where dim is bounded. ( ) 3 1Ä ,i iη ν ×∈  denotes 
the uncertain dynamics. ( ) 3 3

i iR ψ ×∈  is the rotation matrix from the earth-fixed frame to the 
body-fixed frame, which is given as

	 ( )
( ) ( )
( ) ( )

cos sin 0
sin cos 0

0 0 1

i i

i i i iR
ψ ψ

ψ ψ ψ
 −
 =  
  

.	 (2)

3 3
iM ×∈  is the inertia matrix, including the hydrodynamially added inertia, ( ) 3 3

i iD ν ×∈  is 
the damping matrix, and ( ) 3 3

i iC ν ×∈  is a matrix of the centripetal and Coriolis terms. Readers 
can check related references to find the details of these three matrices and the parameters inside.
(12)

	 From Eq. (1), we can obtain the following equation:

	 ( ) ( ) ( )1,
1,2,...,

i i

i i i i i i i i if R M d
i m

η υ

υ η υ ψ τ−

=

= + +
=



 ,	 (3)

where

	 ( )i i i iRυ ψ ν= 	 (4)

and

	 ( ) ( ) ( ) ( ) ( )( ) ( )1, ,i i i i i i i i i i i i i i i i if R M C v v D v v R vη υ ψ η υ ψ−= − − + ∆ +  .	 (5)

	 Since ( ),i iη υ∆  is unknown, we cannot directly obtain ( ),i i if η υ . Therefore, an FLS is 
adopted to obtain ( )ˆ ,i i if η υ , an approximation of ( ),i i if η υ .

3.	 Controller Design

3.1	 Design process for the adaptive controller

	 The proposed adaptive controller is designed on the basis of the backstepping technique. 
First, the change of coordinates is given as

	 1i i idz η η= − ,	 (6)
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	 2i i iz υ α= − ,	 (7)

where ηid = ηd + Ri(ψi)pi; [ ], ,d d d dx yη ψ=  is the reference signal of the leader. αi is the virtual 
controller for design purpose. , ,0i ix iyp p p =  


; pix and piy denote the relative position between 

the ith ASV and the leader in the XE and YE directions, respectively. We define a
iα  as the 

adaptive virtual control and *
iα  as the optimal compensation term, where the actual control is 

composed of these two terms, i.e., *a
i i iα α α= + .

	 From Eq. (16), we can obtain the time derivative of zi1 as

	 1
*

2 .
i i id

a
i i i id

z

z

η η

α α η

= −

= + + −

 




	 (8)

	 To obtain the control objective, consider the following Lyapunov candidate:

	 1 1 1
1
2i i iV z z=  .	 (9)

	 We can obtain the time derivative of Vi1 as

	 ( )*
1 1 2

a
i i i i i idV z z α α η= + + −



 .	 (10)

	 The adaptive controller a
iα  can be designed as 

	 1 1
a
i i i idr zα η= − +  ,	 (11)

where ri1 = diag(ri11, ri12, ri13) is the positive design parameter vector. Thus, we can obtain 

	 *
1 1 1 1 1 2 1i i i i i i i iV r z z z z z α= − + +

   .	 (12)

The time derivative of zi2 can be expressed as 

	 ( ) ( ) ( )1
2 ,i i i i i i i i i iz f R M dη υ ψ τ α−= + + −  .	 (13)

	 To handle the unknown dynamic of fi(ηi, υi), an FLS is adopted; one has

	 ( ) ( )*, ,i i i i i i i if η υ θ ϕ η υ ε= + .	 (14)

εi denotes the minimum approximation error, i.e., ||εi|| ≤ εdm, where 3 3
imε

×∈  is a constant 
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matrix. We can obtain the approximation of fi(ηi, υi) as

	 ( ) ( )ˆ ˆ, ,i i i i i i if η υ θ ϕ η υ= .	 (15)

	 To handle the problem of external unknown disturbance, a DO is given; we define the 
auxiliary vector qi as 

	 i i i iq d K υ= − ,	 (16)

where [ ]1 2 3, , ,i i i iq q q q= , and 3 3
iK ×∈  is a positive definite design matrix. The time derivative 

of qi can be described as

	 ( ) ( ) ( )( )1,i i i i i i i i i i i i iq d K f R M q Kη υ ψ τ ν−= − + + +

 .	 (17)

	 Since di is unknown, qi is also unknown. We can obtain the approximation of qi using the 
following equation:

	 ( ) ( ) ( )( )1ˆ̂ ,ˆ
i i i i i i i i i i i iq K f R M q Kη υ ψ τ υ−= − + + + .	 (18)

	 Thus, we can obtain the estimation of di as 

	 ˆ ˆi i i id q K υ= + .	 (19)

	 We can obtain ˆ
i i i id d d q= − =

 ; the time derivative of iq  can be described as

	 ( ) ( ) ( )1,i i i i i i i i i i i i iq d K K R M qθ ϕ η υ ψ ψ−= − − 

  .	 (20)

	 We design the following Lyapunov function as

	 2 1 2 2
1 1 1
2 2 2i i i i i i i iV V z z q qθ θ= + + + 

 

   .	 (21)

	 Using the fact * ˆ
i i iθ θ θ= − , we can obtain the following equation:

	 ( ) ( ) ( )( )
( ) ( )( )

2 1 2 2

1
1 2

1

ˆ,

, .

i i i i i i i ii

i i i i i i i i i i i i i

i i i i i i i i i i i i

V V z z q

V z f R M d

q d K K R M q

qθ θ

η υ ψ τ α θ θ

θ ϕ η υ ψ

−

−

= + + +

+ + + − −

+ − −

=

  

 















 

  

 



	 (22)
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	 According to Young’s inequality, we can obtain

	 

2 21 1
2 2i i i imq d q d≤ + 




	 (23)

and

	 ( ) 

2 2 2 21 1,
2 2i i i i i i i i im iq K q Kθ ϕ η υ ϕ θ≤ + 


   

 .	 (24)

	 We define ( ) ( ) ( )2 ,i i i i i i ih Z f fη υ α− , where [ ]2 ,i i iZ η α= ; one has

	
( ) ( ) ( ) ( ) ( )( )

( )( ) 
1 *

2 1 2 2

1 2 2 2 2 2

ˆ

.1 1 1ˆ
2 2

a
i i i i i i i i i i i i i i i i i i i

i i i i i i i im i im i

V V z h Z R M d

K R M q d K

θ ϕ α θ ϕ α ε ψ τ τ α

θ θ ψ ϕ θ

−

−

≤ + + + + + + + −

− − − + +









 



  




	 (25)

	 We can design the adaptive controller and adaptive law as

	 ( ) ( )( )1 2 2 2
ˆ ˆa

i i i i i i i i i i i i i i iM R z z r z q Kτ ψ θ ϕ α α υ= − − − − + − −

 	 (26)

and

	 ( ) 2
2

ˆ̂̂̂
i i i i i i izθ ϕ α θ θ θ= − −

 

 ,	 (27)

where ri2 = diag(ri21, ri22, ri23) is the positive design parameter vector. According to Young’s 
inequality, we can obtain the following equations:

	 2
2 2 2

1 1
2 2i i i i imz z zε ε≤ +  ,	 (28)

	 2 * 21 1ˆ
2 2i i i iθ θ θ θ≤ − +

 



 

 ,	 (29)

and

	 2 4 * 41 1
1

ˆ̂
0 2i i i i iθ θ θ θ θ≤ − +

  



  

 .	 (30)
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	 Thus, we can obtain 

	



2 4 2 2 2
2

1 1 2

* 2 * 4 2 2

*
3 3 3 3

1 *
3 3

1 1 1( )
10 2 2

1( ( ) ( ) ( ) 1)
2

1 1 1 1
2 2 2 2

0
( ) ,

0 ( )

i i i i i im i

i i i i i i i i i i i

i i im im

i i i
i i i

V Z K

K R M R M M R q

d

I
Z F Z

R M

γ θ ϕ θ

ψ ψ ψ

θ θ ε

α
ψ τ

− −

× ×
−

×

≤ − − − −

− − −

+ + + +

   
 + +           

  ‖ ‖ ‖ ‖ ‖ ‖

‖‖

‖ ‖ ‖ ‖








	 (31)

where ( ) ( )3 3 20 ,i i i iF Z h z× =  
, 1 2,i i ir rγ  =  

  , 1 2,i i iZ z z =  
  .

	 ( )
( )

3 3 3 3 *
1

3 3

0

0i i i i i
i i i

I
Z Z F Z U

R Mψ
× ×

−
×

  
 = +      



 ,	 (32)

where * * *,i i iU α τ =  
  . From Eqs. (31) and (32), it can be seen that when the controller *

iU  
stabilizes the system [Eq. (32)], iZ  (and 1iz ) becomes negative.(25–27) Therefore, 2iV  becomes less 
than zero, which shows that all the error signals in the closed-loop system are uniformly 
ultimately bounded (UUB). In the following section, *

iτ  will be designed to stabilize the system 
[Eq. (32)] optimally.

3.2	 Design process for optimal compensation term

	 Consider the following system

	 ( ) *
i i i i iZ F Z G U= + ,	 (33)

where ( ) ( )3 3 20 ,i i i iF Z h Z× =  
 and ( )( )1

3 3diag ,i i i iG I R M ψ−
×= . The cost function is described 

as

	 ( ) ( )( )*
0i i i it

J r Z t U t dt
∞

= ∫ ,	 (34)

where ( ) ( )* * *,i i i i i i i ir Z U Q Z U R U= +  , ( )i iQ Z ∈ is a positive semidefinite penalty function 
and 0i iR R= ≥  penalizes and controls input. We define a Hamiltonian function as

	 ( ) ( ) ( )( ) ( )( )' ' ', ,i i i i i i i i i i i iH Z U r Z U J Z F Z G U= + ∇ +
 ,	 (35)

where '
iU  is associated admissible control and ( )i iJ Z∇  is the gradient of ( )i iJ Z  about Zi. The 

optimal controller ( )*
i iU Z  can be obtained by applying the condition ( )' ', / 0i i i iH Z U U∂ ∂ = ; one 

has
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	 ( ) ( )* 1 *1
2i i i i i iU Z R G J Z−= − ∇ ,	 (36)

where ( )*
i iJ Z∇  denotes the gradient of ( )*

i iJ Z  about Zi. The HJB equation can be described as 

	 ( ) ( )( ) ( ) ( )( ) ( )( )* * 1 *1 0
4i i i i i i i i i i iQ Z J Z F Z J Z G R J Z−+ ∇ − ∇ ∇ =

 
	 (37)

with ( )* 0 0iJ = .
	 To obtain the approximation of the optimal cost function, an FLS is designed as

	 ( ) ( )* *
i i ib ib i ibJ Z Zθ ϕ ε= + ,	 (38)

where *
ibθ  is the ideal parameter, ( )ib iZϕ  is the fuzzy basis function, and ibε  is the fuzzy 

minimum approximation error. The gradient of the optimal cost function is

	 ( ) ( )* */i i i i ib i ib ibJ Z Z Zϕ θ ε∂ ∂ = ∇ +∇ ,	 (39)

where ( )i iZϕ∇   and ibε∇  are the gradients of ( )ib iZϕ  and ibε , respectively. The optimal 
controller and the Hamiltonian function can be expressed as

	 ( ) ( )( )* 1 *1
2i i i ib i ib ibU Z R Zϕ θ ε−= − ∇ +∇ ,	 (40)

	
( ) ( ) ( )( ) ( )

( )( ) ( )

* *

* 1 * .

,

1
4

i i ib i i ib ib i i i iHJB

ib ib i i i i ib i ib

H Z Q Z Z H Z

Z G R G Z

θ θ ϕ ε

θ ϕ ϕ θ−

= + ∇ +

− ∇ ∇

 

   
.	 (41)

	 We can obtain the following equation:

	 ( ) ( )( ) ( )* 1
HJB

1
4i ib i i i i ib i i i ibF Z G U G R Gε ε ε ε−= ∇ + + ∇ ∇   .	 (42)

	 We can obtain the approximation of the cost function by an FLS, which is described as

	  ( ) ( )ˆ
i ib ib ii Z ZJ θ ϕ=  ,	 (43)

where îbθ  is the approximation of *
ibθ . The estimation of the optimal controller can be rewritten as
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	  ( ) ( )
* 11

2
ˆ

i i i i ib i ibU Z R G Zϕ θ−= − ∇  .	 (44)

	 We can obtain the approximate Hamiltonian function as

	
( ) ( ) ( )( )  ( )

( )( ) ( )1

ˆ̂ˆ̂

ˆ̂ ,

, |

1
4

i i ib i i ib ib i i i i

ib ib i i i i i i ib

H Z Q Z Z F Z

Z G R G Z

θ θ ϕ

θ ϕ ϕ θ−

= + ∇ Θ

− ∇ ∇

 

   
	 (45)

where  ( ) ( ) ( ) ( )1 1 1 2 2 2| | , | ,..., ˆ|ˆ̂̂ˆ̂̂
i i i i i i i i i in in inF Z f z f z f zθ θ θ θ =  


, 

( ) ( ) ( )1 1 1 1 1 1 1 1 1|ˆ̂ ˆ̂̂| |ˆ
i i i i i i i i d if z f x f xθ θ θ= − , ( ) ( ) ( )ˆ̂̂ | |ˆ̂| ˆ

ij ij ij ij ij ij ij ijd ijf z f x f xθ θ θ= − ,

 j = 2, 3, ..., n. We choose the parameter updating law of îbθ  as

	

( )( )  ( ) ( )( ) ( )

( ) ( )( )  ( )

( )( ) ( )

1

1 .

ˆ̂

ˆ

1
2

1
4

ˆ̂

ib ib i i i i ib i i i i ib i ib

i i ib ib i i i i

ib ib i i i i ib i ib

Z F Z Z G R G Z

Q Z Z F Z

Z G R G Z

ϕ θ ϕ ϕ θ

θ ϕ

θ ϕ ϕ θ

θ −

−

 
 
∇= − − ∇ ∇

× + ∇ Θ
− ∇ ∇ 







∣

∣

    

 

   

	 (46)

	 We define * ˆ
i i iθ θ θ= −  as the estimation error of the optimal cost function parameter. We can 

obtain 

	
( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

1 *

1
HJB

ˆˆ

.

1,
2
1
4

i i ib ib ib i i i i ib i ib ib ib i i i

ib ib i i i i ib i ib i

H Z Z G R G Z Z F Z

Z G R G Z

θ θ ϕ ϕ θ θ ϕ

θ ϕ ϕ θ ε

−

−

= ∇ ∇ − ∇

− ∇ ∇ −

  

 

      

   
	 (47)

	 The error dynamics of Eq. (45) can be written as

	

( ) ( )  ( )

( )

( ) ( ) 

( )

.
1

1

.

1

( ) ( ) ( ) ( ) ( )

1 ( ) ( )
2

ˆ( ) ( ) ( )

1 ( ) ( )
4
1
2

ib ib i i ib i i i ib i i i i ib i ib

ib i i i i ib i

ib ib i i ib ib i i i

ib ib i i i i ib i ib

ib

Z Z Z F Z Z G R G Z

Z G R G Z

Z Z Z F Z

Z G R G Z

θ ϕ ϕ ϕ ϕ θ

ϕ ε

θ ϕ θ ϕ

θ ϕ ϕ θ

θ ϕ

−

−

−


= − ∇ − ∇ + ∇ ∇


+ ∇ ∇ 


× ∇ + ∇


+ ∇ ∇

+ ∇



 


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where ( ) ( ) ( )ˆˆ |i i i i i i iF Z F Z F Z θ= − .

3.3	 Stability analysis

	 Theorem 1: For multiple marine vessel systems [Eq. (1)], the adaptive parameter is determined 
by Eq. (27), the adaptive controller is defined by Eq. (26), the optimal compensation term is 
provided by Eq. (44), and the updated law for the cost function is specified by Eq. (46). By 
selecting the design parameters appropriately, the entire control scheme ensures the boundedness 
of all signals in the closed-loop system, and the system outputs can optimally track the reference 
signal.
	 Proof: Consider the following Lyapunov function:

	 1 1 2 2
1 1 1 1 1
2 2 2 2 2i i i i i i i ib ib i iV z z z z q qθ θ θ θ= + + + +   

 

     .	 (49)

	 We can obtain 

	 1 1 2 2
1
2i i i i i i i ib ib i iV z z z z q qθθ θ θ= + + + + 

   

 





     .	 (50)

	 From Eqs. (46) and (48), we can obtain 
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	 (51)

	 Assu me that  ( )( ) ( )1
5ib i i ib i iZ R Zϕ ϕ π−∇ ∇ ≤

  ,  ( ) *
i i i i iF Z U c Z+ ≤ ,  ( )i i ibmZε ε∇ ≤ , 

( )ib i imZϕ ϕ∇ ≤ , where 2i , ci, εibm, and φim are positive constants. We can obtain

	 2 4 2 4 2 2
1 2 3 4 5 6 7 8i i i i i i i i i i ib i ib i i iV Z Z qθ θ θ θ≤ − + − + − + − +   

      


 ,	 (52)
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where

	 4 4 4
1

11 1
4 2i i i i ibmc cγ ε= − − ,	 (53)

	 2 2
2 2i i ibmc ε=

,	 (54)

	 4
3

1 7
10 2i imε= − ,	 (55)

	 2 * 4
4

1 12
4 2i im ib imS θ ε= + − ,	 (56)

	 2 4 4 12 4
5 5

1 99 77
4 32 16i i im i i imG Rπ ϕ ϕ−= − − ,	 (57)

	 2 4 12 2 2 4 12
6

3 1
8 8i im i i ibm im i iG R G Rϕ ε ϕ− −= + ,	 (58)

	 ( ) ( )1 2 2
7

1 12
2 2i i i i i i i im iK R M K Aψ ψ ϕ−= − − − ,	 (59)
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	 If the following equations hold:
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i i i i
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or
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or
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2

6 6 5 8

5

4
2

i i i i
i

i
W

− + +
>

   



	 (63)

or

	 8

7

i
i

i
q >





 .	 (64)

	 We can get 3 0iV < . Thus, it can be concluded that all the signals in the closed-loop system are 
bounded.

4.	 Simulation

	 In the simulation part, a multiple-ASV system consisting of three ASVs is adopted, named 
ASV1, ASV2, and ASV3. The details of the simulation model can be found in Ref. 28. The initial 
positions of the three ASVs are x1(0) = 0, y1(0) = 0.7, ψ1(0) = 0, x2(0) = −0.5, y2(0) = −0.5, 
ψ2(0) = 0, and x3(0) = 0.5, y3(0) = −0.5, ψ3(0) = 0, respectively. The desired tracking signal of the 
leader is chosen as ( ) ( )0 10sin 0.02 ,10(1 cos 0.02 ,0.02t t tη =  −  

. The relative position 
parameters are chosen as 1 2 / 2xp = , p1y = 0, p2x = −0.5, p2y = −0.5, p3x = −0.5, and p3y = 0.5. 
The design parameters are chosen as ri1 =diag(10, 10, 10), ri2 =diag(10, 10, 10), and 
Ki = diag(5, 5, 5). The time-varying external disturbance is adopted as di1 = 5(0.5cos(0.25t) + 
0.5sin(0.15t)), di2 = 5(−0.5cos(0.15t) − 0.5sin(0.25t)), di3 = 5(0.5cos(0.25t) + 0.5sin(0.15t)). The 
fuzzy parameters in the FLSs are settled randomly in (0, 1), and the fuzzy membership functions 
of the FLSs are designed as

	
2

1
1

( )( ) exp
2

lF
x lxµ

 +
= − 

  
,	 (65)

and

	
2 2

1 2
1 2

( ) ( )( , ) exp exp
2 2

lF
x l x lx xµ

   + +
= − × −   

      
,	 (66)

where l = −2, −1, 0, 1, 2. x1 and x2 denote the inputs of FLSs. 
	 The simulation results are given in Figs. 2–4. The tracking trajectory and system states of 
ASVs are given in Figs. 2(a) and 2(b), respectively. Control inputs of the ASVs are shown in Fig. 
3. The estimation of the disturbances of the ASVs is shown in Fig. 4. From the simulation results, 
it can be concluded that the proposed optimal algorithm can handle the control task and that the 
proposed DO can handle the estimation task of an unknown external disturbance.
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5.	 Conclusions

	 In this paper, we provided an adaptive fuzzy optimal controller for the tracking control 
problem of multiple ASVs with uncertain dynamics. FLSs have been employed to handle the 
uncertain dynamics of the ASVs. We utilized the ADP algorithm, incorporating a technique 
based on optimal compensation terms, to ensure the optimal achievement of the control 
objective. Additionally, a DO has been proposed to address unknown disturbances. The 

Fig. 2.	 (Color online) (a) Tracking trajectory and (b) system states of ASVs.

Fig. 3.	 Control outputs of (a) ASV1 , (b) ASV2, and (c) ASV3.

Fig. 4.	 External disturbances and their estimations of (a) ASV1, (b) ASV2, and (c) ASV3.

(a) (b)

(a) (b) (c)

(a) (b) (c)
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proposed controller has been proven to guarantee that all signals in the closed-loop system are 
bounded. Simulation results have been provided to illustrate the effectiveness of the proposed 
algorithm. The future work of this paper is to solve the control problem of multiple ASVs with 
unmeasured states and investigate the output-feedback control algorithm by adopting the state 
observer technique.
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