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	 A cardiac arrhythmia is an abnormal heart rhythm caused by irregular heartbeats. Cardiac 
arrhythmias include atrial or ventricular fibrillation, right or left bundle branch block beats, and 
premature atrial or ventricular contractions. Different cardiac arrhythmias have distinct causes 
and clinical presentations. The type of cardiac arrhythmia must be identified to enable further 
intervention and treatment for addressing its underlying causes. In this study, we developed a 
convolutional neural network (CNN) model that extracts and classifies time-domain features to 
detect cardiac arrhythmias automatically in electrocardiogram (ECG) signals. This model 
employs endpoint detection to detect the activity of time-domain signals in accordance with a 
threshold for identifying the peak wave in ECG signals. These features are then transferred to 
two-dimensional (2D) color patterns that indicate abnormal heartbeats. Subsequently, a one-
dimensional (1D) or 2D CNN classifier is employed to distinguish normal heartbeats from 
cardiac arrhythmias in raw ECG data. The proposed model was trained, tested, and validated on 
the Massachusetts Institute of Technology–Beth Israel Deaconess Medical Center Arrhythmia 
Database (commonly known as the MIT-BIH Arrhythmia Database), and it exhibited promising 
performance in cardiac arrhythmia recognition, as indicated by its precision, recall, F1 score, 
and accuracy.

1.	 Introduction

	 Electrocardiogram (ECG) signals are recordings of the electrical activity of the heart from 
the atria to the right and left ventricles. These signals contain information regarding numerous 
time- and frequency-domain physiological parameters [e.g., heart rate (HR), HR variability, and 
respiration rate(1–5)] that can be used for clinical monitoring, the diagnosis of cardiac diseases, 
the evaluation of cardiac risk, and the quantification of the efficacy of cardiac drug therapies. 
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ECG signals can be measured using noninvasive limb leads, such as limb leads I, II, and III, and 
chest leads.(6–10) An ECG waveform comprises three components: P wave, QRS complex wave, 
and T wave. ECG signals can indicate an individual’s emotional state, cardiovascular disorders, 
and sleep-related conditions (e.g., sleep apnea). Moreover, they can be used to diagnose cardiac 
arrhythmias, premature atrial contractions (PACs), premature ventricular contractions (PVCs), 
atrial fibrillation (AF), and ventricular fibrillation (VF).(6–10)

	 ECG measurements can be acquired using contact sensing methods, which involve placing 
sensors or electrodes on multiple parts of the human body, such as the upper and lower limbs and 
chest. Limb electrodes or adhesive patches are connected to form limb or chest leads, which 
typically comprise up to 12 electrodes (ECG leads). The configuration of these leads enables the 
continuous measurement of the electrical activity of the heart. Commercial microchip firmware 
(with low power and voltage) facilitates the noninvasive monitoring of the electrical potentials 
passing through the heart. However, contact noise (skin–contact impedance), electromagnetic 
interference, and interference from power source harmonics(11–13) can result in errors in potential 
measurement. Moreover, long-duration ECG monitoring results must be interpreted by 
experienced medical staff with relevant expertise. Accordingly, in this study, we developed a 
model that can automatically extract and classify ECG signal features and filter out noise to 
recognize cardiac arrhythmias with high levels of accuracy.
	 In signal preprocessing, baseline-drift, power line interference, and high-frequency noise 
filters are used to eliminate low- and high-frequency noises, and noise resulting from power 
source interference, respectively. Baseline drift is caused by low-frequency signal variations that 
occur in the baseline signal because of breathing (<1.0 Hz) and muscle movements (6.0–100.0 
Hz). Power source interference is caused by the power supply frequency (50 or 60 Hz) of an 
electricity grid. High-frequency noise is caused by electromagnetic interference from the 
environment. A previous study(14) proposed the use of a band-pass filter with a cutoff frequency 
of 5–12 Hz to address baseline drift (within the frequency range of 0.0–0.8 Hz). A Butterworth 
low-pass filter with a cutoff frequency of 30 Hz can reduce or eliminate the high-frequency 
components of a signal, and a band-reject filter can be employed to eliminate 50 or 60 Hz 
harmonic components caused by the power source.(11,14–17) A filter’s cutoff frequency and order 
(up to three orders) can be varied to improve its performance and minimize noise and distortion 
in time-domain signals. However, filters with analog electronic circuits (including operational 
amplifiers, resistors, and capacitors)(18–20) are susceptible to nonlinear properties, temperature 
variations, and environmental factors, all of which can lead to instability in filter performance. 
The filtering scheme of these filters requires calibration and compensation for practical 
applications. In addition, increasing the filter orders enhances the complexity of designing and 
implementing hardware circuits, which restricts the application of the aforementioned filters in 
signal preprocessing. Accordingly, in this study, we adopted digital filters incorporating 
mathematical algorithms to preprocess raw ECG signals to offer an altering model for baseline-
drift filter and Butterworth filter designs, as adjusting parameters in amplification gains, cutoff 
frequencies, and filter orders. Compared with analog filters, digital filters have greater stability, 
flexibility, and applicability. As shown in Fig. 1(a), raw ECG signals may include high-frequency 
and baseline-drift components. Baseline drift and noise can be identified after detrend 
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processing and the application of digital Butterworth filters [Fig. 1(b)]. Subsequently, low- and 
high-frequency noises can be reduced or eliminated, as depicted in Fig. 1(c). Therefore, ECG 
signals can be interpreted automatically and accurately by using appropriate methods.
	 Frequency-domain methods such as the fast Fourier transform (FFT) and wavelet transform 
(WT)(17,19,21,22) can be used to extract time- and frequency-domain features from signals. The 
FFT is used to capture global frequency information, and the WT provides a multiscale method 
for decomposing time-domain signals into frequency ranges, which can then be visualized as 
frequency feature patterns for the detection of PACs, PVCs, AF, and VF. In practical applications, 
appropriate wavelet basis functions, wavelet parameters (dilation and location parameters), and 
decomposition levels must be selected because these factors affect the effectiveness of feature 
extraction in different frequency ranges. The WT is sensitive to noise within incoming signals; 
thus, signal preprocessing must be performed to eliminate noise when the WT is employed. In 
addition, the WT incorporates complex computation processes; therefore, it requires considerable 
time to process long-term data, and thus the scope of its practical applications is limited. 
Accordingly, in this paper, we propose an endpoint detection (EPD) method that involves using a 
specific threshold(23–25) first to identify the beginning and ending points of ECG activities in 
amplitude variations, and then to fragment each ECG segment with these substantial activities. 
Subsequently, the time-domain or frequency-domain feature extraction methods, such as the 
short-time energy (STE), short-time zero-crossing rate (STZCR), and spectral characteristics, 
can be extracted from these signal segments by using energy-based methods, zero-crossing-rate 
analysis, the WT or FFT. Furthermore, machine learning or deep learning models—such as 
support vector machine, k th nearest neighbor, and probabilistic neural network 
models(21,22,26,27)—can be employed to recognize the type of cardiac arrhythmia automatically.
	 In this study, we combined the EPD method with 1D and 2D convolutional neural network 
(CNN) classifiers for the automatic recognition of cardiac arrhythmias from ECG signals (Fig. 
2). In feature extraction, the EPD method(23–25) is used to detect the activities of a time-domain 
signal with a specific threshold to extract the QRS-complex waves from an ECG data stream. 
These QRS-complex waves are then transferred to colored 2D visualization feature patterns to 
indicate normal or abnormal heartbeats [seen as normal (•) and PVC (V) in Fig. 2]. The model 
then uses a 1D- or 2D-CNN-based classifier(28–30) to separate the normal condition from cardiac 
arrhythmias in the ECG data stream. The developed model was trained, tested, and validated on 

Fig. 1.	 (Color online) Preprocessing of raw ECG data. (a) Raw ECG data with high-frequency and baseline-drift 
components, (b) baseline-drift components obtained after detrend filtering, and (c) ECG data obtained after digital 
signal processing.
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the Massachusetts Institute of Technology (MIT)–Beth Israel Deaconess Medical Center (MIT-
BIH) Arrhythmia Database,(26,31) and the precision (%), recall (%), F1 score, and accuracy (%) of 
this model indicated that it was able to accurately recognize cardiac arrhythmias.

2.	 Materials and Methods

2.1	 ECG raw data collection

	 In this study, raw ECG signals were measured from limb lead II (a bipolar lead), as displayed 
in Fig. 3. This lead measured the voltage difference between left limb (LL) and right arm (RA) 
electrodes (the LL and RA were considered the positive and negative ends of the LL–RA axis, 
respectively, and this axis was inclined 60° relative to the heart). However, the aforementioned 
signals were susceptible to various types of interference, including baseline drift, muscle 
artifacts, power line interference, high-frequency electromagnetic interference from the 
environment, and unknown white Gaussian noise(11,14–17,26) [Fig. 3(a)]. Therefore, appropriate 
filters had to be designed to eliminate these different types of interference, which have different 
frequency ranges [Fig. 3(a)]. In this study, digital Butterworth filters were employed to 
preprocess raw ECG signals with the syntax butter (•) of MATLAB (MathWorks, Natick, MA, 
USA).(32) In addition, we designed a fifth-order band-pass filter with lower and upper cutoff 

Fig. 2.	 (Color online) Structure of the proposed CNN model for the automatic recognition of cardiac arrhythmias 
in ECG signals.
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frequencies of 1.0 and 30.0 Hz, respectively, and a sampling rate of 500.0 Hz. After signal 
filtering, the voltage amplification gain was set to 60 dB to obtain stable voltage gain 
characteristics. Moreover, the syntax detrend (•) of MATLAB was used to eliminate the effect of 
baseline drift caused by respiration and muscle artifacts. As shown in Fig. 3(b), after noise 
removal, each ECG data stream exhibited improved stability while retaining crucial features for 
diagnosis applications.
	 We conducted experimental tests by using raw ECG signals from the MIT-BIH Arrhythmia 
Database,(26,31) which consists of 48 ECG recordings from nine individuals, with each recording 
obtained from two leads, namely, limb lead II and chest lead V1, V2, V4, or V5. The duration of 
each recording was approximately 30 min, and each recording was digitized with a resolution of 
11 bits over a 10 mV range at a sampling rate of 360 Hz per channel. Each data entry was 
annotated with a biomarker, which indicated whether a heartbeat’s R peak belonged to a normal 
rhythm (normal beat) or an arrhythmia. In the annotations, •, V, A, L, R, P, F, and f represent a 
normal beat, a PVC, an atrial premature beat, a left bundle branch block beat, a right bundle 
branch block beat, a paced beat, the fusion of ventricular and normal beats, and the fusion of 
paced and normal beats, respectively.(31) QRS segmentations were cut using a 196-sampling-
point window centered on the R peak. The EPD method was adopted to detect signal activities, 
after which the start and end points of signals were identified for QRS segmentation [Fig. 3(c)]. 
The QRS segments were then transferred to colored 2D feature patterns [Fig. 3(d)]. These 
feature data sets were divided into training and testing data sets. The training data sets were 
used to train the developed model, and the testing data sets were used to test and verify the 
feasibility of this model.

2.2	 EPD method

	 The EPD method was used to extract feature patterns from time-domain signals with a 
specific threshold. Subsequently, the start and end points of these signals were determined to 

Fig. 3.	 (Color online) ECG signal processing and feature extraction. (a) Raw ECG signals with artifacts (baseline 
drift and muscle artifact) and noise, (b) preprocessed ECG signal obtained after removal of baseline drift and noises, 
(c) feature extraction through EPD, and (d) color patterns for normal and abnormal heartbeats.
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obtain QRS segments that were then used to extract time- and frequency-domain features from 
the collected ECG data. The extracted features included STE, STZCR, short-time average 
amplitude, and cumulative spectral difference. These features can be applied in signal 
recognition, echo cancellation, and audio coding applications. In dynamic time-domain signals, 
the energy of the QRS complex wave is usually higher than that of noise. STE can be directly 
obtained from a time-domain ECG signal by focusing on each time point, expressed as 
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	 For a data stream, amplitude variations are more apparent during intense activity than during 
relatively static periods. Therefore, short-term amplitude changes over a finite period indicate 
energy variations for intense activities. For a short-term signal segment of length N − Nk, En 
represents the STE at the nth sampling point, x(i) is the time-domain signal, and Nk is the length 
of the short-time frame processing. Equation (1) with a specific threshold θ [as Eq. (2)] is used to 
distinguish segments with heartbeat signals from those without such signals. Thus, different 
arrhythmia classes might exhibit distinct STE variations, as shown in Fig. 4. Moreover, a linear 
transformation is applied using the maximum energy [Emax = max(En)] and minimum energy 
[Emin = min(En)] to map energy variations to the range of [0, 1]. This transformation is expressed 
as
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	 The normalized Cn value can be used alongside the colormap(•) operator of MATLAB to map 
QRS segments to various color feature patterns [Figs. 3(c) and 3(d)]. These patterns depict 
energy variations and feature patterns in color to provide clear representations of normal 
heartbeats and cardiac arrhythmias, respectively (Fig. 4).

2.3	 CNN-based classifier

	 As shown in Fig. 2, we conducted digital signal processing and EPD to train a CNN model to 
automatically perform feature extraction, feature enhancement, and signal classification tasks. 
In this model, an EPD-based extractor extracts crucial QRS segments; subsequently, multiple 
layers of convolutional–pooling operations (CPOs) are conducted with kernel windows with 
different weights (convolutional operation) to perform feature extraction and enhancement. The 
use of multiple convolutional layers and multiple kernel windows in convolution operations can 
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increase the depth and breadth of features, leading to improved feature pattern dimensions, 
nonlinearity, and increased feature recognition accuracy. Subsequently, key feature parameters 
are selected using maximum-pooling (max-pooling) processes,(28–30) in which maximum values 
are extracted using a 2 × 2 max-pooling window to reduce the size of feature patterns (Fig. 5). 
After max-pooling processes, the number of features is reduced to one-fourth of the original 
number, with key features being retained. Thus, the developed CNN model can automatically 
extract crucial feature patterns. In the classification layer of this model, the different arrhythmia 
classes of feature patterns are identified using a backpropagation algorithm (BPA) with gradient 
descent optimizator (GDO) or adaptive moment estimation (ADAM) optimizator(33,34) to train, 
test, and validate the classifier model, namely, a 1D or 2D CNN classifier.
	 In this study, we designed a multilayer CNN model (Fig. 2) by using MATLAB. This model 
contains two CPO layers. In the first CPO layer, convolutional operations are performed with 
3 × 3 × 9 kernel and 2 × 2 × 9 max-pooling windows to reduce the size of input feature patterns 
from 14 × 14 × 9 to 7 × 7 × 9. In the second CPO layer, feature patterns with a size of 3 × 3 × 9 are 
extracted. Following a flattening process, feature patterns are transformed from a matrix form 
(3 × 3 × 9) to a 1D pattern (vector form, 1 × 81). The classification layer of the developed CNN 
model consists of an input layer, multiple hidden layers, and an output layer. A Gaussian error 
linear unit was the activation function selected for the hidden layers, and softmax was the 
activation function selected for the output layer. The proposed model can classify normal 
heartbeats and multiple classes of cardiac arrhythmias.(26,31) The output target vector of this 
model is encoded using binary values; for example, the binary coding [1, 0, 0, 0, 0, 0, 0, 0] is 

Fig. 4.	 (Color online) Different QRS segments and feature patterns for normal heartbeats and various types of 
cardiac arrhythmia [• (normal beat), V, A, L, R, P, and F].
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used for normal beats (•). The training performance of the proposed model was evaluated in this 
study by using the categorical cross-entropy (CCE) loss function (LF).
	 The BPA or a swarm optimization algorithm (e.g., the particle or egret swarm optimization 
algorithm)(5,35,36) is used to update the weighted and bias parameters in the fully connected layer 
of the proposed model. The training process is terminated when a predetermined convergence 
condition is reached or when the maximum number of iterations is completed. Subsequently, the 
CCE LF is employed to evaluate the model’s training performance. In the testing stage, the 
model outputs a confusion matrix, which specifies the numbers of true positives (TPs), true 
negatives (TNs), false positives (FPs), and false negatives (FNs). On the basis of these parameters, 
the precision (%), recall (%), F1 score, and accuracy (%) of the model can be obtained to evaluate 
the model’s feasibility for cardiac arrhythmia recognition.

3.	 Experimental Results

	 In this study, we used ECG data sets from the MIT-BIH Arrhythmia Database to train, test, 
and validate the proposed CNN model. The adopted data sets comprised data regarding eight 
classes: normal beats (•), PVCs (V), atrial premature beats (A), left bundle branch block beats 

Fig. 5.	 (Color online) Convolutional–pooling operations for feature patterns of • (normal beat) and V classes.
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(L), right bundle branch block beats (R), paced beats (P), the fusion of ventricular and normal 
beats (F), and the fusion of paced and normal beats (f). On the basis of the Advancement of 
Medical Instrumentation (AAMI) standard, these heartbeats were grouped into normal (N: •, L, 
and R), ventricular ectopic (V: V), supraventricular ectopic (S: A), and fusion/unknown (F/Q: P, 
F, and f) heartbeats.(37) We obtained the 1D and 2D feature patterns shown in Fig. 5 for the • and 
V classes; these patterns exhibited distinct color distributions for different classes. By using 
these patterns, we identified normal and abnormal ECG signals in different ECG data sets. 
Under tenfold cross-validation, the total number of input–output paired feature patterns was 
1000. These patterns were divided into eight classes and into training and testing data sets. The 
proposed digital signal preprocessing, EPD, feature extraction, and classification algorithms 
were designed on a tablet PC by using MATLAB.
	 In the training stage, the BPA with GDO(33,34) was used to determine the optimal network 
parameters by using iteration computations to adjust the optimal network parameters under 
multiple learning rates (h = 0.05, 0.10, 0.20, 0.30, 0.40, and >0.40) for 260 randomly selected 
samples in each fold (40 •, 50 V, 30 A, 50 L, 30 R, 30 P, 20 F, and 10 f samples). The training 
process was terminated when the LF was ≤ 10−2 or when the number of iterations reached 5000. 
As shown in Fig. 6, under h values of 0.05, 0.10, 0.20, and 0.30, convergence was achieved after 
227, 99, 50, and 196 iterations, respectively. In Fig. 6, the blue, green, red, and brown solid lines 
represent the convergence curves obtained under the aforementioned h values, respectively. As h 
was increased from 0.05 to 0.20, the model execution time decreased from 30.174 to 2.296 s and 
the number of iterations required to train the 2D classifier decreased from 227 to 50. A training 
accuracy of 100% was achieved for 130 random testing samples (20 •, 25 V, 15 A, 25 L, 15 R, 15 
P, 10 F, and 5 f samples) when h was set as 0.20 (Table 1). Therefore, in the training stage, we set 
h as 0.20 to achieve rapid convergence.(37–39)

	 According to the AAMI standard, approximately 80% of heartbeats belong to the • class, and 
the remaining 20% are ventricular ectopic, supraventricular ectopic, or fusion heartbeats.(25) 
Thus, in this study, the EPD method was used to extract feature patterns from continuous ECG 
waveforms to segment these waveforms into classes. Figure 7 shows the color patterns obtained 

Fig. 6.	 (Color online) Training curves for LF value versus number of iterations under multiple learning rates.
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for normal, fusion, and different ectopic heartbeats from different ECG records. The proposed 
model used the pathological information contained in each feature pattern to recognize cardiac 
arrhythmias.(37–39)

	 Table 2 presents the experimental results obtained using the proposed model for 10 ECG files 
from the MIT-BIH Arrhythmia Database. From these 10 ECG files, we randomly selected raw 
ECG data for a duration of approximately 1 min (Fig. 7) to verify the proposed model’s feasibility 
for automatic cardiac arrhythmia recognition. For the recognition of ventricular ectopic 
heartbeats (V) from the MIT 119, MIT 200, and MIT 221 records, the accuracies of the proposed 
model were 99.00% (24 TPs and 75 TNs), 92.00% (32 TPs and 60 TNs), and 99.00% (15 TPs and 
84 TNs), respectively. In addition, the TN rates of these models (for the identification of normal 
heartbeats) were 98.68, 95.23, and 98.82%, respectively. For the MIT 111, MIT 118, MIT 214, 
and MIT 231 files, the proposed model identified 190 and 196 left and right bundle branch block 

Table 1
Performance comparisons with different learning rates.
Learning rate Training dataset Number of iterations CPU time (s)
0.05 260 227 30.174
0.10 260 99 14.544
0.20 260 50 2.296
0.30 260 196 18.609
0.40 260 895 123.076
>0.40 (0.50) 260 3832 479.908

Fig. 7.	 (Color online) ECG feature extraction through EPD for the MIT 217 (P and f), MIT 119 (• and V), MIT 100 
(•), and MIT 214 (L and V) files.
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beats (L and R, respectively), with the model accuracy exceeding 95.00% for both types of beat 
(Table 2). Ten bundle branch block beats were incorrectly classified by the model. For the MIT 
104 file, the proposed model identified 16 F and 69 P samples, with the model’s precision, recall, 
and F1 score being 85.00%, 100.00%, and 0.9189, respectively, for these samples. A total of 15 F 
or P samples were incorrectly classified by the model. For the MIT 100 and MIT 220 files, the 
proposed model exhibited a TN rate of 99.00% (for normal heartbeats). For 1000 heartbeats (423 
normal and 577 abnormal heartbeats), the proposed model achieved precision, recall, and F1 
score of 90.29%, 97.38%, and 0.9317, respectively, for the identification of abnormal heartbeats 
(521 TPs, 56 FPs, and 14 FNs). Moreover, it exhibited a TN rate of 88.18% (418 TNs) for normal 

Table 2
Experimental results of cardiac arrhythmia recognition for ECG recording files, including MIT#100, #104, #111, 
#118, #119, #200, #214, #220, #221, and #231.

Record
MIT

Beat Classes and Number of Rhythms Accuracy 
(%)

Precision 
(%)

True 
negative 
rate (%)

Recall 
(%) F1 scoreN V A R L F P

100 
Male

Actual 99 0 1 0 0 0 0 — — — — —
Test 1 99 0 0 0 1 0 0 99.00 0.00 99.00 0.00 0.00
Test 2 99 0 0 0 1 0 0 99.00 0.00 99.00 0.00 0.00

104 
Female

Actual 0 0 0 0 0 31 69 — — — — —
Test 1 14 1 0 0 0 16 69 85.00 85.00 0.00 100.00 0.9189
Test 2 14 1 0 0 0 16 69 85.00 85.00 0.00 100.00 0.9189

111 
Female

Actual 0 0 0 0 100 0 0 — — — — —
Test 1 0 0 0 3 97 0 0 97.00 97.00 0.00 100.00 0.9848
Test 2 0 0 0 3 97 0 0 97.00 97.00 0.00 100.00 0.9848

118 
Male

Actual 0 1 0 99 0 0 0 — — — — —
Test 1 0 0 0 96 4 0 0 96.00 96.00 0.00 100.00 0.9796
Test 2 0 0 0 96 4 0 0 96.00 96.00 0.00 100.00 0.9796

119 
Female

Actual 75 25 0 0 0 0 0 — — — — —
Test 1 75 24 0 0 0 0 1 99.00 99.00 98.68 100.00 0.9796
Test 2 75 24 0 0 0 0 1 99.00 99.00 98.68 100.00 0.9796

200 
Male

Actual 65 35 0 0 0 0 0 — — — — —
Test 1 60 32 0 0 5 3 0 92.00 91.43 95.23 86.49 0.8889
Test 2 60 32 0 0 5 3 0 92.00 91.43 95.23 86.49 0.8889

214 
Male

Actual 0 3 0 0 97 0 0 — — — — —
Test 1 0 3 0 4 93 0 0 96.00 96.00 0.00 100.00 0.9648
Test 2 0 3 0 4 93 0 0 96.00 96.00 0.00 100.00 0.9648

220 
Female

Actual 100 0 0 0 0 0 0 — — — — —
Test 1 100 0 0 0 0 0 0 100.00 0.00 100.00 0.00 0.00
Test 2 100 0 0 0 0 0 0 100.00 0.00 100.00 0.00 0.00

221 
Male

Actual 84 16 0 0 0 0 0 — — — — —
Test 1 84 15 0 0 0 1 0 99.00 93.75 98.82 100.00 0.9677
Test 2 84 15 0 0 0 1 0 99.00 93.75 98.82 100.00 0.9677

231 
Female

Actual 0 0 0 100 0 0 0 — — — — —
Test 1 0 0 0 100 0 0 0 100.00 100.00 0.00 100.00 1.0000
Test 2 0 0 0 100 0 0 0 100.00 100.00 0.00 100.00 1.0000

Total Actual 423 80 1 199 197 31 69 — — — — —
Test 432 75 0 203 200 20 70 93.90 90.29 88.18 97.38 0.9317

Note: (1) Test#1: experimental results for 2D-CNN-based classifier; (2) Test#2: experimental results for 1D-CNN-based 
classifier.
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heartbeats. Thus, the experimental results indicated that the proposed model is feasible for the 
automatic detection of cardiac arrhythmias from ECG signals.
	 Table 3 shows a comparison of the proposed model with other models from the relevant 
literature. Deep-learning–based classifiers, such as 1D and 2D CNN models, have been widely 
applied in ECG and cardiac arrhythmia classification.(37–42) In previous studies,(37,41) cardiac 
arrhythmia classification models have been created by combining the R-peak detection 
algorithm with a 1D CNN. These models have used the R-peak detection algorithm to segment 
each heartbeat and then extract QRS complex waves from ECG signals. The aforementioned 
models were tested on the MIT-BIH ECG Database(26,31) to identify different types of cardiac 
arrhythmia (N, V, S, F, and Q). In this process, 75% of the database was used for training, and 
the remaining 25% was used for validation or testing. The aforementioned models exhibited 
accuracy, precision, sensitivity, and specificity values greater than 90%. In other studies,(38,40) a 
bidirectional long short-term memory (BiLSTM) model and a 24-layer deep CNN model have 

Table 3
Comparison of different classifiers for cardiac arrhythmia recognition with different ECG databases, methods, and 
purposes.
Reference ECG Data Method Purpose

37 MIT-BIH ECG 
Database(26,31)

R-Peak Detection 
Algorithm 

+ 1D Convolutional Deep 
Residual Neural Network

ECG Classification (N, V, S, F, & Q)
Tenfold cross validation: 

Average accuracy: 98.63%, 
Average precision: 92.86%,

 Average sensitivity: 92.41%,
 Average specificity: 99.06%.

38

2017 PhysioNet/
CINC Challenge 

(8528 Single-lead ECG 
Records) Datasets(39)

Bidirectional Long 
Short-Term Memory 

(BiLSTM)(38,40) + 24-Layer 
Deep CNN (DCNN)

Normal and AF Classification
Tenfold cross validation: 

Accuracy rate: 89.3%, 
F1 score: 0.891.

40 MIT-BIH ECG 
Database(26,31) LSTM + 1D-CNN

ECG Classification (N, L, R, A, & V)
Tenfold cross validation: 

Average accuracy: 98.10%, 
Average sensitivity: 97.50%, 
Average specificity: 98.70%, 

Average PPV (positive predictive value): 
98.69%.

41 MIT-BIH ECG 
Database(26,31)

R-Peak Detection 
Algorithm + 1D-CNN

Cardiac Arrhythmia Classification 
(F, N, S, & V)

Average accuracy: 0.99, 
Average sensitivity: 0.94, 
Average specificity: 0.99.

42
MIT-BIH and Sudden Death 

Cardiac Holter (SCDH) 
Arrhythmia Databases

R-Peak Detection 
Algorithm + 1-D CNN

ECG Classification (N, L, R, V)
MIT-BIH: 99.5% (97.6% → 99.5%), 

SCDH: 88.5% (80.2% → 88.5%), 
Training time decrease: 67.2 and 64.2% for 

MIT-BIH and SCDH.

Proposed 
Method

MIT-BIH ECG 
Database(26,31)

EPD + 2D-CNN
EPD + 1D-CNN

Cardiac Arrhythmia Recognition
Accuracy: 93.90%, 
Precision: 90.29%, 

Recall: 97.38%, 
F1 score: 0.9317, 

True negative rate: 88.18%.
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been combined to establish a dense heart rhythm model for the automatic classification of 
heartbeats, including normal heartbeats and heartbeats indicating AF. The aforementioned 
BiLSTM model consists of a forward LSTM network and a backward LSTM network, both of 
which use sequence information in the backward (future to past) and forward (past to future) 
directions to extract time-sensitive features of ECG signals. In addition, a multilayered CNN 
with 32, 64, and 128 convolution kernels was used to extract detailed feature patterns for normal 
heartbeats and AF. In one study,(39) tenfold cross-validation was conducted on the 2017 
PhysioNet/CINC Challenge data sets (comprising 8528 single-lead ECG records) to verify the 
“BiLSTM + deep CNN” model, which exhibited the accuracy and F1 score of 89.3% and 0.891, 
respectively, for automatic AF monitoring.(39) When the “R-peak detection algorithm + 1D 
CNN” model was used on the MIT-BIH Arrhythmia Database and Sudden Cardiac Death Holter 
Database for arrhythmia classification (N, L, R, and V),(42) the classification accuracy increased 
from 97.6 to 99.5% and from 80.2 to 88.5%, respectively (Table 3). In addition, the training time 
on these data sets decreased by 67.2 and 64.2%, respectively. However, the aforementioned 
model has a seven-layer structure; thus, it has a complex structure and requires an excessive 
number of feature data sets for its training. The proposed model exhibited promising results in 
automatic cardiac arrhythmia recognition for 423 normal and 577 abnormal heartbeats, with its 
accuracy, precision, and recall exceeding 90.00% for the recognition of abnormal heartbeats.

4.	 Conclusions

	 In this study, the EPD method was combined with a CNN classifier to develop a model for 
the automatic recognition of cardiac arrhythmias. This model uses digital filters to remove 
baseline drift and noise from ECG signals, and it employs the EPD method to extract QRS 
complex waves from time-domain ECG data. The proposed model detects evident electrical 
activities on the basis of appropriate threshold values and then transfers them to 2D or 1D color 
feature patterns. The proposed model was used to classify ECG signals (into the normal, V, A, L, 
R, P, F, and f classes) for cardiac arrhythmia recognition. It exhibited the precision, recall, and 
F1 score of 90.29%, 97.38%, and 0.9317, respectively, for abnormal heartbeat recognition. In 
addition, it achieved an accuracy rate of 93.90% for the recognition of both normal and abnormal 
heartbeats and exhibited a TN rate of 88.18% for the identification of normal heartbeats. On the 
basis of these results, the proposed model has promising results for application in the clinical 
detection of cardiac arrhythmias. The proposed method can accurately extract the feature 
patterns from typical QRS complex waves; however, some special rhythms, such as AFs, atrial 
flutter, and ventricular flutter, are difficult to detect under time-varying and noisy ECG signals 
and heart rates. Thus, for typical classes, the proposed model (“EPD + 2D-CNN” or “WEPD + 
1D-CNN”) has significant results in cardiac arrhythmia recognition.
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