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 We propose a novel framework for environmental sound classification (ESC) to address the 
challenge of insufficient training samples in sound recognition systems for manufacturing 
environments. Because of sample scarcity, traditional systems often perform poorly, so in this 
research, we utilize generative adversarial networks (GANs) to generate virtual sound samples 
and augment existing datasets. The proposed method integrates a robust Bayesian inference 
approach with a modified GAN architecture to generate high-quality synthetic samples, 
particularly for rare events and emergencies on production lines. The framework aims to 
enhance the stability and performance of ESC systems by expanding training data in a controlled 
manner. Experimental results demonstrate the potential of this approach to reduce sample 
collection costs and improve the practical application of ESC technology in manufacturing 
systems. Key aspects discussed include technological innovation, cost-effectiveness, 
implementation challenges, and ethical considerations related to synthetic audio data generation. 
The results of this research will advance ESC’s real-time monitoring and anomaly detection 
capabilities in diverse manufacturing environments.

1. Introduction

 To achieve a smart factory in the fourth industrial revolution manufacturing process, it is 
necessary to transform all equipment into innovative equipment and connect to a centralized 
system for real-time information exchange. Sound can be an effective means of making a device 
smart because of its ability to contain status information from various devices and its ease of 
recording using only a microphone. The sound emitted by the machine on the production line 
often directly reflects its operating status. This reflection may include a specific sound pattern 
produced by the regular operation of the machine, or it may reveal a precursor to an imminent 
malfunction or malfunction of the machine. For example, a particular machine may emit a 
uniform and stable sound when operating normally, but once it encounters a malfunction, the 
frequency or amplitude of the sound may change abnormally. Through in-depth analysis of these 
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subtle sound changes, machine failures can be predicted, and maintenance can be performed in 
advance, thereby saving repair time and reducing production losses. Over the past few decades, 
the monitoring system used on industrial production lines has constantly evolved from initial 
manual control to more advanced automated monitoring systems. However, even with modern 
automated surveillance systems, some limitations remain. Traditional dashboards and 
monitoring systems focus on machine operation data and the production line’s primary status. 
Still, they require a complete understanding of the actual health status of the machine and the 
working status of employees to be effective. As technology rapidly advances, the operation of 
production lines constantly evolves. Traditionally, dashboards and monitoring systems have 
been used to supervise production lines. While these conventional systems currently support 
most production lines among small and medium enterprises and provide basic operational 
information, they need real-time status monitoring. In the current era of information explosion, 
emerging technologies have increased the demand for monitoring production lines in multiple 
industries. Against this setting, production line sound has become a signal source with 
tremendous potential, which can be analyzed using advanced technology for more comprehensive 
and real-time control.
 This study was motivated by the potential value of sound on production lines. Traditionally, 
production line management has mainly relied on dashboards and monitoring systems. Although 
these systems can provide some basic operational information, they need to better reflect the 
real-time status of machines and employees. We can capture more subtle and hidden intelligence 
through unconventional signal sources like sound. The sound emitted by the machine contains 
the state of mechanical movement. Every rattling and turning sound is how the machine 
expresses its operating state. By analyzing these sounds, managers can accurately establish 
models of regular machine operation and abnormal situations, thereby achieving precise control 
of production line operations.
 In this study, we investigated the practical uses of production line sounds, specifically in 
detecting and responding to malfunctions or emergencies. The sounds emitted by machines on 
the production line can provide valuable information about their operating status. These sounds 
may contain distinct patterns of regular operation or indicate signs of machine malfunction or 
impending failure. By carefully analyzing these sounds, we can identify potential problems the 
machines may encounter and perform preventive maintenance to minimize production losses 
caused by machine failure. In modern manufacturing environments, sound monitoring systems 
are increasingly used to monitor equipment and predict failures in real time. For instance, in 
automotive production lines, where precision and uptime are critical, sound monitoring systems 
have been deployed to track the operational sounds of machinery continuously. These systems 
can detect early signs of mechanical wear, misalignment, or malfunction before they lead to 
equipment failure by identifying subtle changes in sound frequency, pitch, or amplitude. For 
example, if a machine’s bearings begin to degrade, the system can recognize deviations from the 
typical sound profile and alert the maintenance team to address the issue proactively. Studies 
have shown that such predictive maintenance strategies can reduce unplanned downtime by as 
much as 25% and improve production efficiency by 15%.
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 Another prominent application is in aerospace manufacturing, where high-precision 
machining is essential. Sound monitoring systems are integrated into the assembly and 
machining processes to detect even the most minor irregularities in machine sounds. These 
systems enable manufacturers to perform predictive maintenance, thus preventing costly delays 
and ensuring the production of high-quality components. For instance, the system can detect 
when a cutting tool is nearing the end of its useful life by recognizing shifts in the sound profile 
caused by tool wear. It allows operators to replace the tool before it fails, avoiding damage to the 
workpiece and costly rework. In electronics manufacturing, where production environments are 
typically noisy and distinguishing specific sound patterns is challenging, sound monitoring 
systems play a key role in maintaining high product quality. By employing advanced 
environmental sound classification (ESC) techniques to filter out background noise and focus on 
the critical operational sounds of machines, these systems enable real-time monitoring of 
equipment performance and help reduce defect rates by the early identification of potential 
issues. Their ability to analyze sound anomalies in real time ensures continuous production flow 
and high product quality.
 By applying sound monitoring systems in these diverse manufacturing scenarios, industries 
can optimize production processes, minimize equipment failure rates, and reduce maintenance 
costs. Not only is the overall production efficiency improved, but the safety and reliability of 
manufacturing operations are also enhanced.
 On a technical level, the development of artificial intelligence and machine learning in recent 
years has provided new possibilities for production line sound analysis. Through deep learning 
technology, we can train models to identify abnormal patterns in machine sounds and quickly 
determine whether there are potential faults. At the same time, emotional analysis of employee 
voices can help us understand the atmosphere of the work site more comprehensively so as to 
take targeted improvement measures. Applying these technologies improves the accuracy of 
supervision and enhances the ability to predict and respond to abnormal situations. In addition, 
sound, as a noninvasive data collection method, is more convenient and cost-effective than other 
sensors. Without additional equipment installation and maintenance, sound monitoring systems 
can be more easily integrated into existing production environments, reducing implementation 
costs.
 Advances in machine learning and deep learning technologies provide new possibilities for 
sound analysis on production lines. By adopting big data and deep neural networks, models can 
be trained to identify anomalies in different sound patterns. This brilliant analysis system can 
improve the accuracy of machine sounds and distinguish the emotions and context in employees’ 
speech, thereby more comprehensively assessing the status of the production line. These 
technological advances make instant monitoring and rapid response more feasible. For example, 
once the system detects an abnormal sound coming from a particular machine, it can 
immediately send an alarm to notify the appropriate personnel for maintenance, thereby 
minimizing production interruption time. The system can also identify unusual language 
patterns in communication between employees, alert managers to possible problems or 
improvement points, and promote more effective team collaboration.
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 The convenience and cost-effectiveness of the sound monitoring system are also crucial 
advantages of this study. Compared with other sensors, such as temperature and pressure 
sensors, sound sensors do not require additional hardware installation, reducing implementation 
costs. This is a relatively low-risk investment for companies upgrading existing production lines 
or introducing new technologies. In addition, the nonintrusive nature of the sound sensing 
system also facilitates employee acceptance. Compared with some monitoring equipment that 
may require large-scale modifications on the production line, deploying sound monitoring 
systems is more straightforward, does not have much impact on existing workflows, and helps 
improve the scalability and sustainability of the system.
 Typically, environmental sounds encompass the auditory elements present in a given setting, 
including natural sounds like wind, water, and birdsong, as well as artificial sounds such as 
traffic, machinery, and urban noise. In this study, we utilize deep learning to analyze production 
line sounds, focusing on identifying and addressing failures or emergencies. The sounds emitted 
by machines on the production line and the vocal cues and emotional expressions among workers 
might hold vital information regarding the state of production operations. Such information is 
rarely readily available, and its direct analysis may be challenging, especially if management 
requires insights provided by sound. In this regard, investigating infrequent emergencies and 
utilizing small-sample machine learning would aid in achieving a more comprehensive 
understanding of extreme situations that may arise on the production line.
 When the amount of collected data is limited, the generative model (GM) can be used to 
create a virtual sample. This approach aims to address the problems that arise owing to the small 
size of the dataset. With the help of a GM, one can successfully overcome the obstacle of limited 
data. The GM generates a synthetic sample that mirrors the original data, resulting in more 
precise analysis and informed decision-making. 
 This study aims to develop a monitoring system that can effectively respond to abnormal 
events on the production line to improve operational efficiency and safety. To overcome the 
challenge of insufficient data on abnormal events, we will advance our development of small-
sample machine learning technology. We focus on constructing a multi-objective environmental 
sound recognition model for the production line. We will begin by reconstructing the transfer 
learning (TL) framework with robust Bayesian inference to develop the model structure. Then, 
we will attempt to establish a small sample data amplification model using a generative 
adversarial network (GAN) and knowledge transfer. The proposed model will recognize 
manufacturing process sounds based on deep TL technology.

2. Literature Reviews

2.1 Application of sound recognition in production lines

 Sound recognition technology is being increasingly applied in production lines to enhance 
automation and efficiency. By utilizing sound information, systems can detect faults in audio 
signaling devices, analyze equipment vibrations and audio data to identify defects, and convert 
analog product data to digital format for recognition. Identifying anomalies within noisy 
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industrial settings also reflects the difficulties encountered in categorizing environmental 
sounds with diverse and unpredictable background noises. Approaches like signal processing 
techniques and machine-learning-based methodologies can be directly employed to elevate the 
precision of  ESC by enhancing noise resilience and feature extraction.(1) It enables the 
development of autonomous production systems that can quickly adapt to changes in production 
environments and product lots, thereby improving the overall approach to maintenance and 
ultimately minimizing periods of inactivity in production due to unexpected equipment 
malfunctions, such as in the automotive and machinery industries.(2) 
 ESC can be improved with signal processing and machine learning techniques that enhance 
noise resilience and feature extraction. Deep learning techniques, such as long short-term 
memory (LSTM) models and GANs, can be applied to classify environmental sounds, especially 
in processing intricate and temporal sound sequences.(3) Diverse and inclusive datasets that 
accurately represent the nuances and complexities of environmental sound data play a significant 
role in the research on  ESC. To ensure that models in this field can generalize effectively, it is 
absolutely crucial to employ creative data augmentation techniques. With the proper 
implementation of these techniques, models can be trained to recognize and adapt to a wider 
range of scenarios, leading to more accurate and effective results overall. 
 The advancement and improvement of highly reliable tool condition monitoring (TCM) 
systems play a vital role in enhancing the longevity of tools used in various industrial processes, 
thereby significantly contributing to the optimization of tool life span, and in turn, leads to the 
assurance of high-quality workpiece output, meeting manufacturers’ stringent standards and 
requirements across different sectors. Moreover, implementing such advanced TCM systems 
also plays a crucial role in effectively managing costs associated with tool maintenance and 
replacements, ultimately aiding manufacturers in maintaining a competitive edge in the market. 
Emphasizing the importance of integrating sustainable manufacturing technology into 
production processes demonstrates a commitment to reducing environmental impact. This 
aligns with the collective worldwide initiatives to improve environmental conservation and 
mitigate the effects of energy and resource scarcity. By prioritizing sustainable manufacturing 
practices, companies contribute to advancing a more ecologically balanced and socially 
responsible global economy, thereby fostering long-term sustainability and resilience.(4) The 
exploration of sound signal processing for TCM in high-end manufacturing industries, 
particularly in sectors like aerospace, showcases the promising potential for enhancing the 
overall quality of machining processes involved in producing high-value components. This 
utilization of sound signal processing allows for real-time monitoring and analysis of tool 
conditions. It opens avenues for the further implementation of advanced techniques to optimize 
manufacturing operations and ensure the final products’ precision and reliability.(4) 
 With artificial neural networks and machine learning techniques, sound recognition systems 
can accurately classify faulty devices, improve detection accuracy, and optimize production 
processes. Overall, the integration of sound recognition in production lines offers a reliable and 
efficient method for quality control and process optimization. 
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2.2	 Challenges	of	insufficient	data	in	ESC

 ESC faces a significant challenge when dealing with insufficient labeled data, which is 
common in many real-world scenarios. In manufacturing environments, it is often challenging 
to capture comprehensive datasets because many critical sound events, such as machine 
breakdowns or rare failures, occur infrequently. Traditional ESC systems rely heavily on large, 
labeled datasets for high accuracy. However, obtaining a balanced dataset that covers all 
potential sound categories in production lines is costly and time-consuming. As a result, these 
systems often need help with generalization and exhibit poor performance when detecting rare 
but critical sound events.
 Several approaches have been proposed to address the data scarcity problem in ESC. One 
traditional method is data augmentation, which involves artificially increasing the size of the 
training dataset through techniques such as noise addition, time stretching, pitch shifting, and 
other transformations. These methods can help mitigate the lack of training data but are limited 
when generating novel sound patterns, especially for those of rare sound events crucial in 
industrial environments.(3) In recent research, TL, where pretrained models on similar tasks are 
fine-tuned for ESC, has also been explored. This approach leverages knowledge from larger, 
related datasets, allowing ESC models to perform better with limited data.(2)

 More advanced techniques for addressing insufficient data in ESC involve using GMs. For 
example, GANs have been successfully applied to generate synthetic sound data that can 
augment real datasets. GANs can create realistic, high-quality sound samples that mimic rare 
events, enabling ESC systems to improve their performance even when the available real-world 
data is limited.(1) These synthetic samples expand the training dataset and enhance the model’s 
ability to generalize across different sound categories, especially in highly variable environments 
such as industrial production lines.
 Despite these advancements, insufficient data in ESC remains a critical issue that requires 
further exploration. Traditional methods of addressing data scarcity have limitations, and the 
integration of GMs like GANs presents a promising alternative that could revolutionize how 
ESC systems handle sparse and unbalanced datasets. In the following sections, we build on this 
recent work by integrating GANs with Bayesian inference to generate virtual samples for sound 
classification, further advancing the field of ESC in manufacturing environments.

2.3 Virtual sample generation in manufacturing

 Virtual sample generation (VSG) provides an alternative solution to addressing the challenges 
of small datasets and insufficient training samples. It enhances machine learning models by 
generating additional training samples, addressing the challenge of small datasets, and 
improving model performance.(5–7) Synthetic data is artificially generated data designed to 
closely resemble real-world data and enhances the precision and reliability of predictive models. 
Creating virtual datasets involves sophisticated methods such as manipulating sample 
distributions and integrating background elements to replicate real-life manufacturing settings. 
This meticulous approach is a robust foundation for training machine learning models.(1,8)
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 The core concept of VSG suggests that integrating information diffusion and fuzzy theory 
with VSG methods offers robust solutions for pattern recognition in scenarios with limited 
training samples. However, the quality of samples generated through VSG is affected by 
complicated learning tasks and the growing size of the virtual samples. Advanced GAN 
architectures play the role of gatekeeper in monitoring the sample qualities. Integrating VSG 
techniques, including advanced GAN architectures, into manufacturing processes supports 
rapid decision-making and addresses the limitations posed by small sample sizes. Successive 
application of deep learning tools is now feasible owing to significant innovations in VSG, 
particularly GANs with refinements like WGANMTD. These aim to produce high-quality 
virtual samples for numerical datasets.(9) These innovations in VSG and GANs have potential 
applications in manufacturing, where they can support rapid decision-making and address the 
small-sample problem, enhancing decision-support systems.
 Performance improvements in monitoring systems using virtual datasets demonstrate the 
effectiveness of VSG, with significant accuracy gains in detecting operational states of 
manufacturing equipment. New approaches in video-style transfer, such as the dual-VSG 
method, have shown promising results by combining nonlinear interpolation with a self-
supervised learning framework. Additionally, the use of advanced GAN architectures has 
demonstrated the potential of video-style transfer to revolutionize decision-making processes in 
manufacturing by addressing the limitations posed by small sample sizes.(10,11)

 Various methods of VSGs, such as the Newton-VSG and GANs, generate virtual samples for 
small datasets with nonlinear and asymmetric distributions.(12) These techniques help improve 
learning performance, especially when traditional models struggle to generalize complex 
datasets or the assumed distribution is not elastic enough for small datasets. By leveraging VSG, 
manufacturing processes can benefit from enhanced training processes, improved prediction 
accuracy, and better decision-making based on limited data.

3. Methodology

3.1 TL framework with robust Bayesian inference 

 TL improves the model’s performance by applying knowledge learned on one task to another 
related task. The core concept is the improvement process for new learning tasks using the 
learned data characteristics and knowledge. Thus, the learning model can be more generalized 
and become adaptable. In mathematics, TL means that the relationship of a mapping function, 
Xs → Ys, can explain another mapping function Xt → Yt. In other words, ( )s T sY f X=  learned on 
the basis of {Xs, Ys} will still be valid for explaining {Xt, Yt} so that the mapping relationship, 

( )t T tY f X= , can be established, where {Xs, Ys} can be regarded as known data characteristics 
and fT learned knowledge. The inference-like operation reflects the purpose that TL leverages 
the given data to estimate the unknown relationship. Therefore, TL can efficiently reduce the 
need for a large amount of training data and solve the problem of insufficient training data when 
handling small-sample learning. 
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 Let  denote the data population, where Xs and Xt are subsets of . For a learning task  , 
which is defined by the user and not necessarily related to , the purpose of model establishment 
is to find a functional relationship, ( )TY f X= , from the existing dataset, {X, Y}, to approximate 

( )Y f X=  , where ( )Y f X=   is the unknown and ideal function, which does not really exist 
and can only be found by estimation, ( )TY f X= . A deep TL model develops fT, a deep neural 
network with heavy computing of a nonlinear function for approximating f .
 In terms of sound recognition, Xs can be regarded as the data collected on site, such as 
voiceprint, sound intensity, temperature, humidity, time and other observed values, 
Xs = {x1, x2, ... xn}, that is, the environmental dataset X that can be described by n features. Ys  is 
the sound category, such as the state of each machine (e.g., starting sound, running sound, 
deceleration sound, stopping sound, emergency stop sound, fault buzzer of machine No. 1, and 
starting sound of machine No. 2), the voice of the staff (smooth or impatient), the sound of 
feeding, workpiece placement, and transport on the conveyor belt. That is, Ys = {y1, y2, ... ym}, 
where yi represents the ith defined sound among m categories. The user can expand {X, Y} to 
describe the surrounding environment in detail, and {X, Y} is subject to user definition. When 
the entire production condition changes, such as the addition of new machines to the operation, 
replanning of production lines, and power outages, the feature set X and the category set Y also 
vary their coverages. That is, X would be expanded to { } { }1 1, , , ,  s t n n n kX X x x x x+ +=   , and Y 
stored as sound categories could also be expanded to { } { }1 1, , , ,  s t m m m lY Y y y y y+ +=   . The TL 
mechanism establishes ( )t T tY f X=  based on ( )TY f X=  and its corresponding {Xs, Ys} to 
estimate ( )t tY f X=   when {Xt, Yt} is appended to the present dataset.
 Since fT is the estimator of f , we considered an operable parameter θ to be introduced into 
fT for better approximating the unknown f , that is, fT can be expressed in the form of fT (∙|θ). 
The operable parameter θ mentioned above does not refer to the population parameters, nor is it 
derived from the original dataset. θ, which is operable, can generally refer to the adjustment 
parameters involved in conducting learning tasks. For example, in nonlinear functions of deep 
network architectures (CNN, GAN), θ could be the weights, learning rates, or other parameters 
in the network architecture. However, the unknown parameters θ can be estimated using the 
collected data. Therefore, in this study, we integrate the concept of robust Bayesian inference 
into the TL framework and propose a deep TL framework based on robust Bayesian inference. 
As Eq. (1) shows, we proposed fT (Xt|θ) to approximate f , where θ can be formulated as a 
function of Xs, that is, ( )| sXθ θ=  . 

 ( )|t T tY f X θ=  (1)

3.2 Membership function family of robust Bayesian inference

 Emergency situations on the production line may not arise often, but they may cause heavy 
losses each time because “no one knows it will happen.” It can also be attributed to the fact that 
underlying characteristics inside the coming { }1,  n n kx x+ +  have not been observed, resulting in 
the inability to propose corresponding and reference measures. In the context of limited 
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( )Ty f x= , we often fail to obtain robust learning results. TL has limitations when applying the 
learned knowledge to a new and independent dataset. Therefore, in addition to developing robust 
Bayesian inference as a deep TL framework as mentioned above, we further integrate a small-
sample-data augmentation model into it. 
 In the previous MTD (Mega-Trend-Diffusion) research,(13) the architecture for integrating 
robust Bayesian inference with GAN was developed, and a membership function based on 
robust Bayesian inference was proposed for data augmentation. In this study, we further improve 
and refine the membership function for summarizing a membership function family and for 
developing an algorithm to build a small dataset augmentation model based on the deep TL 
framework.
 When developing priori distribution parameter estimation for nonlinear distribution, we 
considered the Weibull distribution density function as a flexible function family for modeling 
the fuzzy distribution of small sample data. The shape of Weibull density is elastic and suitable 
for describing the spread of nonlinear and asymmetric distribution data. It has good adaptability 
for fitting the priori distribution of robust Bayesian inference. The general form of Weibull 
density has three parameters, which determine the appearance shape parameter (β), the scale 
parameter (λ), and the data threshold parameter (γ) of the distribution function. When the 
threshold parameter is zero (γ = 0), it degenerates into a two-parameter Weibull distribution, that 
is, the Weibull distribution for nonnegative random variables. The probability density function 
of the general Weibull distribution is defined as

 ( ) ( ) ( )( ) ( )( )1 /, , , / / ,, 0, 0,xf x x e x
ββ β λβ λ γ β λ β λ γ β λ− − −= − ≥ > >  (2)

where data x must be greater than or equal to the threshold parameter γ, and the shape parameter 
β and scale parameter λ are real numbers greater than 0.
 For the augmentation of virtual samples and based on the previously proposed WGAN_
MTD2, we introduced the priori distribution function q into the three-parameter Weibull 
density, considering a contaminated parameter ε, where ε is between 0 and 1. The contaminated 
parameter ε can be regarded as the interference term used to control the preset q proportion of 
influence on the entire membership function. Therefore, the membership function family that 
defines robust Bayesian inference has the following complete form:

 ( ) ( ) ( ){ }01 | , where | , , ,MF MF q q Q f f xε θ λ ε γ λ β= − + ∈ = . (3)

 The results of the previous research(9) suggest a symmetric Gaussian priori distribution for 
unimodal and symmetric data distribution situations. However, in a small dataset, it is difficult 
to determine its kurtosis and whether it is symmetrical from the data dispersion. In view of this, 
we introduced the density function of the three-parameter Weibull distribution, f(x, γ, λ, β), 
which can cover more types of data, including multimodal, asymmetry, and discretized data 
distributions. For the univariate case with consideration of a single variable x, the membership 
function of its robust Bayesian inference can be presented as 
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In Eq. (4), LB and UB are, respectively, the possible lower and upper bounds of the data 
distribution of a single variable x, where CL respresents the center points of the data distribution. 
Therefore, the membership function of robust Bayesian inference is a linear combination of two 
functions, MF0 and f, as shown in Fig. 1. Then the Weibull density would be more suitable and 
flexible for modeling various data distributions than the Gaussian-based function. The user only 
needs to adjust the weights of MF0 and f separately for different data patterns. Through ε 
parameter intervention, the calculation of MF does not fully rely on MF0 computed from the 
patterns presented by small datasets, but also considers the subjective information partially 
from f.

3.3	 VSG	through	the	modified	GANs	with	cooperating	robust	Bayesian	inference	(RBI)

 In this study, we adopted GANs to control the quality of the generated virtual sample to 
confirm that the generation will not output a dataset that differs too much from the original data. 
GAN is used for comparison to make the generated virtual samples closer to the real data. We 
adopted GANs to control the quality of the generated virtual sample and confirmed that the 
generation does not output a dataset that differs too much from the original data. GAN is used 
for comparison to make the generated virtual samples closer to the real data. In the past 
research,(14) GAN simulation generation has achieved adequate performance when producing 
new samples following the target dataset. However, when inputting the small-size training 

Fig. 1. (Color online) Membership function of robust Bayesian inference. LB and UB are, respectively, the possible 
lower and upper bounds of the data distribution of a single variable x, where CL respresents the center points of the 
data distribution. The membership of robust Bayesian inference is a linear combination of two functions, MF0 and f.



Sensors and Materials, Vol. 36, No. 11 (2024) 4791

datasets to GAN, the population knowledge base of the given small dataset is not sufficient to 
generate virtual samples, and the phenomenon of overfitting would occur, as anticipated. 
 In this study, we considered the framework of WGAN-GP(15) as the guide for generating 
virtual samples with several modifications. The difference is that the original WGAN-GP 
samples from Gaussian distribution or uniform distribution were the input of the generator G, 
while for the model proposed in our study, |MFX , developed as mentioned above, was adopted as 
the input of G. As shown in Fig. 2, the existing small sample dataset Xs is used as the input of the 
discriminator D to compare the virtual sample generated by the generator G, and then through 
the gradient penalty (GP) weight update, the final generated virtual samples possessed 
acceptable quality similar to that of the original data. The modified WGAN-GP algorithm 
mainly replaces the input of the generator G with |MFX . In the GP section, adding the loss 
function, ( ) ( ) ( )( )2ˆ 2 1xL D x D x D xω ω ωδ= − + ∇ −  , as a penalty term would help accelerate 
meeting the convergence conditions. Therefore, the concept of the modified algorithm can be 
described by the pseudocode shown in Fig. 3.
 Before implementing the algorithm, its initial settings require a given gradient penalty 
coefficient (δ), the number of iterations needed to identify that a virtual dataset has been 
generated (dcirtic), and the batch size (b) of virtual samples to be generated. The network training 
process adopts Adam as the optimization function for updating weights iteratively. It requires the 
initialization of the Adam function and network parameters, including starting weights α0 (for 
the Adam function), ω0 (for the D network), and υ0 (for the G network).
 To address the challenge of insufficient data in ESC, our approach integrates GANs with 
Bayesian inference. This combination allows us to generate high-quality synthetic sound 
samples that effectively augment the limited real-world datasets used for training ESC models. 
Below, we outline the step-by-step operational mechanics of this method and how it addresses 
the core challenges of sound sample generation. The process begins with Bayesian inference, 
which provides a statistical framework for estimating the priori distribution of different sound 

Fig. 2. (Color online) We considered the framework of WGAN-GP(14) as the guide for generating virtual samples 
with several modifications. The main difference is that our proposed model adopted  X |MF as the input of G.



4792 Sensors and Materials, Vol. 36, No. 11 (2024)

categories. In a manufacturing environment, where certain sounds (e.g., machine breakdown) 
are rare, Bayesian inference enables us to model these events using available data to establish 
reasonable probability distributions. These priori distributions are crucial in guiding the 
generation of synthetic samples and ensuring that the generated sounds are realistic and reflect 
the likelihood of rare events that are under-represented in the original dataset. Once the priori 
distributions are established, these are fed into the GAN architecture. The GAN consists of two 
neural networks: the generator and the discriminator. The generator takes the priori distributions 
and uses them as input to create synthetic sound samples. During this process, the generator 
iteratively produces new sound samples that the discriminator then evaluates. The discriminator’s 
role is to distinguish between accurate sound data and synthetic samples generated by the GAN. 
Through this adversarial training process, the generator learns to produce increasingly realistic 
sound samples that mimic the characteristics of real-world data.
 Integrating Bayesian inference into the GAN framework is crucial in ensuring that the 
generated samples are relevant to the specific sound classification task. By using Bayesian 
priors, we avoid the issue of generating random or irrelevant samples. Instead, the synthetic data 
is tailored to the sounds most critical to the ESC system’s performance, such as sounds that 
indicate malfunctions or unusual events in a production line. This focused approach improves 
the quality of the generated samples and ensures that the augmented dataset is diverse enough to 
cover rare and essential events. Additionally, a gradient penalty (WGAN-GP) is applied during 
the training process to prevent the GAN from generating overfitted or low-quality samples. This 
regularization technique stabilizes the learning process by constraining the model’s gradients, 
ensuring that the synthetic samples remain within a realistic range and that the generator does 
not overfit the training data. This combined approach of using Bayesian inference with GANs 
allows for the creation of a robust dataset that addresses the problem of insufficient data in ESC. 

Fig. 3. Pseudocode of WGAN-GP with X |MF input for its generator G.
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The ESC system can better recognize rare or complex sound events as a result of generating 
synthetic samples that closely resemble real-world sounds, thus improving the overall 
classification accuracy and reliability.
 In real-world industrial applications, handling large datasets efficiently is crucial for any 
sound classification framework. The proposed GM integrated with the diffusion technique is 
designed with scalability in mind. One of the framework’s key features is its ability to scale 
seamlessly to accommodate increasing amounts of data without significant computational 
bottlenecks. The GAN-based VSG method is computationally efficient and capable of generating 
large datasets from small amounts of initial sound data. It allows the system to augment datasets 
dynamically, improving model performance without requiring extensive real-world data 
collection. 
 The framework can be adapted for parallel and distributed computing architectures to 
enhance scalability further. By distributing the computational load across multiple processors or 
machines, the system can handle large volumes of sound data, such as those collected in large-
scale production environments or across multiple manufacturing sites. Additionally, the model’s 
architecture allows for batch processing of sound data, ensuring that the generation and 
classification tasks can be performed simultaneously with reduced processing times and 
improved real-time application feasibility. Another factor that ensures scalability is using CNNs 
for the classification task. CNNs are well known for their ability to process high-dimensional 
data efficiently. In our system, CNNs handle the input spectrograms generated from the sound 
data, leveraging their shared-weight architecture to minimize computational costs while 
maximizing feature extraction performance. As a result, the framework can maintain high 
classification accuracy even as the dataset size increases.

4.	 Experimental	Studies

 Figure 4 shows the flowchart of model verification with the production line scenario.

4.1 Audio data collection and data labeling

 On-site information is collected individually within each of the four main production line 
layouts: functional, product, fixed, and modular. Different production lines represent different 
manufacturing industries, so the training materials must be extended to as many small- and 
medium-sized enterprises as possible. In addition to helping managers understand the current 
situations of the production line, on-site sound monitoring also helps managers make quicker 
decisions on emergency response. For infrequent emergencies and more common emergencies, 
it is necessary to discuss with on-site personnel to clarify and define normal and abnormal 
situations. 
 The sounds of the factory environment, operators, machines, and pieces of equipment can 
each be subdivided into different types that represent different physical meanings. Therefore, 
sound data labeling must be carried out after the audio data is collected, especially for labeling 
audio data in emergencies. Since various on-site operators or management cadres can provide 



4794 Sensors and Materials, Vol. 36, No. 11 (2024)

relevant information and the emergency definition varies from factory to factory and for each 
machine, discussions with on-site personnel are needed to establish clear label definitions.
 In the experimental study, we collected sound datasets from a production line consisting of 
two machines and two operators. To easily identify them, we labeled the datasets as Machine 1, 
Machine 2, Operator 1, and Operator 2. For example, “Machine 1” refers to the sound dataset 
collected from the first machine, and so on.

4.2	 VSG

 In establishing a small sample data augmentation model based on the aforementioned deep 
TL framework, the test data is used for interactive verification in advance, and the quality of the 
amplified samples is compared to grasp the optimal range of each parameter setting before 
entering the actual production line. When facing various unbalanced datasets, the gap in the 
amount of data between categories is more serious. This is due to differences in the data 
collection time range and the frequency of events. Therefore, through on-site inspections, 
parameters are further adjusted, including robust Bayesian inference parameters, (γ, λ, β), as 
well as the relevant parameters δ of the WGAN-GP algorithm shown in Fig. 3, such as dcritic and 
b, making the virtual sample generator more general. 
 Concerning the differences among each dataset, we increased the number of virtual samples 
generated incrementally to observe the impact on accuracy. Our aim was to carefully investigate 
how the incremental increase in virtual samples influenced the overall accuracy of the dataset. 
We systematically appended five virtual samples to join the training set each time for the same 
ESC models to investigate the changing accuracies.
 As shown in Table 1, the first column lists the sizes of various training sets and the first row 
indicates the learning accuracies of the original (training) datasets comprising five data values 
each for four datasets: Machine 1, Machine 2, Operator 1, and Operator 2. It shows differences 
among various datasets since the accuracies vary from 47.8% to 91.2%. With each increase of 
five virtual samples, starting from 15 virtual samples, we made the training set with sizes from 
20 to 65, which means the virtual sample size increased from 15 to 60.  

Fig. 4. (Color online) Flowchart of model verification with the production line scenario.



Sensors and Materials, Vol. 36, No. 11 (2024) 4795

4.3 Deep network training and tuning

 We adopted CNNs as a learning tool for sound recognition in production environments. It 
was tested in production lines to better grasp the optimal values of starting parameter settings to 
improve recognition accuracy and practical usability. 
 Table 1 shows the averaged learning accuracies for five sound datasets with different sizes of 
training sets: Machine 1, Machine 2, Machine 3, Operator 1, and Operator 2. The training set 
size increases from 5 to 65, and the number within the parentheses indicates the virtual sample 
size. The training data set from Machine 1 increased by 16.4%, the training set of Machine 2 
increased by 5.2%, the training set of Operator 1 increased by 6%, and the training set of 
Operator 2 increased by 8.6%. For each dataset, we marked the highest learning accuracy in red. 
The highest learning accuracies were obtained with different training sets. For Machine 1, the 
highest accuracy occurs with a training set of size 30, while the highest accuracy occurs with a 
training set of size 55 for Machine 2. In the cases of Operator 1 and Operator 2, the highest 
accuracies occur with the sizes of 40 and 30, respectively. The overall improvement is greatly 
improved compared with the five original samples. According to our verification and analysis, 
we found that using GAN to generate samples is of significant help to the ESC model with low 
accuracy due to an insufficient sample number, and the effect will be more obvious for cases 
with lower original accuracy. The size of the virtual sample is a key factor in the accuracy of the 
ESC model. Blindly increasing the number of GANs does not cause a continuous rise in 
accuracy.
 A critical factor in evaluating the effectiveness of any ESC system is its ability to generalize 
across different manufacturing environments. We tested the system on various industrial 
soundscape datasets to evaluate the model’s generalizability. For example, the system was 
exposed to various sounds in automotive production lines, including machine operations, 
conveyor belts, and welding sounds. The system successfully identified early signs of equipment 
wear and malfunctions in these environments, demonstrating its ability to adapt to the high-

Table 1
Averaged learning accuracies for five sound datasets with different sizes of training sets: Machine 1, Machine 
2, Machine 3, Operator 1, and Operator 2. The training set size increases from 5 to 65; the number within the 
parentheses indicates the virtual sample size.
Training set size 
(virtual sample size) Machine 1 (%) Machine 2 (%) Operator 1 (%) Operator 2 (%) Machine 3 (%)

5 (0) 47.8 89.4 91.2 63.8 50.7
20 (15) 56.2 87.6 85 70.6 51.9
25 (20) 63.4 87.8 88.2 61.4 56.7
30 (25) 64.2 88.6 92 72.4 63.4
35 (30) 46.4 90 91.2 51.8 66.7
40 (35) 53.8 93 97.2 61.2 68.3
45 (40) 63 91.8 88 71.8 75.1
50 (45) 51.4 87.4 86.8 69.4 74.8
55 (50) 59.6 94.6 92 68.8 70.9
60 (55) 61.8 92.8 91.6 67.6 69.3
65 (60) 47.4 88.4 87.8 40.6 65.5
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noise, high-variability environment typical of the automotive sector. The system was also tested 
on the more delicate, less noisy environments, such as assembly lines for small components, of 
the electronics manufacturing industry. In these scenarios, the system was able to filter out 
background noise and focus on the critical operational sounds of machines, such as soldering 
stations and robotic arms. These results demonstrated the model’s flexibility in handling both 
high-noise and low-noise environments, confirming its generalizability.
 Integrating GANs and Bayesian inference is vital in enhancing the model’s generalizability. 
The GANs allow the system to generate synthetic sound samples tailored to each specific 
environment, thereby augmenting the dataset with relevant training data. This ensures that the 
model can handle varying sound conditions, even when the availability of real-world data from a 
particular environment is limited. By leveraging the virtual data, the system can improve its 
classification accuracy and reliability across different industrial settings.

5. Conclusions

 In this study, we proposed a new framework of the ESC model that can be applied to handle 
the model training challenges of sound recognition systems when insufficient samples are 
available. Traditional systems often perform poorly owing to the scarcity of samples, so we used 
GAN to generate virtual sound samples to improve model performance. The research methods 
included using GANs to generate artificial sound samples and integrating them with existing 
datasets to expand training materials, with the aim of enhancing the stability and performance of 
ESC systems. The research results demonstrated the potential of GAN in expanding training 
data, which may reduce sample collection costs and improve the practical application of ESC 
technology in manufacturing systems. 
 The application of GAN in ESC represents a novel technological application. This method 
can generate high-quality virtual samples (synthetic sound data) and simulate the operating 
environment of various production lines. This diversity can make the training process and 
results of the ESC model more robust and general. For example, it can help the system better 
identify different types of machines or sounds in various noisy environments, thus greatly 
improving its practicality and applicability. The traditional voiceprint data collection process is 
often time-consuming, laborious, and costly, especially when many diverse samples are 
required. GAN technology can significantly reduce these costs. Enterprises can use limited real 
data to generate many high-quality virtual samples, thereby greatly saving human and financial 
resources. This would accelerate the product development cycle and allow small- and medium-
sized enterprises to develop high-performance ESC systems, thus promoting innovation and 
competition in the entire industry.
 Although GAN technology has broad prospects, its practical application still faces challenges. 
The primary issue is ensuring the quality and diversity of the generated samples. Samples that 
are too similar or of poor quality can cause model overfitting or degraded performance. Another 
challenge is balancing the proportion of real data and virtual samples. Over-reliance on virtual 
samples can lead to poorly performing models with overfitting issues in real-world scenarios. In 
addition, effective methods need to be developed to evaluate and verify the reliability of 
synthetic samples to ensure that they improve model performance rather than introducing bias.
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 Using GANs to generate virtual samples of sound data involves complicated ethical issues. 
The first is the issue of privacy: in addition to environmental sounds such as production line 
machines, the sources of virtual sound generated in this experiment also include the operators’ 
voices. If the virtual samples generated are too close to the voices of real individuals, they may 
be abused for fraud or identity purposes. Secondly, there is the issue of informed consent: the 
original sound samples used to train GAN must be used with full authorization. Potential 
discrimination issues must be considered, such as ensuring that the generated sample does not 
reinforce or amplify existing gender, racial, or other biases. Therefore, researchers and 
businesses need to develop strict ethical guidelines and legal frameworks to regulate the use of 
this technology, protect individual privacy, and prevent possible misuse. 
 The decision to use CNNs as the primary learning strategy for this study was based on their 
proven effectiveness in analyzing audio data represented as spectrograms, which can be viewed 
as two-dimensional images. CNNs have demonstrated strong performance in pattern recognition 
tasks, particularly when spatial hierarchies of features need to be extracted, which is highly 
applicable to sound data. In the context of ESC, sound signals are typically transformed into 
spectrograms before being fed into the model. The spatial arrangement of frequencies and their 
intensity over time is well suited to the ability of CNNs to capture local and global patterns in 
the data. CNNs excel at learning from visual representations of sound, such as Mel-
spectrograms, where the structure of the sound is preserved in a form similar to an image. It 
allows CNNs to detect critical features like frequency shifts, harmonic patterns, and transient 
sound changes—elements crucial for identifying environmental sounds in manufacturing 
processes. Additionally, the shared-weight architecture and convolutional layers of CNNs make 
them computationally efficient, which is essential when processing large datasets or when real-
time classification is required, as is the case in many industrial settings.
 Other learning strategies, such as recurrent neural networks (RNNs) or LSTM networks, 
were considered but ultimately not chosen for several reasons. While RNNs and LSTMs are 
often used for sequential data like audio, they are generally more suited to tasks where temporal 
dependences are paramount, such as speech recognition or natural language processing. In ESC, 
where the goal is to classify distinct sounds rather than to process sequential speech data, CNNs 
have proven more efficient and accurate in recognizing spatial patterns across spectrograms. 
Furthermore, RNNs and LSTMs typically require more computational resources and training 
time, making them less suitable for real-time monitoring in manufacturing environments. 
Moreover, recent studies have shown that CNNs outperform RNN-based models in tasks 
involving environmental sound classification owing to their ability to handle the high-
dimensionality of sound spectrograms.(3) The ability of CNNs to perform automatic feature 
extraction without the need for extensive preprocessing is another advantage, as it reduces the 
complexity of the model training process and makes CNNs more robust for generalization to 
unseen sound data. On the basis of these considerations, CNNs were selected as the most 
appropriate learning strategy in this study.
 The research results can help further chip development of deep learning networks. A system-
on-chip (SoC) is a microcomputer that integrates a central processing unit, memory, timer/
counter, and various input and output interfaces on an integrated circuit chip. Compared with the 
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general-purpose CPU used in personal computers, the biggest advantage is that it is small and 
saves costs. A SoC can be placed inside an instrument with limited storage. The input and output 
interfaces are simple, but the functions that can be implemented are also more specific. In recent 
years, with the evolution of artificial intelligence and the popularization of deep learning, the 
design of AI single chips for various field applications has begun to be widely discussed. 
Regardless of the application, all AI chips can be defined as specifically designed to run machine 
learning work. Integrated circuits are designed for loads that are processed in a manner similar 
to how the human brain functions, and they process decisions and tasks in a complex and rapidly 
changing world. A single chip has a small storage space and a simple input and output interface. 
These limitations may be insufficient when dealing with large amounts of data and complex 
calculations. The calculation of WGAN-GP must consume power, and the large amounts of data 
generated requires storage space. Low power consumption and low-calculation-intensive chip 
operation become important in this case. This may involve optimizing the chip architecture to 
ensure the efficient management of energy and computing resources when handling complex 
calculations. At the same time, since WGAN-GP may require large amounts of data and storage 
space, this is another aspect that needs to be considered in chip design.
 In this study, the above issues present the challenges of balancing SoC microprocessors and 
WGAN-GP, which requires trade-offs between energy conservation, computational 
performance, and storage requirements. The design has two important features: low power 
consumption and low-computing-intensive chip operation. However, storage space is another 
challenge for real-time calculation and identification of live sound data. In the future study, we 
will cooperate with experts and scholars from electrical engineering and information 
engineering to engage in SoC development of deep learning networks with low power 
consumption, low computing intensity, and high response speed. The deep learning network, 
shown in Fig. 4, could be an architectural blueprint for proposing a new type of deep learning 
chip design in the manufacturing process sound recognition model based on TL technology. 
Synthetic sound data generated from virtual samples enhances sensor performance by providing 
additional training samples for machine learning models, which improves their ability to 
recognize and classify various environmental sounds. In our research, we leverage advanced 
techniques like GMs and diffusion methods to create virtual sound samples that closely resemble 
real-world data. This process improves the accuracy and reliability of predictive models, thereby 
improving sensor performance. By generating diverse and inclusive datasets through synthetic 
data, users can train sensors to recognize a broader range of sound scenarios. This leads to more 
effective and accurate results in sound classification tasks, making the technology more reliable 
and applicable in various real-world situations. Integrating synthetic sound data with existing 
datasets expands the training materials available for sensors, ultimately enhancing their stability 
and overall performance in sound recognition systems.

Acknowledgments

 This study is partially supported by the National Science and Technology Council, Taiwan
(grant contract no. NSTC 112-2221-E-167-032-MY2).



Sensors and Materials, Vol. 36, No. 11 (2024) 4799

References

 1 Y. Tagawa, R. Maskeliūnas, and R. Damaševičius: Electronics 10 (2021) 2329. https://doi.org/10.3390/
electronics10192329

 2 R. Espinosa, H. Ponce, and S. Gutiérrez: Appl. Soft Comput. 108 (2021) 107465. https://doi.org/10.1016/j.
asoc.2021.107465

 3 P. Becker, C. Roth, A. Roennau, and R. Dillmann: 2020 IEEE 7th Int. Conf. Industrial Engineering and 
Applications (ICIEA, 2020) 921. https://doi.org/10.1109/ICIEA49774.2020.9102002

 4 K. Guo and J. Sun: Mech. Syst. Signal Process. 157 (2021) 107738. https://doi.org/10.1016/j.ymssp.2021.107738
 5 D.-C. Li, S.-C. Chen, Y.-S. Lin, and K.-C. Huang: Appl. Sci. 11 (2021) 10823. https://doi.org/10.3390/

app112210823
 6 L. Shen and Q. Qian: Comput. Mater. Sci. 211 (2022) 111475. https://doi.org/10.1016/j.commatsci.2022.111475
 7 X. Zhong and H. Ban: Ann. Nucl. Energy 175 (2022) 109201. https://doi.org/https://doi.org/10.1016/j.

anucene.2022.109201
 8 J. Kim, H. Lee, S. Jeong, and S.-H. Ahn: J. Manuf. Syst. 58 (2021) 431. https://doi.org/10.1016/j.jmsy.2020.12.020
 9 Y.-S. Lin, L.-S. Lin, and C.-C. Chen: Symmetry 14 (2022) 339. https://doi.org/10.3390/sym14020339
 10 L. S. Lin, Y. S. Lin, D. C. Li, and Y. H. Liu: Decis. Support Syst. 172 (2023) 10. https://doi.org/https://doi.

org/10.1016/j.dss.2023.113996
 11 L. S. Lin, Y. S. Lin, D. C. Li, and Y. T. Chen: Appl. Soft Comput. 143 (2023) 20. https://doi.org/10.1016/j.

asoc.2023.110406
 12 L.-S. Lin, Y.-S. Lin, and D.-C. Li: Neurocomputing 548 (2023) 126408. https://doi.org/10.1016/j.

neucom.2023.126408
 13 X. Yu, Y. He, Y. Xu, and Q. Zhu: J. Phys. Conf. Ser. 1325 (2019) 012079. https://doi.org/10.1088/1742-

6596/1325/1/012079
 14 Y.-S. Lin, M.-L. Huang, D.-C. Li, and J.-Y. Yang: Sens. Mater. 36 (2024) 2439. https://doi.org/10.18494/

SAM4780
 15 I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville: Adv. Neural Inf. Process. Syst. 30 

(2017). https://doi.org/10.48550/arXiv.1704.00028

About the Authors

 Yao-San	 Lin is an associate professor of the Department of Industrial 
Engineering and Management at National Chin-Yi University of Technology, 
Taiwan, and has taught statistical analysis, information management, and 
machine learning for many years. In his past ten years of research, he has won 
the IEEE Best Paper Award (2019 and 2013), and his research results have 
been published in international academic journals: Applied Soft Computing, 
Decision Support Systems, Neurocomputing, European Journal of Operational 
Research, International Journal of Production Research, Computers & 
Operations Research, and Expert Systems with Applications. His current 
research interests are mainly in the fields of manufacturing and natural 
language processing. (yslin@ncut.edu.tw)

 Mei-Ling Huang received her M.S. and Ph.D. degrees in industrial 
engineering from the University of Wisconsin–Madison and National Chiao 
Tung University, respectively. Currently, she is affiliated with the Department 
of Industrial Engineering and Management at National Chin-Yi University of 
Technology. Her research interests include quality management, quality 
engineering, data mining, and medical diagnosis. (huangml@ncut.edu.tw) 

https://doi.org/10.3390/electronics10192329
https://doi.org/10.3390/electronics10192329
https://doi.org/10.1016/j.asoc.2021.107465
https://doi.org/10.1016/j.asoc.2021.107465
https://doi.org/10.1109/ICIEA49774.2020.9102002
https://doi.org/10.1016/j.ymssp.2021.107738
https://doi.org/10.3390/app112210823
https://doi.org/10.3390/app112210823
https://doi.org/10.1016/j.commatsci.2022.111475
https://doi.org/https
http://doi.org/10.1016/j.anucene.2022.109201
http://doi.org/10.1016/j.anucene.2022.109201
https://doi.org/10.1016/j.jmsy.2020.12.020
https://doi.org/10.3390/sym14020339
https://doi.org/https
http://doi.org/10.1016/j.dss.2023.113996
http://doi.org/10.1016/j.dss.2023.113996
https://doi.org/10.1016/j.asoc.2023.110406
https://doi.org/10.1016/j.asoc.2023.110406
https://doi.org/10.1016/j.neucom.2023.126408
https://doi.org/10.1016/j.neucom.2023.126408
https://doi.org/10.1088/1742-6596/1325/1/012079
https://doi.org/10.1088/1742-6596/1325/1/012079
https://doi.org/10.18494/SAM4780
https://doi.org/10.18494/SAM4780
https://doi.org/10.48550/arXiv.1704.00028
mailto:yslin@ncut.edu.tw
mailto:huangml@ncut.edu.tw

