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 In recent years, as the demographic profile of society continues to shift towards an aging 
population, there has been a concomitant shortage of caregivers, leading to an increase in the 
demand for elderly care. The accurate assessment of the health status of the elderly and the 
provision of appropriate care necessitate the timely recognition and analysis of human activities. 
To address this challenge, we propose a continuous human activity recognition system that 
generates a 3D human skeleton model, utilizes joint angles to perform daily life activity 
recognition, and infer similarities in movements across various body parts. The proposed system 
generates a 3D human skeleton model using depth information obtained from multiple range-
based depth cameras and extracts human joint angles on the basis of this model. Moreover, it 
utilizes time-series joint angle data to continuously recognize actions and estimate the similarity 
of movements across various body parts. To validate the efficacy of the proposed system, 
comprehensive verification experiments were conducted using real-world data.

1. Introduction

 In recent years, the rapid advancement of technology has had a significant impact on a 
number of areas, including manufacturing, social infrastructure, and healthcare. The effect of 
technology on these areas has been considerable, affecting aspects such as the quality of life, 
convenience, and the way healthcare is delivered. The advent of surgical and communication 
robots has resulted in a profound transformation in the landscape of medical treatment and 
patient care. Furthermore, the global phenomenon of aging populations, prevalent in developed 
countries worldwide, has resulted in a significant increase in the demand for health maintenance 
and caregiving services for the elderly.
 To address these challenges, there is currently active research in the field of artificial 
intelligence technology, with a particular focus on the development of wearable devices, nursing-
care robots, and intelligent agents for the detection of human conditions. Kaburagi et al. 
proposed a system that employs the growing neural gas to extract text features, with the objective 
of providing support for care records and case management in caregiving facilities.(1) Shao et al. 
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developed a monitoring system that employs high-precision vibration sensors to quantify the 
periodic human activities of elderly individuals living alone.(2) The system was designed from 
the informationally structured space perspective and with a time-delay neural network that can 
analyze vibration data.(2) Abrar et al. concentrated on cardiovascular diseases and put forth a 
multi-agent-based hypertension risk prediction system that incorporates a Gaussian mixture 
model and an online infinite echo state Gaussian process.(3) Besari et al. addressed the 
rehabilitation of post-stroke patients with visual impairments, proposing a cyber–physical–
social system that employs perception-based egocentric vision for classifying four primary 
activities (wonder, reach, grasp, and release) during hand–object interactions in the grasping 
task.(4)

 The application of these technologies enables the continuous and effective monitoring of the 
health status of the elderly and patients, thereby facilitating the early detection of a disease and 
the promotion of rehabilitation. Nevertheless, the necessity of regulating human circadian 
rhythms, evaluating health status, and administering prompt treatment to the elderly and patients 
without unduly disrupting their daily lives makes it imperative to estimate human physical states 
from daily life movements. Furthermore, the provision of detailed information to the elderly and 
caregivers in caregiving situations requires the gathering of specific data regarding individual 
body parts based on daily life activities. In this study, we propose a continuous human activity 
recognition system that measures human physical capabilities without being intrusive, monitors 
human activities over time in a naturalistic manner, learns and recognizes human daily activities, 
and infers problem areas using the similarity of movements among various body parts.

2. Related Works

 In the context of body monitoring, the tracking of the human skeleton model and the 
extraction of human posture features are of paramount importance. The tracking of the human 
skeleton model has a variety of applications, including in the fields of security, rehabilitation, 
and entertainment. At present, the recognition of human skeleton models is occasionally 
accomplished through the use of electromagnetic sensors,(5) inertial sensors,(6) and other 
analogous devices. Inertial measurement units (IMUs) can detect the inertial motion of human 
movements, thereby enabling the acquisition of high-precision data even during activities with 
high degrees of freedom.(7) However, the use of IMU sensors presents certain challenges, 
including limited battery life and the inability to directly track positions.(8) Consequently, the 
generation of human skeleton models using wearable devices places significant physical and 
psychological burdens on users, thereby rendering continuous daily-life attachment of such 
devices challenging. An alternative methodology entails the attachment of multiple markers to 
disparate regions of the body and the utilization of multiple high-frequency cameras for the 
generation of the human skeleton model. Nevertheless, this methodology presents challenges 
associated with camera interference.(9)

 To facilitate the identification of human skeleton models, markerless motion capture systems 
that rely solely on camera technology have been proposed as a means of developing automated 
methods for their generation.(10) Cao et al. developed the OpenPose multi-skeleton tracking 
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module, which generates real-time human skeleton models from a single camera.(11) Similarly, 
Pauzi et al. developed the Mediapipe Blazepose, a camera-based system for the generation of 
human skeleton models.(12) However, the recognition of obscured body parts using a single 
camera remains a significant challenge, and the development of solutions to address this 
limitation is essential for the practical application of these methods in human monitoring in daily 
life.
 A multitude of technologies have been put forth in previous reports on human activity 
recognition. Conventional human activity recognition systems entail the acquisition of data from 
wearable sensors or images for the purpose of recognizing and learning about multiple actions. 
Gholamiangonabadi and Grolinger proposed a model for human activity recognition from 
wearable sensor data using convolutional neural networks (CNNs) and signal analysis.(13) In a 
further development of this field, Yu et al. introduced densely 3D-long short term memory 
(D3D-LSTM), which combines 3D-CNN and LSTM to enable the real-time recognition of 
prolonged actions in complex environments based on RGB-D data.(14) Coppola et al. addressed 
the context of ambient assisted living with a method based on qualitative trajectories to represent 
human actions, which are learned and classified using hidden Markov models.(15) Although 
these human activity recognition systems establish the structure of the model for learning, the 
accumulation of previously learned data is essential to address the catastrophic forgetting 
problem that arises when learning new activities. In daily life, where human activity is subject to 
considerable variation due to individual differences, the data accumulated each time the system 
undergoes relearning becomes extensive, leading to high computational costs for retraining. 
Therefore, in the context of daily life, a model that can continuously learn with flexibility to 
recognize human activities is of paramount importance.
 Moreover, there has been a growing emphasis on research utilizing human skeleton models to 
enhance the accuracy of human activity recognition in traditional activity recognition 
systems.(16) In a related vein, Li et al. put forth a human activity recognition system that employs 
RGB-D data.(17) In this system, the human skeleton model is transformed into joint distance 
maps and identified through a CNN approach.(17) In a comparative study, Nguyen et al. 
evaluated the performance of the recurrent neural network, CNN, graph convolutional network, 
and hybrid–deep neural network using input from a 3D human skeleton model.(18) Dou et al. 
proposed declarative memory recurrent neural model (DM-RNM) with self-organizing adaptive 
recurrent incremental network (SOARIN), a continuous learning model for multiple 
interpretations of hand gestures.(19) However, these activity recognition systems frequently 
perceive the entire human body as a singular entity, thereby impeding the capability to analyze 
distinctions in body parts for a given movement due to individual variations. To gain a precise 
understanding of human body states in everyday life, it is vital to examine the discrepancies in 
the same activity resulting from individual differences while performing activity recognition.
 The continuous human activity recognition system proposed in this study comprises two 
components: human posture detection and human activity recognition. These components are 
designed to address the aforementioned issues. (1) Human posture detection: In the context of 
monitoring human posture, the system addresses occlusion issues through the utilization of data 
from multiple RGBD cameras (Azure Kinect). The system combines a 3D human skeleton model 
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on the basis of reliability of the skeleton models generated from each camera. This multi-
viewpoint approach facilitates the overcoming of occlusion challenges and enhances the 
accuracy of the 3D human skeleton model. (2) Human activity recognition: In the context of 
human activity recognition, the system employs a methodology that entails the calculation of key 
joint angles from an anatomical perspective, with the objective of estimating human posture. 
The system extracts spatiotemporal features from the temporal data of human activity, thereby 
enabling learning. To prepare for the recognition of unknown activities, the human activity 
recognition model employs a continuous learning model, which allows for learning and 
recognition over time. Furthermore, the system infers the similarity of movement among body 
parts to present issues with the movements of each body part during various actions, thereby 
aiding users in understanding the challenges associated with each action.

3. System Design

 The objective of this study is to develop a continuous human activity recognition system that 
can track human posture with consistent reliability and continuously learn and recognize human 
actions. The aim is to develop a system that can perform human activity recognition and body 
state estimation in seamlessly within the context of daily life, without requiring the user’s 
awareness or input. The proposed system’s architectural design is illustrated in Fig. 1. The 
proposed system is structured with a two-layer architectural configuration, comprising posture 
detection and activity recognition. The system employs depth data from multiple Azure cameras 
in a manner that does not infringe upon human privacy to generate skeleton models. To address 
the issue of occlusion, the skeleton models generated from each camera are combined on the 
basis of reliability to construct a 3D human skeleton model. To facilitate the straightforward 
acquisition and recognition of human activity characteristics in the subsequent model, the 

Fig. 1. (Color online) Architecture of proposed system.
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essential joint angles are calculated from an anatomical perspective using the constructed 3D 
human skeleton model. To facilitate the recognition of human activities, a feature extractor is 
employed to extract the spatiotemporal characteristics of human actions from the human joint 
angles. Concurrently, the system identifies discrepancies in the manner in which each body part 
is utilized during a given activity by inferring the degree of similarity of movements among 
body parts and estimating the challenges associated with the movement of each body part during 
routine activities. Moreover, when the system is deployed in real-world scenarios, the continuous 
emergence of novel activities is affected by human habits and bodily states. To accommodate the 
recognition of previously unidentified activities, the system employs the random weight 
convolutional-growing memory network (RWC-GMN) continuous learning model, which 
enables the automatic adjustment of the model size without the need for presetting.(20)

3.1 Human posture monitoring

 In the context of Azure’s human body skeleton recognition, passive infrared and depth 
information are employed as inputs. Infrared data is employed as input to a pretrained CNN 
utilizing the ONNX Runtime, which was trained on a human body skeleton dataset. The CNN 
generates 32 2D joint positions. The system employs the 2D frame position data of joint angles 
as depth information, transforming them into 3D coordinates that are contingent upon the 
camera’s position. Subsequently, as illustrated in Fig. 2, the integration of multiple 3D skeleton 
datasets is proposed as a means of enhancing accuracy and addressing occlusion issues.(21) The 
3D joint positions of multiple camera modules are transformed on the basis of six-dimensional 
information (x-position, y-position, z-position, pitch, roll, and yaw). Subsequently, pelvic and 
head joint positions are calculated, and movement similarity detection is conducted to identify 

Fig. 2. (Color online) Illustration of multiple skeleton datasets for recognition.
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the skeleton representations. Subsequently, a combinatorial process is employed to combine 
multiple skeleton datasets on the basis of a confidence analysis. The skeleton model shown in 
Fig. 3 is used to categorize joints into six groups: torso, head, left upper limb, right upper limb, 
left lower limb, and right lower limb. The combined joint position [Eq. (3)] is calculated on the 
basis of the confidence analysis C(t) of the joint groups shown in Eqs. (1) and (2).
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where J(t) is the vector position of the joint at time t and C(t) is the confidence level of the joint 
group at time t. The total confidence level is calculated on the basis of the single confidence level 
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Fig. 3. (Color online) Division of the joint group and the joint ID.
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of the  j-th joint of the k-th joint group at time t of the i-th skeletal model. The parameters Ni, Nk, 
and Nj represent the number of skeletal models, the joint groups, and the number of joints 
detected at the same location, respectively.

 
if 0
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θ
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The shielding analysis is conducted using Eq. (4) on the basis of Fig. 4, where θ is the deviation 
of the joint positions in different joint groups and α is the deviation of the depth of the joint 
positions in different joint groups. The parameters θ and α are calculated using Eqs. (5) and (6), 
respectively, and the degree of occlusion is calculated using Eq. (7).

 ( )( ) ,ˆ̂kJ P n nθ = − ⋅ ⋅  (5)

 ( ) ,kJ Pα θ= − −  (6)

 ,d α β
θ

= −  (7)

where Pk is the k-th camera position and n̂ is the vector unit of the difference J − Pk  between the 
joint position J and the camera position. β is the gradient threshold. 

Fig. 4. (Color online) Confidence analysis based on joint position.
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3.2 Human activity recognition

3.2.1 Joint angle estimation

 To recognize human activity and analyze the differences among body parts in performing the 
same action, angle information for each major body joint is estimated from the human skeletal 
model and used as a feature of human activity. As illustrated in Fig. 3, the output of the human 
skeletal model yields 32 3D joint positions, with the X, Y, and Z values representing relative 
values from the 3D Cartesian coordinate system. The calculation of human joint angles is 
primarily based on three rotational axes: the coronal, the anterior–posterior, and vertical axes, 
depending on the direction of rotation. In this example, the one-DOF elbow joint and three-DOF 
shoulder joint of the right hemisphere will be used as examples for the calculation. Consequently, 
identical formula may be employed to calculate the analogous joints of the left half of the body 
using the mirror image positions of the body pose information. Table 1 also presents the major 
joint angles of the entire body.

3.2.1.1  Elbow joint angle calculation

 Since the elbow joint operates in extension and flexion with one-DOF around the coronal 
axis, the calculation of joint angles is simple. As shown in Eqs. (8) and (9), the elbow joint (joint 
ID: P6) is used to calculate a vector representation consisting of the shoulder joint (joint ID: P5) 
and wrist joint (joint ID: P7), and the angle between the vectors is calculated.

Table 1 
List of major human joint angles.
Joint Angle number Axis

Neck
angle1 coronal axis
angle2 anterior-posterior axis
angle3 vertical axis

Body
angle4 coronal axis
angle5 anterior-posterior axis
angle6 vertical axis

Right shoulder
angle7 coronal axis
angle8 anterior-posterior axis
angle9 vertical axis

Right elbow angle10 coronal axis

Left shoulder
angle11 coronal axis
angle12 anterior-posterior axis
angle13 vertical axis

Left elbow angle14 coronal axis

Right leg
angle15 coronal axis
angle16 anterior-posterior axis
angle17 vertical axis

Right knee angle18 coronal axis

Left leg
angle19 coronal axis
angle20 anterior-posterior axis
angle21 coronal axis

Left knee angle22 anterior-posterior axis
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where v(6,5) is the 3D vector representation of the elbow and shoulder joints, and Aelbow is the 
joint angle of the elbow joint.

3.2.1.2  Shoulder joint angle calculation

 Three angles are calculated for the joint angle of the shoulder joint: the shoulder joint 
elevation plane angle As_e_ p around the anterior–posterior axis, the shoulder joint elevation angle 
As_e around the coronal axis, and the shoulder joint rotation angle As_r around the vertical axis. 
To calculate the plane angle of shoulder joint elevation and the angle of shoulder joint rotation in 
3D space, a torso plane that can be used as a reference is constructed using the pelvis joint (joint 
ID: P0), left shoulder joint (joint ID: P12), and right shoulder joint (joint ID: P5), and then the 
normal vector ˆbodyn  of the torso plane is calculated as in Eqs. (10) and (11).
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Next, the projection point Pproj_e of the elbow joint (joint ID: P6) in the torso plane is calculated 
from Eq. (12). The shoulder joint elevation plane angle As_e_ p is calculated on the basis of Eqs. 12 
and 13 using the projection point Pproj_e of the elbow, the shoulder joint (joint ID: P5), and the 
chest joint (joint ID: P2).
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 The calculation of the shoulder joint elevation angle As_e is output from the elbow joint (joint 
ID: P6), shoulder joint (joint ID: P5), and projection point Pproj_e of the elbow as shown in Eqs. 
(15) and (16).
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 The shoulder joint rotation angle As_r is calculated using the angle between the normal vector 
ˆelbown  of the plane composed of the shoulder joint (joint ID: P5), elbow joint (joint ID: P6), and 
wrist joint (joint ID: P7) and the normal vector ˆshouldern  of the plane composed of the elbow joint 
(joint ID:), shoulder joint (joint ID: P5), and projection point Pproj_e at the elbow [Eqs. (17) and 
(18)].
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3.2.2 Human activity recognition model

 The objective of this study was to develop a continuous human activity recognition system 
that can learn and recognize human activity from time series data of human major joint angles. 
These angles represent the features of human activity and can be used to distinguish between 
different activities and body parts. The system was designed to continuously learn human 
activity and detect differences in body parts from human activity by using the range of motion 
(ROM) rank, as illustrated in Fig. 5. In this paper, we use the ROM of human joints as defined by 
the Japanese Ministry of Health, Labor and Welfare as ROM.
 To accurately discern human activity features, the pre-extracted time series data of joint 
angles are divided into two parts: long-term features that exhibit long-term spatiotemporal 
characteristics and short-term features that represent the features of movements in a brief period. 
Subsequently, a fixed random weight 3DCNN is employed as a feature extractor to transform the 
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data into features that can be trained into a continuous learning model, and two types of 
spatiotemporal feature are further extracted.
 Fixing random weights is a machine learning technique in which the weights of a neural 
network are randomly initialized at the outset of the learning process and then fixed during the 
learning process itself. This differs from the process of updating the weights of the network 
through the conventional method of backpropagation. The rationale behind the significance of 
fixed random weights is that they can diminish variability within the learning process, thereby 
enhancing the stability of the acquired policies. In particular, when weights are fixed, the 
learning algorithm can explore the solution space in greater depth without overfitting the 
training data. This enhances the generalization performance on novel data and prevents the 
network from becoming constrained in a local minimum (a partially optimal solution that is not 
a global minimum). Another significant benefit of fixed random weights is that they can enable 
continuous learning. Continuous learning is the capacity to adapt to new data over time without 
forgetting previously acquired knowledge. The utilization of fixed random weights permits the 
continuation of learning from new data whilst retaining a degree of plasticity and adaptability, 
thereby preventing the catastrophic forgetting of previously acquired knowledge. 
 To enable continuous learning of new data, we have proposed a continuous learning model, 
the growing memory network (GMN), which comprises a self-organizing topological network 
that emulates human episodic memory. Figure 6 depicts the GMN architectural configuration, 
and the learning process is as follows:
 On the basis of the sensory input x, the network first generates two episode nodes and updates 
the long-term memory weight. For time t = 1, each element of the long-term memory weight 
becomes as follows. 

 ( )1max min x= =   (19)

Fig. 5. (Color online) Human activity recognition system.
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Afterwards, the long-term memory weight is updated as follows.
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Here, i represents the index of each element in long-term memory weight. max(a, b) and 
min(a, b) represent the maximum and minimum values, respectively, for each element. 
 Owing to the characteristics of the long-term memory weight, the system is less affected by 
the setting of vigilance parameters and can continue learning without normalizing input data. 
Next, each episode node in the network is composed of a weight vector wj. Using Eqs. (22) and 
(23), the network selects the winner node for the current input data x(t) for the next learning 
process.

 ( )( )arg min jb T t=  (22)

Fig. 6. (Color online) Architecture of the continuous learning model GMN.
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Then, the activation value of the winning node J is calculated as

 ( ) ( ).b ba t exp T= −  (24)

 If the activation value ab(t) is less than the threshold aT that was initially set, a new node N is 
added to the network with new weights as follows.

 ( )( )0.5N bw x t w= ⋅ +  (25)

 
 To connect the selected best winner node b and the second winner node, it is necessary to 
generate a new edge. If ab(t) is greater than aT, the best winner node b can represent the input 
x(t). As a result, the best winner node b and its neighboring node n are updated using the input 
x(t) as follows.

 ( )( )j j j j jw w r x t wγ← + ⋅ ⋅ −  (26)

 If there is no edge between the best winner node b and the second winner node, a new edge is 
generated to connect them. For each learning iteration, the age counter of each edge is increased 
by one. The age counter of the edge between the best winner node and the second winner node is 
initialized to zero. Nodes without edges, nodes with a habituation counter greater than the 
threshold, and edges with an age counter greater than the threshold are removed from the 
network. Additionally, each episode node has a regularity counter rj indicating the firing 
strength over time, ranging from [0, 1]. The regularity counter of the newly formed episode node 
is initialized to rj = 1. The regularity counter of the best winner node and its neighbor nodes are 
decayed for each learning iteration using the following formula.

 ( )1j j j j jr r rτ λ τ← + ⋅ ⋅ − −  (27)

 As a result, the regularity counter of a node can express the relevance and importance of the 
information stored in that node. The regularity counter [Eq. (27)] indicates the regularity value 
of a node that is triggered over time depending on the learning input. If the age counter of the 
edge is greater than the age threshold, these independent nodes and edges are removed from the 
network. To prevent the removal of useful edges generated at the beginning of learning, we 
remove nodes according to the criteria introduced in a previous study(22) as follows.
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 ( ) ( )v H Hµ σ= +  (28)

Here, H is a vector representation of the regularity counter of all nodes in the network, μ is the 
mean function, and σ is the standard deviation. Nodes with a regularity counter greater than the 
threshold are removed.
 The new episode node is connected to the network only if bJ(t) ˂ ρb and rJ ˂ ρr. If both the 
activation and regularity thresholds are met, the node is updated using Eq. (26). In the GMN 
network, a succession of events creates an episode that recalls distinctive prior experiences and 
episodes related to one another to simulate episodic memory properties. The activation patterns 
of episode nodes in the network are learned using temporal connections. Temporal connections 
represent the order in which the activated nodes occurred during the learning stage. If the best 
winner node b is activated at time t and other nodes were activated at time t − 1, the temporal 
connection between them is reinforced.

 ( ) ( )( ) ( ) ( )( ), 1 , 1 1b t b t b t b tP P− −← +  (29)

 Therefore, for each episode node m of the encoded time series, the next node g can be 
obtained by selecting the maximum value of P as follows.

 ( ),arg max m ng P=  (30)

Here, n is the neighbor node of m. The activation time sequence of episode nodes can be restored 
without requiring input data.
 On the basis of previous research, the episode memory network is applied to utilize the 
spatiotemporal connectivity of existing nodes to replay meaningful temporal data. The episode 
memory network can replay temporal data when no sensory input is provided. For example, the 
best winner node b is activated by the input in episode memory network nodes. The next 
temporal connection can be generated by selecting the node with the highest activation value P. 
For each node j, the replay memory of length K + 1 is calculated as

 ( ) ( ) ( )0 1, ,..., ,j u u u KU w w w=  (31)

 ( ) ( )( ), 1arg max .j u iu i P −=  (32)

Here, P(i, j) is a matrix of temporal connections for all episode with u(0) = j. It is possible to 
automatically generate a sequence of memories and replay them in the network without storing 
previously learned data, by establishing temporal connections for existing episode nodes in the 
network.
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 During the learning phase, class label l can be assigned to each node on the basis of input 
data. L classes generate l class labels. In this labeling method, the frequency of each label in the 
network is stored in V( j, l). Using this, each node j holds a distribution counter that maintains the 
frequency of the specific label assigned to it. A new node N is created, and the label ζ associated 
with the input data x(t) is determined. The matrix V is extended by one row, and V(N, ζ) = 1 and 
V(N, l) = 0 are initialized. When an existing winning node b is selected for weight updating, the 
V matrix is also updated as follows.

 ( ) ( ), ,V b V bζ ζ ϕ+← +  (33)

 ( ) ( ), ,V b l V b l ϕ−← +  (34)

 Note that φ+ must always be smaller than φ−, and the label ζ belongs to class L. If the data 
label ζ does not exist in class L, a new column is added to V, and V(b, ζ) = 1, V(b, l) = 1. If it does 
not match the label of the given input data, the matrix V is not updated. The selected label ζ j for 
node j is calculated as 

 ( ) ( )arg max , .j label j V j lζ = ≡  (35)

Here, l is a label within class L. The advantage of this labeling method(23) is that it is not 
necessary to determine the class labels in advance. This method enables learning when the 
number of data classes is unknown.
 To infer differences among body parts in human activity, the similarity of the ROM among 
body parts is calculated on the basis of joint angles. Specifically, the Ranki of each feature is 
calculated to L levels on the basis of the human joint ROM, and the similarity of ROM among 
body parts in human activity is calculated to infer differences.

 _ _
i

i
i i

L ARank
Max Range Min Range

⋅
=

−
 (36)

Here, Ai is the angle of each joint, and Max_Rangei and Min_Rangei are the maximum and 
minimum ROMs at each joint, respectively.

4. Experimental Results

 To illustrate the efficacy of the proposed system in authentic settings, we conducted a 
comparative analysis with our previous continuous learning system, SOARIN,(24) and a 
conventional 3DCNN-based activity recognition system utilizing daily activities. In this 
experiment, models were trained on seven activities (Fig. 7) on the basis of the International 
Classification of Functioning (ICF) criteria: d415 (stand, sit), d430 (pick up), d450 (walk), d520 
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(wash face, brush teeth), and d560 (drink). The 3D coordinates of the human skeleton model 
depicted in Fig. 3 were employed as data features for the purpose of learning. In the context of 
continuous learning, the data for each class was input sequentially and learned only once, with 
each model trained using the aforementioned activities. Upon the completion of the training 
phase for each class, the models were evaluated using all previously learned activities. The 
comparative results of the continuous learning for each model are presented in Fig. 8.
 The results demonstrate that the proposed system exhibited continuous learning capabilities 
superior to those of the 3DCNN, with the capacity to retain and recall the acquired knowledge 
over time. Moreover, although the proposed system demonstrated a decline in the proportion of 
accurate responses as the number of learned activity classes increased, the recognition rate for 
each activity remained consistently higher than that of the conventional continuous learning 
model, SOARIN. 

Fig. 7. (Color online) Daily activities based on ICF criteria.

Fig. 8. (Color online) Experimental results comparing the proposed system, 3DCNN, and SOARIN for continuous 
learning.
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 The classification task was also validated using all daily activities with the aforementioned 
model, and the resulting recognition rates are presented in Table 2. The results demonstrate that 
the proposed system exhibits a recognition performance in the classification task superior to that 
of other models. With regard to the same activity, the proposed system was capable of estimating 
the differences in the activity by calculating the similarity of movements among body parts 
based on the stored general knowledge, as illustrated in Fig. 9.
 
5. Conclusions

 In this paper, we proposed a continuous human activity recognition system that learns and 
recognizes human daily activities over time. Furthermore, we utilized the similarity of activities 
among human body parts to infer and present the problematic part. A comparison of the 
proposed system with a conventional activity recognition system revealed that the former 
exhibits superior performance in continuously learning and recognizing new activities without 
forgetting previous knowledge. Moreover, the proposed system can estimate the discrepancies 
among body parts during the performance of a given activity and detecting the human body 
state with greater precision than the conventional action recognition system. As future work, the 
proposed system must be trained on high-dimensional activity features and validated on a large 
class of activities.

Fig. 9. (Color online) Difference estimation results of the same activity using the proposed system.

Table 2 
Comparison results for each model on the classification task.

Proposed system 3DCNN SOARIN
Accuracy 0.949 0.929 0.827
Precision 0.955 0.952 0.883
Recall 0.949 0.929 0.827
F1 0.949 0.924 0.787
Continuous learning ○ × ○
Activities similarity ○ × ×
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