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 In this study, we explore the integration of eye-gaze (EG) information obtained via eye-
tracking sensors to enhance medical image segmentation. EG is additional information on an 
image, and to incorporate EG information in medical image segmentation, we apply Gaussian 
blurring masked by the collected attention maps generated by eye tracking. The variance of 
distribution on each pixel is adjusted in a certain way by EG information. After applying 
Gaussian blurring, classic models including UNet, FCN, and other models were trained and 
compared. The results indicate that incorporating EG information in addition to preprocessing 
data yields superior performance on certain metrics, demonstrating notable advantages in 
accurately identifying isolated polyps that grow on the surface of a human tissue. This innovative 
approach highlights the potential of combining sensor-derived data with advanced image 
processing techniques to improve medical diagnostics.

1. Introduction

 Medical image segmentation is a vital task in medical diagnosis, treatment planning, image-
guided intervention, and other medical treatments. Over the past few decades, machine learning 
and deep learning methods have shown their dominance in this field.(1–3) They can analyze the  
complex images collected by different capture devices and provide us with satisfactory results 
under fluctuating circumstances. However, deep learning methods require a large number of 
annotated datasets to train so that they can be reliable. Moreover, it takes much effort for people 
with a medical background to annotate images so that the number of datasets of different 
diseases is limited. The number of images in each dataset is relatively small for the same reason. 
This leads to the urgent need for accelerating training convergence and learning features. To 
address this issue, certain types of data preprocessing, including the integration of sensor-
derived data such as eye-tracking information, have been proposed to expedite training and 
improve results.(4) Eye tracking is a sensor technology that detects a person’s presence and tracks 
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what they are looking at in real time. Over the past decades, eye-gaze (EG) attention has been 
analyzed to improve the segmentation and classification of diseases. Apparent linkages among 
EG information, image content, and diagnostic results have been found in a previous study by 
pooling the data from all test takers, and some other studies have demonstrated that EG 
information can generate segmentation masks suitable for deep learning segmentation.(5,6) By 
incorporating eye-tracking sensors to collect gaze data, we can generate attention maps that 
guide preprocessing techniques such as Gaussian blurring, ultimately enhancing the performance 
of segmentation models.
 Conventional data preprocessing on images includes resizing, color space conversion, 
normalization, and filtering. Filtering is an effective way to reduce noise or artifacts when 
applying different degrees of blurring on images.(7) It is a good way to enhance the robustness of 
the models. To make a network focus on detecting lesion features, some researchers have 
proposed new data preprocessing methods using masks. Some of them use the probability 
distribution of organizations on images according to the labels made by experts(8) and some use 
saliency detection on edge boxes.(9) However, the limitation that these mentioned data 
preprocessing methods requires a certain amount of work by experts still exists, which makes it 
difficult to acquire an appropriate number of images and label them to form the probability 
distribution or saliency object positioning.
 Compared with the aforementioned masking methods, masks based on eye-tracking 
information can be more easily combined with data preprocessing. Eye-tracking sencors are 
used to collect direct reactions of collectors, which cannot be achieved by other approaches. The 
eye-track recording process utilizing eye-tracking sensors is time-efficient and easy to apply. 
While accurate segmentation labeling requires experts, eye-track recording does not need to be 
performed by people with medical backgrounds, because lesions such as ulcers or polyps can be 
detected by anyone; thus, this method can be utilized in every medical segmentation training 
process with little effort.

2. Materials and Methods

 In this section, we introduce the dataset used in experiments and the application of basic 
image preprocesses. The attention maps used in Gaussian blurring are also used in the data 
preprocessing stage of image segmentation.(10) The comparison between fundamental data 
preprocessing methods and the preprocessing method intergrating EG information will be 
illustrated. 
 The overall process of integrating EG information into medical image segmentation is 
depicted in Fig. 1. Initially, original medical images are obtained and used as the primary data 
source for analysis. EG data are then collected from observers viewing these images using eye-
tracking sensors, generating attention maps that highlight areas of visual foci. These attention 
maps are used to generate a standard deviation map, which guides the application of Gaussian 
blurring on an original image, creating an EG-information-incorporated image. Finally, after 
incorporating attention maps in the data preprocessing stage, the images are used to train 
different models.
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2.1 Dataset and EG collection

 Colorectal polyp segmentation in medical images is a demanding task. Kvasir-SEG is an 
endoscopic dataset for the pixel-level segmentation of colonic polyps.(11) The dataset includes 
1000 images and labels, including polyps in different places and with different numbers, and 
each image includes at least one polyp. Polyps can be distinguished from the normal mucosa by 
color and surface pattern, but they vary in shape and color, so it is still challenging to separate 
them using deep learning networks. The dataset has flat, elevated, or pedunculated polyps in 
different images so that the effectiveness of the segmentation method can be tested. The 
resolutions of the images in the dataset vary, ranging from 332 × 487 to 1920 × 1072 pixels. 
When sent to different networks to train, each image is normalized to 512 × 512 pixels.
 ET is collected with the Tobii eye tracker (Tobii AB, Sweden). The eye tracker can be 
attached to most computers and located below or above the screen to detect eyesight, as shown in 
Fig. 2. During eye-track recording, medical images are displayed on the computer while the eye 
tracker captures the gaze points in real time. The observation time for each image is 
approximately 8 s. The number of images observed depends on the actual application scenario. 
The medical images can be the most common RGB images, can be converted into color spaces 
such as LUV (cieluv, cie1976) and HSV (Hue, Saturation and Value), or can be multimodal. 
Then, 10 to 15 eye movement data are collected and reprocessed using curve fitting methods to 
highlight the areas where observers gaze for a longer period and generate eye movement 
heatmaps (expressed in the form of grayscale images). 

2.2 Fundamental data preprocess

 During experiments, images, labels, and attention maps are all reshaped to 512 × 512. To 
prevent overfitting, the brightness, contrast, saturation, and hue of the images are randomly 

Fig. 1. (Color online) Pipeline of image segmentation integrating EG information.
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changed, and the images are randomly flipped horizontally and vertically. The brightness of the 
image is randomly changed by a factor uniformly chosen in the range [0.6, 1.4], the contrast by 
[0.5, 1.5], the saturation by [0.75, 1.25], and the hue by [0.001, 0.01]. Moreover, to hasten 
convergence when training neural networks, image tensors are normalized. The average and 
standard deviation of each color channel in RGB are adjusted to 0.5 to train the models to detect 
useful features more rapidly.

2.3 Attention-based Gaussian blurring

 Gaussian blurring is a common image processing technique used to reduce noise and 
smoothen the appearance of images. In Gaussian blurring, each pixel in the image is replaced by 
a weighted average of its neighbors and itself, with the weights determined by a 2D Gaussian 
function. The Gaussian blurring process involves convolving an image with a Gaussian kernel, 
which is a matrix of values that represent the weights for each pixel in the kernel. 
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where σ denotes the standard deviation.

Fig. 2. (Color online) Layout of Tobii eye tracker. 1 and 2 capture EG at 60 HZ, and 3 is the medical image shown 
on the screen.
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 The kernel is typically a 2D matrix, and the size of the kernel and the variance of the 
distribution of the function generating the kernel can vary depending on the desired level of 
blurring. The approach to combining attention maps with Gaussian blurring is to determine the 
variance we use on each pixel by attention level. After adjusting the variance of the Gaussian 
kernel on pixels, an image with variant clarity is generated. In positions where the attention level 
is higher, the image is clearer, and in places where the attention level is lower, the image appears 
blurred to a greater extent.
 After processing, the features of a certain part are more easily detected if the attention is 
focused on that part. However, the original purpose of Gaussian blurring still needs to function. 
To enhance the robustness of the model, different images still need to be blurred to different 
extents. Therefore, the base of the variance is randomly set within a certain range.

 σbase = rand(min, max), (3)

where min and max are the minimum and maximum of the base standard deviation, respectively.
 We add the numerical value that is formerly illustrated on the base.

 �� � � � � � �� �x y w p x y, , ,1  (4)

where p(x, y) is the attention level on each pixel and w is the weight that determines the clarity 
contrast between different attention levels.
 The final σ on each pixel when applying Gaussian blurring is

 σ = σbase + σ+. (5)

 Figure 3 shows examples of images to which Gaussian blurring is applied, where the weight 
is set to 0.3, σbase equals 1, and the kernel size is set to 15.
 It is evident that after applying Gaussian blurring with masking with attention maps, the 
resulting image is clear with a higher attention level, retaining a more detailed texture with 
features for models to learn.

Fig. 3. (Color online) (a) Original image, (b) image obtained after attention-based Gaussian blurring, and (c) 
attention map.
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 After applying positively masked Gaussian blurring where images are clearer at gazed areas, 
an additional experiment is conducted. In the experiment, the parts with a higher attention level 
appear blurred to a greater extent and the parts with a lower attention level have a higher clarity.

 σ = σbase − σ+ (6)

 Figure 4 shows an example of reversely adjusted blurring, where we detract σ+ from σbase. 
The weight is set to 0.3, the base equals 1, and the kernel size is set to 15.
 The new method is the reverse of the original one. It is performed to determine the effects of 
attention maps on model training. 

2.4 Segmentation model

 Eye tracking is combined with data preprocessing, so the method can be utilized in all 
segmentation models. In the experiment, 10 image segmentation models are tested to see the 
performances of segmentation results on the 10 models, namely, UNet,(12) FCN,(13) TransUNet,(14) 
ResAttUNet,(15) UNet++,(16) FPN,(17) Manet,(18) Linknet,(19) PSPNet,(20) and DeepLabV3.(21) In 
all experiments, the learning rate is set at l × 10−4 and the batch size is set at 32. The Dice loss 
and Adam optimizer are used in the training.

2.5 Experimental setup and evaluation indicators

 To perform the experiment, a public colon polyp dataset Kvasir-SEG is employed. The 
dataset contains 1000 polyp images with labeling. A classic ratio of the training, validation, and 
test sets (6:2:2) is utilized in the experiment. 600 randomly chosen images are included in the 
training set, 200 in the validation set, and the rest in the test set. After implementing enough sets 
of σbase, the parameter set giving the best performance is chosen. σbase is set to the range (0, 1) 
and the weight to 0.3. The training process is implemented on an Ubuntu 16.04.4 LTS OS 

Fig. 4. (Color online) (a) Original image, (b) resulting image after reverse attention-based Gaussian blurring, and 
(c) attention map.
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running on a local cluster on a server with an RTX 4090 graphics card, 16-core GPU, and 90 GB 
of memory.
 Four metrics are employed to evaluate the training performance as listed below. In the 
following equations, N represents the number of images, TPi the number of true-positive pixels, 
FNi the number of false-negative pixels, and FPi the number of false-positive pixels, where i 
represents the i-th image.

2.5.1	 Mean	Dice	coefficient	(mDice)

 The Dice similarity coefficient is a measure of the overlap between the predicted 
segmentation mask and the ground truth mask.
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2.5.2	 Mean	Intersection	over	Union	(mIou)

 MIou calculates the average of the Intersection over Union (Iou) values for each object in a 
dataset, where Iou is the ratio of the intersection of the predicted value to that of the ground 
truth.
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2.5.3	 Mean	precision	(mPrecision)

 Precision is calculated by dividing the number of correctly segmented pixels by the total 
number of pixels segmented as positive.

 mPrecision
N

TP
TP FPi

N
i

i i
�

��
�1

1
�  (9)

2.5.4	 Mean	recall	(mRecall)

 Recall is calculated by dividing the number of correctly segmented pixels by the total number 
of pixels that should have been segmented as positive.
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3. Results

 In this section, we present the outcomes of our image segmentation experiments. The results 
are crucial to understanding the effectiveness and tendencies of the different approaches we 
implemented. This part of the article will detail the performance comparison and offer 
quantitative and visual comparisons between segmentation results before and after combining 
EG information. Tables 1–4 show the mean Dice, Iou, Precison, and Recall performance on the 
dataset. In each table, the results for the original images, images after Gaussian blurring 
positively adjusted by attention level, and images reversely adjusted by attention level are 
compared. 
 The integration of EG information through attention-based Gaussian blurring shows an 
improvement in segmentation accuracy, particularly in terms of Dice coefficient and Precision 
across several models. It can be observed that the models show significant gains when attention-
based blurring is applied, especially for UNet with a 12.25% improvement in Precision. This 
suggests that the method enhances the models’ ability to focus on relevant features, reducing 
noise and improving feature detection. 

Table 2
Comparison of Iou performance among the original, positively Gaussian blurred, and reversely adjusted Gaussian 
blurred images.
Method Original Positive Reverse
UNet 0.6362 0.7356 0.6578
FCN 0.7392 0.7360 0.8253
TransUNet 0.8106 0.7874 0.7981
ResAttUNet 0.7153 0.7243 0.7149
UNet++ 0.8098 0.8294 0.8162
FPN 0.8066 0.8320 0.8157
MANet 0.8191 0.7986 0.8111
LinkNet 0.8106 0.8193 0.8134
PSPNet 0.6544 0.6322 0.6496
DeepLabV3 0.8119 0.8223 0.8205

Table 1
Comparison of Dice performance among the original, positively Gaussian blurred, and reversely adjusted Gaussian 
blurred images.
Method Original Positive Reverse
UNet 0.7462 0.7825 0.7626
FCN 0.8246 0.8401 0.8253
TransUNet 0.8803 0.8645 0.8713
ResAttUNet 0.8035 0.7915 0.8019
UNet++ 0.8743 0.8877 0.8789
FPN 0.8743 0.8917 0.8782
MANet 0.8824 0.8620 0.8724
LinkNet 0.8743 0.8817 0.8782
PSPNet 0.7591 0.7378 0.7542
DeepLabV3 0.8776 0.8848 0.8855
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Table 4
Comparison of Recall performance among the original, positively Gaussian blurred, and reversely adjusted  
Gaussian blurred images.
Method Original Positive Reverse
UNet 0.8111 0.7695 0.7938
FCN 0.8607 0.7888 0.8253
TransUNet 0.8902 0.8581 0.8432
ResAttUNet 0.8525 0.8232 0.8529
UNet++ 0.8806 0.9021 0.8976
FPN 0.8963 0.9152 0.8908
MANet 0.9011 0.8417 0.8491
LinkNet 0.8897 0.8417 0.8644
PSPNet 0.7564 0.7180 0.7508
DeepLabV3 0.9173 0.8849 0.8749

Table 3
Comparison of Precision performance among the original, positively Gaussian blurred, and reversely adjusted  
Gaussian blurred images.
Method Original Positive Reverse
UNet 0.7721 0.8356 0.8130
FCN 0.8443 0.9191 0.8253
TransUNet 0.8970 0.9036 0.9306
ResAttUNet 0.8220 0.8557 0.8196
UNet++ 0.9076 0.9036 0.8937
FPN 0.8901 0.8977 0.9047
MANet 0.8998 0.9152 0.9334
LinkNet 0.9061 0.9055 0.9333
PSPNet 0.8553 0.8589 0.8488
DeepLabV3 0.8751 0.9229 0.9217

 For some of the models such as Linknet, they show better results in the reversely adjusted 
blurring experiment. The reason for this is probably that the reverse Gaussian blurring makes it 
even more difficult for the model to learn the features of lesion parts, which in turn enhances the 
robustness of the model, making it easier to detect clear polyp images on test data.
 To have a clearer presentation of the new method, Fig. 5 shows the average of the four metrics 
for 10 models, comparing between original data and data with EG information incorporated. As 
can be discovered, three out of the four metrics have been improved to some degree, among 
which Precision shows the biggest improvement. The standard deviation of Precision on data 
with EG information incorporated is also the smallest. This strongly suggests that the Precision 
of most of the models increases and EG information has helped the models learn the features and 
characteristics of polyps better.
 Other than that, we discovered that after integrating EG information, the models have 
become more sensitive to isolated polyps. The models trained on original data tend to wrongly 
segment polyps that are in fact normal tissues. The models trained on data after attention-based 
Gaussian blurring can effectively prevent that. As an example, it can be seen from Fig. 6 that the 
segmentation result on original data shows that the model incorrectly detected a bubble as an 
isolated polyp that is not in the ground truth. However, the same model trained on images after 
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positive attention-based Gaussian blurring does not make this mistake, the result is basically the 
same as the ground truth.

4. Conclusions and Future Works

 The study introduces a novel method of improving deep learning training performance by 
incorporating eye-tracking sensor data from non-experts. This method provides a universal way 
to enhance the training process during image analysis. The standard deviation of Gaussian 
blurring on each pixel is adjusted by the attention level collected in data preprocessing. By 
integrating EG information into the preprocessing pipeline, we can improve the accuracy of 
medical image segmentation models. Regarding the basic and frequently used model UNet, the 
average over the four evaluation metrics is improved by 3.94%. Most of the models tested show 
better results after EG information is incorporated. This approach leverages natural human 
attention patterns collected by sensors to guide machine learning models. 

Fig. 6. (Color online) Segmentation results of Unet: (a) test image, (b) result for original, (c) result for EG 
information incorporated, and (d) ground truth.

Fig. 5. Each column shows the average metric value for over 10 models. Light gray columns represent results for 
the original data, and dark gray columns represent results for the EG information incorporated.
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 The integration of EG information into data preprocessing can be separated from the model 
training process so that the cost of integrating attention-based Gaussian blurring is relatively 
low. Moreover, if conditions permit, it can be applied in real-time examination with only an 
additional eye tracker. When doctors perform colonoscopies, the eye tracker can collect EG from 
doctors looking at the screen and combine the information in data preprocessing before sending 
the data to the pretrained network. The result can be shown on the screen in real time, helping 
doctors concentrate on the lesion parts.
 However, how to adjust the parameters to obtain the best performance still needs experience 
and the results need to be analyzed more precisely and effectively as well. In our future work, we 
will continue refining the integration of sensor data and exploring the application of this new 
method incorporating EG information in data preprocessing across various imaging tasks. In 
addition, we plan to explore how the information can be incorporated in different parts of the 
training process such as model building. This study lays the groundwork for future innovations 
at the intersection of sensor technology, human–computer interaction, and image processing, 
highlighting the potential for combining sensor-derived data with advanced machine learning 
techniques.
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