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 Obstructive sleep apnea (OSA) is a prevalent sleep disorder that seriously affects patients’ 
quality of life and health status. Traditional diagnostic methods are time-consuming and labor-
intensive, and apnea detection using deep learning algorithms also faces the problems of 
insufficient sample size and class imbalance. Therefore, in this paper, we propose a 
semisupervised apnea detection algorithm (Semi-DynaSeqNet) based on the oxygen saturation 
(SpO2) signal. In this study, we first extracted local features of the SpO2 signal using a one-
dimensional convolutional neural network, and then combined the gate recurrent unit for time 
series modeling to capture the signal’s long-term dynamic features. On this basis, a self-attention 
mechanism is introduced to further enhance the recognition of key features. Considering the 
small-sample classification task of the OSA detection, we further proposed the semisupervised 
learning method with the adaptive adjustment of threshold. By iteratively training a model to 
generate pseudo-labeled samples of unlabeled pulse oximetry signals and incorporating them 
into the training set, while adaptively adjusting the semisupervised threshold to fully utilize the 
unlabeled sample information, we thereby improved the generalization ability of Semi-
DynaSeqNet. The experimental results showed that the algorithm proposed in this paper 
achieves an F1-score of 90.94% for the model on the St. Vincent’s University Hospital/University 
College Dublin Sleep Apnea Database with one-second detection, whereas the algorithm 
achieves an F1-score of 94.65% on the PhysioNet Apnea-ECG Database with one-minute 
detection, indicating that the algorithm can perform well in both sleep apnea detection tasks with 
different time scales, demonstrating its flexibility and scalability.
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1. Introduction

 With the fast pace of contemporary life, sleep disorders such as insomnia, difficulty initiating 
sleep, and snoring have become increasingly prominent, and the quality of sleep has drawn 
increasing attention. Among these, obstructive sleep apnea (OSA), as one of the common 
disorders affecting sleep, is characterized by recurrent involuntary episodes of partial or 
complete reduction of respiration in patients at night.(1) This disorder is not only accompanied by 
a decrease in blood oxygen saturation, but also triggers autonomic responses, which in turn 
interfere with normal sleep and usually lead to neurophysiological arousal.(2,3) As a result, 
patients with OSA often suffer from excessive daytime sleepiness, mood swings, depression, 
and inattention, which can seriously affect their social, work, and family life. However, it is 
worrying that owing to the patients’ usual lack of knowledge about their symptoms, the 
diagnosis rate of OSA is relatively low.(4)

 In clinical practice, the apnea–hypopnea index (AHI) is widely utilized for evaluating the 
severity of OSA in patients.(5) The AHI is calculated by assessing the frequency of respiratory 
pauses and hypopneas per hour during sleep, a process known as polysomnography (PSG).(6) 

However, PSG monitoring involves collecting multiple physiological signals, including 
electrocardiogram (ECG), electroencephalogram (EEG), respiratory signals, airflow signals, and 
oxygen saturation (SpO2), making it a time-consuming and labor-intensive task. For clinicians, 
analyzing an entire night’s PSG record not only requires significant time and effort but also may 
lead to decreased analysis quality owing to the complexity of the task and fatigue resulting from 
prolonged analysis.(7)

 Given the substantial resource demands in medical PSG analysis, the automated detection of 
sleep apnea using artificial intelligence algorithms holds significant importance. This approach 
not only mitigates medical burdens and enhances diagnostic efficiency but also extends its 
applicability from clinical settings to everyday homes. Specifically focusing on acquiring the 
SpO2 signal as an optimal measurement technique offers advantages such as portability, user-
friendliness and cost-effectiveness.(8) Research has established a clear link between the SpO2 
signal and OSA; hence, there is an urgent need for developing automated OSA identification 
technology based on the SpO2 signal. Further exploration could enable patients to self-identify 
sleep apnea syndrome through the readily available SpO2 signal readings—providing robust 
support for early intervention and treatment.
 In recent years, the rapid advancement of deep learning technologies has led to their 
expanding applications in the medical field. In the domain of automated OSA detection systems, 
significant progress has also been made using these technologies. The SpO2 signal is readily 
obtainable, and leveraging it for OSA detection can more efficiently identify and diagnose this 
prevalent yet frequently overlooked sleep disorder. In the domain of OSA detection, researchers 
have been at the forefront of innovation and advancement by constructing and refining deep 
learning models. Pourbabaee et al.(9) devised a dense recurrent convolutional neural network 
(DRCNN) capable of accurately identifying various sleep disorders, such as arousals, apneas, 
and hypopneas. John et al.(10) proposed SomnNET, a one-dimensional convolutional neural 
network (1D-CNN) designed specifically for the real-time detection of OSA at a frequency of 1 
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event per second. Chaw et al.(11) proposed a deep CNN model utilizing the SpO2 signal from 
smart sensors to predict OSA with superior accuracy compared with traditional machine 
learning approaches. Wang et al.(12) proposed four methods based on convolutional and long 
short-term memory neural networks that use raw data from three respiratory signals (32 Hz 
sampling of nasal flow, abdomen, and chest) to predict OSA. Levy et al.(13)  designed OxiNet, a 
deep learning model capable of estimating the AHI based on SpO2 measurements. The model 
has demonstrated an exceptionally low false-negative rate across patients of diverse races, ages, 
genders, and comorbidities. Yook et al.(14) employed a combined approach utilizing nasal airflow 
(RF), SpO2, and ECG signals obtained during PSG to enhance the accuracy of sleep apnea/
hypopnea detection and OSA severity screening. Their study utilized the Xception network and 
integrated demographic data to improve model performance, achieving high accuracy in 
detection and screening tasks. Jimenez-Garcia et al.(15) proposed an interpretable architecture 
that combines convolutional and recurrent neural networks for pediatric OSA detection and 
severity assessment while leveraging gradient-weighted class activation mapping (Grad-CAM) 
to enhance model explainability. Chi et al.(16) introduced a model capable of directly predicting 
the AHI from the unsegmented overnight SpO2 signal, showcasing the potential of deep learning 
in processing the SpO2 signal. The relevant work is summarized in Table 1. These studies not 
only demonstrate the significant potential of deep learning in medical diagnosis, but also offer 
novel tools and methodologies for the early detection, treatment, and management of OSA. The 
deep learning techniques employed in these models primarily rely on CNNs and RNNs. 
However, there are still limitations in handling the dynamic time series data of the SpO2 signal, 
such as the inability to capture long-range dependences and identify crucial features. Therefore, 
in this paper, we propose the DynaSeqNet model, which harnesses the robust data processing 
capabilities of deep learning models to extract key physiological information from the SpO2 

Table 1
Brief introduction of related work.
Author Model Description

Pourbabaee et al.(9) DRCNN Devised a DRCNN capable of accurately identifying various 
sleep disorders such as arousals, apneas, and hypopneas

John et al.(10) SomnNET Proposed SomnNET, a 1D-CNN designed specifically for the 
real-time detection of OSA

Chaw et al.(11) CNN Utilized intelligent sensors for the acquisition of the SpO2 signal 
and designed a deep CNN model for the prediction of OSA

Wang et al.(12) CNN, LSTM

Proposed four methods based on convolutional and long short-
term memory neural networks that use raw data from three 

respiratory signals (32 Hz sampling of nasal flow, abdomen, and 
chest) to predict OSA

Levy et al.(13) OxiNet Designed OxiNet, a deep learning model capable of estimating 
the AHI based on SpO2 measurements

Yook et al.(14) Xception
Proposed the Xception network and used RF, SpO2, and ECG 

signals obtained during PSG recordings to improve the accuracy 
of sleep apnea/hypopnea detection and OSA severity screening

Jiménez-García et al.(15) CNN, RNN

Proposed an interpretable architecture that integrates 
convolutional and recurrent neural networks to detect pediatric 

OSA and assess its severity, with the utilization of Grad-CAM to 
enhance model interpretability
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signal, thereby enabling the precise monitoring of OSA. The main contributions of this study are 
as follows.
(1) We propose a semisupervised algorithm for OSA detection using the SpO2 signal to address 

the challenge of sparse samples in the small-sample classification task of OSA detection by 
integrating unlabeled data, effectively mitigating overfitting caused by insufficient samples 
and significantly enhancing the model’s generalization capability.

(2) The proposed semisupervised algorithm incorporates an adaptive threshold adjustment 
mechanism, which can dynamically adjust the classification boundary according to the 
distribution of the SpO2 signal categories, optimize the model’s recognition accuracy for 
abnormal samples belonging to a minority class, and improve the fairness and accuracy of 
the model.

(3) We propose the Semi-DynaSeqNet model, which integrates a 1D-CNN and the gate recurrent 
unit (GRU) to concurrently capture local features and long-term dynamic trends in the SpO2 
signal. This integration enhances sensitivity to subtle changes in the SpO2 signal. Moreover, 
Semi-DynaSeqNet incorporates the self-attention mechanism, thereby enhancing the model’s 
capacity to capture long-term dependences in time series and improving its sensitivity to 
critical events within the sequence.

 The sections of this paper are organized as follows. In Sect. 1, we describe the related work of 
OSA detection and the main contributions of this paper. In Sect. 2, we introduce the architecture 
of the Semi-DynaSeqNet model and its specific implementation steps. In Sect. 3, we show the 
experimental results of the algorithm on different databases. In Sect. 4, we summarize the whole 
paper and present our outlook.

2. Methods

 Figure 1 depicts the Semi-DynaSeqNet architecture, designed to boost minority class 
recognition accuracy in sleep apnea detection through semisupervised learning with adaptive 
thresholds and optimized time series processing. Initially, a 1D-CNN extracts and represents 
local SpO2 signal features, facilitating sequence analysis. A Gated Recurrent Unit then models 
time series, capturing long-term signal dependences and enhancing temporal sensitivity. A self-
attention mechanism focuses on critical features, refining feature capture. Additionally, Semi-
DynaSeqNet integrates semisupervised learning with adaptive thresholds, iteratively generating 
pseudo-labels to leverage unlabeled data. This enhances model generalization and classification 
performance, particularly with small samples. The following text will provide a detailed 
introduction of the main method.

2.1 Extraction and representation of local features

 In signal processing, the effective information contained in the original sequence is often 
difficult to completely extract when the data dimensionality is low. To solve this problem, we 
employed the CNN to increase dimensionality on the raw SpO2 signal, which is conducive to 
extracting rich information from different dimensions. The operation of dimensionality 
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augmentation enhances the network’s feature learning ability and improves its performance in 
classification tasks. CNNs were initially widely used in the field of image recognition, and 
owing to the 2D matrix nature of images, the internal structures of the networks, such as the 
convolution kernel and the feature mapping system, were also primarily designed using 2D 
designs. However, when faced with 1D data such as the SpO2 signal, the traditional 2D-CNN 
performs poorly because it cannot effectively capture the features contained in 1D signals. The 
1D-CNN is characterized by parameter sharing and sparse connectivity, which enables the 
network to reduce the number of parameters, lower computational complexity, and improve the 
model’s generalization ability when extracting features. Therefore, we chose to use the 1D-CNN 
to extract features from the SpO2 signal.
 First, the SpO2 signal after windowed segmentation is layer-normalized to obtain the input  
ISignal for the convolutional layer, ensuring the uniformity of the input data distribution and 
facilitating subsequent feature extraction. Subsequently, the 1D-CNN layer is used to deeply 
explore the features of ISignal, and no pooling layer is added during the design of this layer to 
preserve its adjacent position information. Finally, the local feature embedding vector FLocal 
generated on the basis of the changes in local trends is obtained, providing a rich feature  
representation for the subsequent analysis of the SpO2 signal. The working principle of the 
1D-CNN is shown in Eq. (1).

 F W ILocal CNN Singal� �  (1)

Fig. 1. (Color online) Architecture of Semi-DynaSeqNet.
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Here, FLocal is the output, WCNN is the convolutional layer weight matrix, ISignal is the SpO2 
signal that serves as the input, and ⁎ is the convolution operation.
 Specifically, the convolutional layer convolves the input ISignal by sliding a fixed size window 
and extracts local features FLocal on the basis of the amplitude trend changes of the SpO2 signal 
within the window. These local features FLocal are then mapped to the next layer, forming a more 
abstract feature representation. The layer-by-layer extraction and mapping approach enables the 
1D-CNN to effectively capture short-term fluctuations and periodic patterns from the signal.
 The 1D-CNN has significant advantages in processing 1D data, as it can effectively extract 
feature information from signals through dimensionality increase and layer-by-layer convolution 
operations, thereby improving the performance of classification tasks. Therefore, the 1D-CNN 
is used in the feature extraction module to process the SpO2 signal data to achieve better results 
in the subsequent classification task.

2.2 Sequence modeling and dynamic feature extraction

 A CNN has limitations in processing long sequences, which cannot fully perceive global 
information and is prone to lose positional information during processing. When data is fed to 
the attention mechanism in parallel, the lock of positional information can lead to the inaccurate 
judgment of trends based on adjacent times. On the basis of this issue, we introduce GRU (17) 
into the algorithm for the time series modeling of the SpO2 signal. GRU dynamically adjusts the 
retention and transmission of information through its internal gating mechanism, which can 
adapt to changes in time series data and better capture dynamic characteristics.
 GRU exhibits powerful capabilities in processing dynamically changing sequence data owing 
to its unique gating mechanism and memory units. It can learn and retain key dynamic features 
in time series, providing deep insights into complex data patterns for models. By integrating 
GRU, embedding vectors containing implicit relative position information can be generated, 
which not only enrich the representation of data, but also enable the model to capture long-range 
dependences between sequences. The improvement significantly enhances the model’s ability to 
process long sequence data, providing more accurate and comprehensive information for the 
subsequent attention mechanism, thereby improving the model’s ability to discriminate trends in 
time series data. The module uses GRU to capture the dynamic features of the SpO2 signal. The 
specific working principle is as follows.

 r W F U F bt
r Local

t
r Dynamic

t
r� � �� ��� 1 , (2)

 z W F U F bt
z Local

t
z Dynamic

t
z� � �� ��� 1 , (3)

 h W F U r Ft
c local

t t
Dynamic
t� i� � � �� ��

tanh ,
1  (4)



Sensors and Materials, Vol. 36, No. 11 (2024) 4701

 F z F z hDynamic
t t

Dynamic
t t t� � �� ��i �i1 1 , (5)

 F F F FDynamic Dynamic Dynamic Dynamic
t� ��

�
�
�

1 2
, , , , (6)

where rt is the reset gate, zt is the update gate, ht  is the candidate hidden state, FDynamic
t  is the 

dynamic feature at the current moment, FDynamic is the final output, W and U are the weight 
matrices of the GRU layer, b is the bias term, FLocal

t �  is the local feature at the current moment, 
and FDynamic

t−1  is the dynamic feature at the previous moment. σ is the sigmoid activation function, 
σ is the hyperbolic tangent function, and the calculations are as follows.

 � z
e z� � �

� �
1

1
 (7)

 tanh z e e
e e

z z

z z� � � �
�

�

�
 (8)

 GRU receives the local features of the current input FLocal and the hidden state from the last 
time, and uses reset and update gates to control the degrees of discarding and retaining FLocal

t �  at 
each time. The reset gate determines the impact of previous information on the current input, 
while the update gate determines the weight of the current input and previous information in the 
current hidden state. Subsequently, GRU calculates candidate hidden states and combines them 
with FDynamic

t−1  through the update gate to obtain FDynamic
t , which can be used as both current 

output and input next time. Through continuous iteration, GRU can better capture the long-term 
dependences relationship and dynamic features in the SpO2 signal and obtain FDynamic as the 
final output in the module.

2.3 Enhancement of key features

 In the GRU model, inputs for all moments are considered equally weighted. To further 
enhance the model’s attention of key features in the SpO2 signal, we introduce the self-attention 
layer. As the core part of the Transformer(18) model, the self-attention mechanism adaptively 
selects and weighs key features in the input sequence by calculating self-attention weights, 
thereby enhancing the model’s ability to recognize and process important information. The 
specific steps for using self-attention to extract key features in this module are as follows.
(1) The inputs FDynamic multiply each of the three weight matrices WQ, WK, and WV separately to 

obtain three matrix queries Q, keys K, and values V.

 Q W F= Q
Dynamic  
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 K W F= K
Dynamic  (9)

 V W F= V
Dynamic  

(2) The correlation between the dynamic features of each pair of input vectors fDynamic is 
calculated using the obtained Q and K to obtain the attention score A.

 A = Q ∙ KT (10)

(3) Softmax calculation is performed on matrix A to obtain A'.
(4) The key feature FKey, which is the output of the self-attention layer determined using the 

obtained A' and V, is calculated as

 FKey = V ∙ A'. (11)

 In detail, the parameters such as queries, keys, and values in the self-attention mechanism 
enable the model to calculate the similarity and dependence between the values of the SpO2 
signal at different times when processing the signal. Through this mechanism, Semi-
DynaSeqNet can sensitively capture subtle signal changes, especially the abnormal patterns that 
are closely related to OSA. For example, when there is a sharp decrease or sustained low level of 
blood oxygen saturation, which are potential signs of OSA, the self-attention mechanism is key 
to helping models accurately identify these signs. Under the effect of the self-attention 
mechanism, Semi-DynaSeqNet can adaptively select and weigh key features in the SpO2 signal 
on the basis of attention weights. It means that Semi-DynaSeqNet can focus on information that 
is crucial for task determination while ignoring irrelevant details. The introduction of the self-
attention mechanism enables the model to process signals more accurately and efficiently, 
bringing higher accuracy and reliability to the detection of OSA.
 Finally, the obtained output FKey is put through average pooling computation and fully 
connected layers to obtain the result Z. The calculation is as follows.

 Z = WLinear ∙ GAP(FKey) + BLinear, (12)

where WLinear denotes the weight matrix of the final fully connected output layer, BLinear is the 
bias term, and GAP is the average pooling computation.

2.4 Semisupervised method with adaptive adjustment of threshold

 By combining the above modules, the DynaSeqNet model is obtained. In this section, we 
incorporate the semisupervised method to obtain the final Semi-DynaSeqNet model proposed in 
this paper.
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 The number of samples in the published dataset that contains the SpO2 signal is relatively 
small, and the sample categories are unbalanced in the actual tasks of OSA detection. Therefore, 
we propose the semisupervised method with the adaptive adjustment of threshold. By using 
unlabeled samples to generate pseudo-labels and jointly training with labeled samples, the 
generalization ability of Semi-DynaSeqNet has been improved. The method enables Semi-
DynaSeqNet to demonstrate superior performance in complex scenarios.
 The semisupervised method with the adaptive adjustment of threshold is shown in Fig. 1. 
First, select the labeled sample training set to train the DynaSeqNet model. Through periodic 
evaluations of the performance of the DynaSeqNet model on the validation set, the best 
performing Semi-DynaSeqNet model is selected for storage. Then, put the unlabeled data into 
the Semi-DynaSeqNet model and obtain the output z by inferring and predicting the input 
samples. The SoftMax function is used to transform the probability distribution and obtain the 
category confidence p of the OSA classification task. The calculation is as follows.

 p z
z

z z0 0

0

0 1

� � � �
�

SoftMax e
e e

, (13)

 p z
z

z z1 1

1

0 1

� � � �
�

SoftMax e
e e

, (14)

where z0 is the output of the sample with the category of 0, z0 is the output of the sample with the 
category of 1, p0 is the confidence level of the sample with the category of 0, and p1 is the 
confidence level of the sample with the category of 1.
 Then, the adaptive threshold is calculated to infer the distribution of unlabeled data 
categories, and the adaptive threshold τ is recursively calculated on the basis of the distribution 
information. On the basis of the threshold τ, high-confidence samples are selected to generate 
pseudo-labels, thereby improving the accuracy and reliability of the pseudo-labels. Afterwards, 
the pseudo-labeled and labeled data will be included in the Semi-DynaSeqNet training to further 
fine-tune the model. Finally, the adaptive adjustment of threshold is repeated multiple times. 
During iteration, the adaptive threshold is dynamically adjusted to obtain high-quality pseudo-
labels and achieve the continuous optimization of semisupervised learning. The calculations of 
the adaptive threshold  are as follows.

 R
max N

N
t

s s t

s
S

s t

�
� �� �

�
�

� �� 0

1
, (15)

 � t tS S
t
T
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�
�

�
�
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1 1 1
1 , (16)
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where S is the number of categories in the OSA classification task, T is the total number of 
iterations of the reprogrammed semisupervised learning, t is the number of iterations currently 
in progress in the semisupervised task, Ns(t) is the number of pseudo-labels generated for the s-th 
class sample in the t-th training, max( )s

s
N  is the number of sample categories with the most 

generated pseudo-labels, and Rt is the ratio of majority class samples among all samples 
generated in the t-th iteration.
 At the beginning, the threshold τ is set lower to facilitate the addition of more unlabeled 
samples to the training. With the increase in the number of iterations (t), the threshold τ gradually 
increases to incorporate more accurate pseudo-labeled data into training, which improve the 
classification performance of OSA and promote the continuous optimization of semisupervised 
learning. Moreover, for categories with fewer samples, a lower threshold is set to increase the 
number of pseudo-labels and balance the sample distribution between categories. For categories 
with a large sample size, a higher threshold is set to ensure the accuracy and reliability of 
pseudo-labels. The semisupervised method with the adaptive adjustment of threshold is helpful 
in effectively utilizing the unlabeled SpO2 signal and improving the overall performance of the 
Semi-DynaSeqNet model. The pseudocode of the Semi-DynaSeqNet model is shown in 
Algorithm 1.

Algorithm 1 
Semi-DynaSeqNet.
Input: the Spo2 singal set ISingal, the number of iterations of the semisupervised learning T, the number of categories 
in the task of OSA classification S.
Output: pseudo-labeled data set Data.
1: Initialize Data = set()
2: Initialize Rt−1 = 0.5  
3: for t = 1 to T do
4:    /* calculate features */
5:    FLocal = WCNN*ISingal 
6:    FDynamic = GRU(FLocal)
7:    FKey = Attention(FDynamic) 
8:    Z = WLinear ∙ GAP(FKey) + BLinear
9:    P = softmax(Z)
 /* calculate the adaptive threshold */

10:    
� t tS S

t
T

R� � ��
�
�

�
�
�� � �

1 1 1
1

 /* obtain pseudo-labeled data set*/
11:   for s in 1 to S do
12:     Ns(t) = 0
13:   done
14:   for i in 1 to |ISingal| do
15:     s = argmax(Pi)
16:     input ISingal

i=
17:     Ns(t) = 1 + Ns(t)
18:     Data.add([input, s])
19:   done

20:   
R

max N

N
t

s s t

s
S

s t

�
� �� �

�
�

� �� 0

1

21: done
22: return Data
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3. Experiments and Results

3.1 Datasets

(1) PhysioNet Apnea-ECG Database (PAEDB)(19)

 PAEDB contains 70 single-lead ECG recordings, all of which were collected at a sampling 
rate of 100 Hz using modified lead V2. Among them, eight recordings (numbered a01 to a04, 
b01, and c01 to c03) were additionally equipped with four important signals, namely, Resp C and 
Resp A (breathing effort signals obtained through the inductive volume recording of the chest 
and abdomen), Resp N (nasal thermistor-measured oral and nasal airflow signals), and SpO2 
(oxygen saturation signals). These additional signals provide valuable information on the 
breathing and oxygenation status of the subjects. PAEDB covers male and female subjects aged 
27 to 63, with a weight range of 53 to 135 kg. The sleep events of each participant were marked 
by sleep experts in units of minutes. The annotations include “A” labels for apnea and “N” labels 
for normal sleep. In this study, only the eight individual recordings with SpO2 signals were 
selected from the database.
(2) St. Vincent’s University Hospital/University College Dublin Sleep Apnea Database 

(UCDDB) (20)

 UCDDB includes polysomnographic data from 25 participants, with sleep durations ranging 
from 5.9 to 7.7 h. The participants (21 males and 4 females) in the database range in age from 28 
to 68 years, and their weights range from 59.8 to 128.6 kg. The physiological signals recorded in 
the database include electroencephalography, electrocardiography, nasal and oral airflow, 
thoracic movement, respiratory sounds, and blood oxygen saturation. Sleep events for each 
participant were precisely marked by sleep experts in units of seconds. Additionally, the 
peripheral blood oxygen saturation signal used in this study was a detailed data recorded at a 
sampling rate of 8 Hz.

3.2 Experimental settings and environment

 The experiments were conducted using Python 3.6 and PyTorch 1.6.0 versions on a machine 
equipped with AMD Ryzen 5 5600H series CPU and NVIDIA GeForce RTX 3080 GPU. The 
sampling rate of the SpO2 signal from the two databases was uniformly processed to 8 Hz, the 
batch size of the experiment was set as 32, and the initial learning rate was set as 0.0001.

3.3 Evaluation metrics

 In practice, classification tasks often face the challenge of data imbalance. In response to this 
challenge, the experiments adopt a variety of evaluation metrics to comprehensively measure the 
performance of the model, including accuracy, precision, recall and F1-score. Among them, 
accuracy reflects the ratio of the number of samples correctly classified by the model to the total 
number of samples, which is an important measure of the overall performance of the model. 
Precision rate mainly measures the proportion of samples predicted by the model to be positive 
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cases that are actually positive cases, which reflects the reliability or precision of the model to 
find positive cases. Recall rate focuses on the proportion of all samples that are actually positive 
cases that are correctly predicted by the model, which reflects the model’s ability or sensitivity to 
find positive cases. F1-score is the reconciled average of precision and recall rates, especially in 
the case of unbalanced data, which integrates the precision and recall rates of the classifier and 
provides a comprehensive evaluation perspective. They are defined in Eqs. (17)–(20).

 Accuracy = TP+TN
TP+TN +FP+FN

 (17)

 Precision= TP
TP+FP

 (18)

 Recall = TP
TP+FN

 (19)

 F - score= 2×Precision×Recall
Precision+Recall

1  (20)

 Here, TP is the sample correctly identified as OSA, TN is the sample correctly identified as 
normal, FP is the normal sample incorrectly identified as OSA, and FN is the OSA sample 
incorrectly identified as normal.

3.4	 Experimental	comparison	of	different	baseline	networks

 To validate the effectiveness of Semi-DynaSeqNet in this paper, experiments were conducted 
on PAEDB and UCDDB datasets, with one-minute- and one-second-based time segmentations, 
respectively, and the experimental results were compared with those obtained by other methods.
(1) Short time series apnea detection based on one second 
 In this experiment, the sleep data of the whole night is first segmented in one-minute window 
lengths, with the window movement step set to one second. Each window is taken as a sample, 
where the label of the 2nd second is taken as the window label. The experiments use the UCDDB 
dataset as the labeled training and testing set, while the PAEDB dataset is added as the unlabeled 
samples to introduce semisupervised learning, improve the sample size, and increase the 
robustness. The experimental results are shown in Table 2 and Fig. 2.
 In Table 2, DynaSeqNet has the best scores among all comparison methods. The scores of 
DynaSeqNet under the four metrics are 0.8475, 0.9518, 0.7639 and 0.8626, respectively. Among 
them, F1-score has improved by 1.32% compared to the model combining LSTM and CNN(12). 
Compared to other models, DynaSeqNet enhances the key feature extraction of the SpO2 signal 
and improves the detection rate of the algorithm by introducing the self-attention mechanism. 
The F1-score, precision, recall, and accuracy of the Semi-DynaSeqNet method with 
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semisupervised learning are 0.9094, 0.9177, 0.9013 and 0.9102, respectively. The F1-score has 
improved by 6.19% compared to DynaSeqNet.  In the original dataset, the sample distribution is 
unbalanced, and there is a phenomenon where the number of normal samples far exceeds the 
number of OSA samples. The introduction of the semisupervised method compensates for the 
lack of OSA samples in the original dataset and substantially increases the score of recall. 
(2) Long time series apnea detection based on one minute
 In this experiment, the SpO2 signal of the whole night is partitioned in one-minute window 
lengths with no overlap between neighboring windows, and each minute data corresponds to a 
label as a sample. The experiment uses the PAEDB dataset as the labeled training and testing 
set, while the UCDDB dataset is added as the unlabeled samples to introduce semisupervised 
learning, increase the sample size, and enhance the generalization ability. The experimental 
results are shown in Table 3 and Fig. 3.
 As shown in Table 3, DynaSeqNet has the best scores in F1-score, precision, recall, and 
accuracy among all the comparison methods. The scores of DynaSeqNet under the four metrics 
are 0.9170, 0.9364, 0.8984, and 0.9229, respectively. Among them, F1-score has improved by 
3.95% compared to the model combining LSTM and CNN(12). The Semi-DynaSeqNet method, 
which introduces semisupervised learning, achieved an F1-score improvement of 2.95% 
compared to DynaSeqNet. The scores of Semi-DynaSeqNet under the four metrics are 0.9465, 
0.9583, 0.9350, and 0.9499, respectively. By integrating unlabeled data, Semi-DynaSeqNet 

Table 2
Comparison of model performance based on one-second detection.
Model F1-score Precision Recall Accuracy
CNN(10) 0.8143 0.9933 0.6900 0.8427
LSTM(21) 0.8324 0.9423 0.7454 0.8470
LSTM+CNN(12) 0.8343 0.9100 0.7702 0.8499
DynaSeqNet 0.8475 0.9518 0.7639 0.8626
Semi-DynaSeqNet 0.9094 0.9177 0.9013 0.9102 

Fig. 2. (Color online) Model performance based on one second.
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effectively alleviates overfitting caused by insufficient samples and significantly improves the 
performance of the model. The results verify the necessity and validity of incorporating the 
semisupervised method with the adaptive adjustment of threshold in the design of the proposed 
algorithm. 

3.5	 Ablation	experiments	with	semisupervised	methods

 To validate the effectiveness of the semisupervised method with the adaptive adjustment of 
threshold, semisupervised ablation experiments were designed. The results based on one-second 
detection are summarized in Table 4 and Fig. 4, and the results based on one-minute detection 
are summarized in Table 5 and Fig. 5.
 From Table 4, it can be seen that the F1-score of the DynaSeqNet model is 0.8475 before 
incorporating the semisupervised method. After incorporating the semisupervised method with 
the adaptive adjustment of threshold, the F1-score of the Semi-DynaSeqNet model gradually 
improved with the increase in the number of iterations. Finally, the F1-score of the Semi-
DynaSeqNet model is 0.9094. After seven iterations, the F1-score of the Semi-DynaSeqNet 
model has improved by 5.67% compared to the first iteration. 
 In Table 5, the F1-score of the DynaSeqNet model is 0.9190 before incorporating the 
semisupervised method. After incorporating the semisupervised method with the adaptive 
adjustment of threshold, the F1-score of the Semi-DynaSeqNet model gradually improved with 

Table 3
Comparison of model performance based on one-minute detection.
Model F1-score Precision Recall Accuracy
CNN(10) 0.8651 0.8862 0.8450 0.8690
LSTM(21) 0.8731 0.9228 0.8285 0.8728
LSTM+CNN(12) 0.8775 0.9024 0.8538 0.8805
DynaSeqNet 0.9170 0.9364 0.8984 0.9229
Semi-DynaSeqNet 0.9465 0.9583 0.9350 0.9499

Fig. 3. (Color online) Model performance based on one-minute detection.
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Fig. 4. (Color online) Results of semisupervised experiments based on one-second detection.

Fig. 5. (Color online) Results of semisupervised experiments based on one-minute detection.

Table 4
Results of semisupervised experiments based on one-second detection.
No. of iterations F1-score Precision Recall Accuracy
0 0.8475 0.9518 0.7639 0.8626
1 0.8527 0.9304 0.7870 0.8640
2 0.8633 0.9225 0.8112 0.8715
3 0.8677 0.8862 0.8499 0.8704
4 0.8800 0.8555 0.9059 0.8764
5 0.8960 0.8824 0.9099 0.8943
6 0.9036 0.8849 0.9232 0.9016
7 0.9094 0.9177 0.9013 0.9102

Table 5
Results of semisupervised experiments based on one-minute detection.
No. of iterations F1-score Precision Recall Accuracy
0 0.9170 0.9364 0.8984 0.9229
1 0.9281 0.9378 0.9187 0.9326
2 0.9400 0.9578 0.9228 0.9441
3 0.9419 0.9619 0.9228 0.9461
4 0.9446 0.9540 0.9267 0.9468
5 0.9465 0.9583 0.9350 0.9499
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the increase in the number of iterations. Finally, the F1-score of the Semi-DynaSeqNet model is 
0.9465. After five iterations, the F1-score of the Semi-DynaSeqNet model has improved by 
1.84% compared to the first iteration.
 The experimental results showed that with increasing number of iterations, the model 
performance gradually improves. With the semisupervised threshold gradually increasing, only 
the samples with high confidence can be used as pseudo-labels, which have higher prediction 
accuracy in the training process. This method effectively improves the quality of the pseudo-
labeled data. The semisupervised method with the adaptive adjustment of threshold not only 
improves the reliability of the pseudo-labeled data, but also optimizes the training effect of the 
model, which leads to a steady improvement in both learning and generalization abilities.

4. Conclusions

 The Semi-DynaSeqNet model was proposed to improve the accuracy of sleep apnea detection 
using the SpO2 signal. This model integrates 1D-CNN, GRU, and the self-attention mechanism 
to extract local features, capture long-distance dependences of dynamic characteristics, and 
adaptively weigh critical information for efficient and stable classification. Additionally, the 
semisupervised learning method with the adaptive adjustment of threshold is employed to 
address the issues related to the insufficient training samples and class imbalance, thereby 
enhancing the model’s generalization ability. The experimental results demonstrate that the 
Semi-DynaSeqNet model accurately captures dynamic changes, trends, and features of the 
SpO2 signal while improving decision precision. 
 In this study, we developed a composite deep learning architecture that integrates 1D-CNN, 
GRU, and self-attention mechanisms. This architecture achieves multilevel feature extraction by 
concatenating various modules. Although this theoretically improves the model’s ability to 
capture data features, it also leads to the complexity of the model structure and a significant 
increase in the number of parameters. The expansion of this parameter quantity may lead to an 
increase in the demand for storage and computing resources of the model, affecting its 
deployment efficiency in resource constrained environments. For application scenarios that 
require a rapid response, such as the real-time monitoring of OSA, the current model’s response 
speed may not be ideal. With further research, we will focus on exploring model optimization 
strategies aimed at reducing the computational complexity of the model and improving its 
processing speed. For example, considering integrating attention mechanisms more deeply into 
CNN or GRU modules to achieve adaptive focusing on key features, thereby improving 
computational efficiency without sacrificing model performance, while significantly enhancing 
the practicality and applicability of the model in real-time application scenarios.
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