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	 Tool status is crucial for maintaining workpiece quality during machine processing. Tool 
wear, an inevitable occurrence, can degrade the workpiece surface and even cause damage if it 
becomes severe. In extreme cases, it can also shorten the machine tool service life. Therefore, 
accurately assessing tool wear to avoid unnecessary production costs is essential. We present a 
wear classification model using machine vision to analyze tool images. The model categorizes 
wear images on the basis of predefined wear levels to assess tool life. The research involves 
capturing images of the tool from three angles using a digital microscope, followed by image 
preprocessing. Wear measurement is performed using three methods: gray-scale value, gray-
level co-occurrence matrix, and area detection. The K-means clustering technique is then 
applied to group the wear data from these images, and the final wear classification is determined 
by analyzing the results of the three methods. Additionally, we compare the recognition 
accuracies of two models: support vector machine (SVM) and convolutional neural network 
(CNN). The experimental results indicate that, within the same tool image sample space, the 
CNN model achieves an accuracy of more than 93% in all three directions, whereas the accuracy 
of the SVM model, affected by the number of samples, has a maximum of only 89.8%.

1.	 Introduction

	 Precision machining technology is essential in modern manufacturing, especially given the 
rising demand for equipment and components in aerospace, automotive, and precision machinery 
sectors. The advancement of processing technology is therefore crucial. Precision machining is 
extensively employed in micro- and ultra-precision equipment owing to its exceptional ability to 
process various materials and complex three-dimensional surfaces. However, the challenges 
posed by ultra-high-speed intermittent cutting and the use of micro-tools mean that tool wear—
referring to the gradual deterioration of cutting tools in processes such as milling, turning, and 
drilling—can significantly affect workpiece quality. Tool wear impacts tool life, workpiece 
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dimensional accuracy, surface finish, and the efficiency of automated production operations. It 
can lead to defects in parts, increased production costs, and unexpected machine downtimes.
	 Previous research has consistently shown that an early and effective detection of tool wear 
can prevent machine damage, avoid unplanned shutdowns, and minimize workpiece scrapping. 
This leads to significant improvements in manufacturing quality and cost reduction.(1–3) Zhou 
and Xue highlighted that traditional tool wear monitoring methods rely on periodic inspections 
and manual measurements based on the operator’s experience, which can be both time-
consuming and inaccurate.(4) As a result, effective tool wear monitoring has become a crucial 
focus in ultraprecision machining. There is a need for tool condition monitoring systems that can 
continuously and accurately manage tool wear to minimize downtime and enhance product 
quality. In response to this need, Singh et al. proposed an automated detection system for high-
performance machining environments, utilizing various sensors, modeling techniques, and data 
analysis methods to assess cutting tool wear.(5)

	 In recent years, the rapid advancements in IoT and big data technologies have made the 
application of machine learning (ML) to production quality and machine preventive maintenance 
(PM) increasingly significant in modern manufacturing. By analyzing large volumes of 
production data, ML can substantially enhance production efficiency and product quality while 
reducing maintenance costs.(6–7) Concurrently, the growth of AI has led researchers to apply 
data-driven methods for developing pattern recognition algorithms to predict tool wear.(8) These 
methods typically involve extracting feature variables from sensor data and processing signals to 
predict tool wear. Various classification algorithms are used for this purpose, including artificial 
neural networks (ANNs), fuzzy logic, pattern recognition, support vector machines (SVMs), 
decision trees, K-nearest neighbor classifiers (KNNs), adaptive neuro-fuzzy inference systems 
(ANFISs), Bayesian networks (BNs), principal component analysis (PCA), and convolutional 
neural networks (CNNs). The effectiveness of these methods depends on how well the extracted 
features correlate with the tool wear status.(9–12) The accurate prediction of tool wear can 
significantly improve production efficiency and quality by facilitating timely tool replacement, 
thus preventing production line interruptions and losses. For instance, Bagga et al. investigated 
the use of ANNs to predict cutting force and vibration related to tool wear during the turning 
process.(13) Their study, based on Taguchi L9 experiments using alloy inserts and EN-8 medium 
carbon steel, demonstrated that ANNs can effectively predict tool wear, thus offering a valuable 
tool for monitoring and managing tool condition.
	 Deep learning, an advanced data analysis technique evolved from traditional neural networks, 
has recently been applied to tool condition monitoring. In machining processes, time-series 
images combined with deep learning methods are utilized to classify and predict tool wear 
effectively.(14) Serin et al. conducted research on applying deep learning for tool wear analysis 
and damage reduction, with the goal of accurately predicting tool wear and preventing adverse 
conditions for cutting tools and machinery.(11) Deep learning technologies can model complex, 
previously unexamined functional relationships and offer exceptional adaptability and self-
learning capabilities, which help mitigate the effects of external interferences during machining. 
However, current deep learning approaches to tool wear monitoring face challenges, including 
difficulties in interpreting extracted features and inability to fully account for the significance of 
different feature maps, which can limit prediction accuracy.(15–17)
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	 In this study, we employ a machine vision system to analyze tool wear from three 
perspectives: corner wear, flank wear, and crater wear (see Fig. 1). After capturing and 
preprocessing the images, the wear is assessed using three distinct methods. The processed 
images are analyzed to extract feature values indicative of tool wear. The K-means clustering 
technique is then applied to categorize the degree of wear of each sample. The results from these 
three methods are compared to determine the final wear classification and evaluate the 
effectiveness of each approach. We also aim to compare the wear image classification accuracies 
of SVMs and CNNs to determine their ability to accurately classify tool wear across different 
samples. The accurate real-time detection of tool status could prevent losses associated with 
delayed tool replacement, thereby significantly enhancing the overall factory processing 
efficiency. The specific objectives of this study are as follows.
1.	 Calculate wear areas using processed images to establish wear level grading data. 
2.	 Construct a model to achieve optimal wear level recognition.

2.	 Literature Review

2.1	 Definition of tool wear

	 In machining processes, tool wear refers to the gradual failure of cutting tools as a result of 
frequent operation. During cutting, the tool comes into contact with the workpiece and chips, 
causing intense friction. This continuous wear is induced by high temperatures and friction, 
with the extent of wear varying depending on shape, depth, cutting fluid, and cutting speed. 
Consequently, the sharpness and efficiency of the tool are affected. This phenomenon is 
unavoidable and can be considered normal dulling, but it also leads to issues such as increased 
workpiece surface roughness, higher cutting forces, rising cutting temperatures, reduced 
machining precision, and shorter tool life. Generally, tool wear manifests in various forms (e.g., 
flank wear, crater wear, and chipping). These wear patterns primarily depend on the tool 
characteristics, workpiece material, cutting conditions, and machining techniques. Under 
normal machining conditions, flank wear is the most common and significant wear. Flank wear 
width (VB) is the most crucial parameter for assessing tool life.(18)

	 Tool life can be divided into three stages, as shown in Fig. 2. These stages provide an 
effective means to predict and manage the lifespan of cutting tools, thereby avoiding unnecessary 
production costs and time loss.(17)

1.	 Break-in Region: This stage spans from point A to point B in Fig. 2 and is known as the rapid 
initial wear period. During this phase, the tool wear rate is relatively high because of the 

Fig. 1.	 (Color online) Schematic diagram of tool wear.
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initial interaction between the tool surface and the workpiece. The wear is primarily due to 
the abrasion of microscopic surface irregularities and eventually enters a relatively stable 
state.

2.	 Steady-state Wear Region: This stage extends from point B to point C and is characterized by 
a relatively stable and uniform wear rate. This is the main working period of the tool and the 
longest stage of its usage. During this phase, the wear rate is low and stable, allowing the tool 
to maintain good machining quality.

3.	 Failure Region: This stage runs from point C to point D, where the tool enters an accelerated 
wear period. The wear rate increases significantly because the tool has worn to its limit, 
causing wear to intensify. During this phase, the tool performance rapidly declines, ultimately 
leading to failure, as indicated by point D. At this point, the tool can no longer be used and 
must be replaced to ensure machining quality and efficiency.

2.2	 Tool wear detection

	 In the early stages of technological development, the majority of research on tool wear relied 
on empirical rules and experimental data to determine the wear state of tools. Dornfeld and 
Kannatey-Asibu classified tool wear detection techniques into two categories: direct techniques 
and indirect techniques.(19) Indirect techniques use sensor signals to output parameters related to 
wear status during cutting operations and predict tool wear using these parameters. The 
drawback of this approach is that the measured parameters are susceptible to environmental 
effects and do not directly quantify tool wear. Bao and Tansel conducted research on tool wear in 
vertical milling cutter grooves using mild steel and aluminum materials.(20) They estimated tool 
wear by monitoring the cutting force in the workpiece feed direction and dynamically adjusted 
cutting parameters to control the cutting force, thereby extending the tool life. Rmili et al. used a 
three-axis accelerometer to measure vibration characteristics during turning and proposed an 

Fig. 2.	 (Color online) Tool life curve.
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average power analysis technique to extract indicative parameters from the vibration response, 
which describes the tool condition throughout its lifespan.(21)

	 In contrast, direct techniques offer advantages in accuracy and reliability.(22) Direct 
techniques use optical, radioactive, and resistive proximity sensors, or vision systems to directly 
measure the actual geometric changes in tools. Machine vision detection technology overcomes 
the difficulty of contact between the tool and the workpiece during cutting due to the presence of 
coolant, making the measurement of tool geometry and dimensional changes more accurate. 
Compared with indirect techniques, machine vision does not require complex measurement 
systems, is more flexible, and is cost-effective. In micro–milling processes, tool wear conditions 
are critical to product geometry and surface integrity. Zhu and Yu proposed a novel tool wear 
surface area monitoring method based on complete tool wear images.(23) Unlike the traditional 
tool wear width standard, this method better reflects the tool condition. They introduced a 
region-growing algorithm based on morphological component analysis (MCA) to solve the tool 
wear problem by decomposing the original micro–milling-tool image into target tool, 
background, and noise images to extract effective tool wear areas. Results showed that the wear 
surface area better reflects the tool usage status than do traditional tool wear width standards. 
However, direct techniques using machine vision for tool wear detection also have significant 
limitations. Different optical sensors, such as lasers, CCD and CMOS cameras, and thermal 
infrared cameras, exhibit considerable variability in image quality.(24)

2.3	 Cutting tool wear prediction

	 As the demands of Industry 4.0 continue to grow, precision machining plays a crucial role in 
modern manufacturing. Tool wear is a major factor affecting product quality, production time, 
and manufacturing costs. Therefore, assessing and accurately predicting tool wear before 
significant damage occurs to the workpiece are essential for ensuring high-quality workpieces 
and reducing production costs.(25) In recent years, many researchers have applied data acquisition 
and signal processing methods to evaluate tool wear.(26) Kara utilized Taguchi quality 
engineering in machining experiments to minimize tool wear and surface roughness.(27) Dastres 
and Soori proposed a network-based decision support system using data warehouse management 
to address tool replacement decisions.(28)

	 Pimenov et al. combined traditional sensor systems with neuro-AI methods to monitor 
turning tool conditions, replacing decision-making based on human experience.(29) Wang et al. 
integrated IoT sensors and SVM methods to predict tool wear, thereby enhancing the reliability 
of manufacturing systems.(30) Xu et al. introduced an incremental cost-sensitive SVM (ICSSVM) 
learning model to predict tool breakage in milling operations.(31) Their results showed that even 
with imbalanced datasets, the prediction accuracy was higher than that of traditional batch cost-
sensitive SVM models.
	 CNN is a multilayer feedforward ANN initially developed to handle two-dimensional image 
classification problems. Image classification distinguishes different target categories on the basis 
of image features. An image classification system mainly comprises image information 
acquisition, information processing, feature extraction, and classification. Generally, image 
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classification involves feature learning to describe the entire image, followed by the use of a 
classifier to determine the category of the target. This technology has been widely used in facial 
recognition, vehicle identification, pathological image recognition, and tool monitoring.(32) Chen 
et al. proposed a CNN based on an attention mechanism and bidirectional LSTM networks for 
monitoring tool wear conditions.(33)

3.	 Methods

	 Automated optical inspection (AOI) is a quality inspection method for automated 
manufacturing vision systems and is characterized as a noncontact testing method. In recent 
years, AOI has been extensively applied in advanced manufacturing processes to detect potential 
defects. Image quality inspection is a method used in manufacturing and production processes to 
assess and ensure the quality of products or workpieces. Through an image inspection system, 
various defects, such as cracks, dents, and foreign objects, can be detected on products or 
workpieces. Additionally, the system can accurately measure their dimensions and geometric 
features to ensure compliance with specifications. AOI machines can detect error features based 
on standard samples. The most challenging part of detection lies in the effects of variations in 
brightness and colors. In particular, the image features of the same component type can differ 
under varying brightness and color conditions. Consequently, image quality inspection identifies 
different types of products or workpieces and classifies them on the basis of preset standards 
while recording the data obtained during the inspection process for subsequent analysis and 
traceability. This process typically includes image capture, image processing, feature extraction, 
inspection analysis, and result presentation. By integrating these functions and methods, image 
quality inspection helps improve production efficiency and product yield, ensuring product 
quality. Image preprocessing involves a series of steps performed on images before recognition 
to enhance image quality and improve the accuracy and efficiency of subsequent recognition 
tasks. Image preprocessing includes binarization, image enhancement, image segmentation, and 
morphological processing.(34) The powerful algorithms of deep CNNs have demonstrated 
outstanding performance in the field of computer vision. Numerous research groups have 
proposed training models that combine AOI systems with CNNs for defect detection.(35)

	 In this study, we begin with the acquisition of tool wear images. In Step 1, high-magnification 
CCD equipment is used to capture the original tool wear images. In Step 2, these images 
undergo preprocessing, including grayscale conversion, filtering, negative processing, edge 
detection, and binarization. Step 3 involves image feature extraction through methods such as 
grayscale threshold segmentation, gray level co-occurrence matrix calculation, and area 
detection to obtain key features of the images. Subsequently, wear clustering based on the 
extracted features is performed to classify the wear parts in the images. We employ CNNs and 
SVMs as the two classification methods for model training and testing. Finally, performance 
evaluation is conducted to determine the accuracy and effectiveness of the models, and an 
intelligent tool wear automatic classification prediction model is confirmed. The research 
process is illustrated in Fig. 3.
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	 •	 Image Acquisition: The actual tool edge wear conditions are captured using a digital 
microscope by fixing the tool in a clamp. The type of tool being measured is a disposable 
triangular milling insert. Images are captured in three specific directions: 1. corner, 2. minor 
flank, and 3. major flank. A schematic diagram of the acquisition directions is shown in Fig. 
4.

	 •	 Wear Measurement Calculation: The captured images, sized at 100 × 100 pixels, are 
segmented into 10 × 10 pixel blocks. Using MATLAB, the grayscale values of the tool images 
are calculated. From these, representative feature values, including the maximum and average 
values, are computed for each of the 100 blocks, as shown in Fig. 5.

	 •	 Gray Level Co-occurrence Matrix (GLCM): GLCM is a feature extraction method for 
processing RGB images.(36) These texture features are calculated by probability, which can 
be defined as:

	 Pr = Cij(γ, θ),	 (1)

where Cij is the co-occurrence probability between gray levels i and j.

Fig. 3.	 (Color online) Research process flowchart for the tool wear classification model.
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Here, Pij represents the number of occurrences of gray levels i and j within the given d, θ, and G 
values.
	 We extracted 14 tool feature images from the GLCM, namely, 1. angular second moment, 2. 
contrast, 3. correlation, 4. sum of squares, 5. inverse difference moment, 6. sum average, 7. sum 
variance, 8. sum entropy, 9. entropy, 10. difference variance, 11. difference entropy, 12. 
information measures of correlation I and II, and 13. maximal correlation coefficient.

3.1	 Support vector machine

	 SVM is an ML method based on statistical learning theory. It is theoretically robust, highly 
adaptable, generalizes well, and has short training times. SVM is primarily used for data 
classification and finds applications in face detection, image classification, and handwritten 
recognition. The basic principle of SVM is to find a hyperplane in the feature space that 
maximizes the margin to separate two classes of data. The following are SVM multiclass 
classification methods: (1) One-Against-The-Rest where one class of samples is separated from 
the rest; (2) One-Against-One where every two classes are paired for classification [For N 
classes, N(N − 1)/2 SVM classifiers are needed, and the class with the most votes is chosen 
during testing]; (3) SVM Decision Tree where binary decision trees are combined with SVM to 

(a) (b)

Fig. 4.	 (Color online) Tool wear of the (1) corner, (2) minor flank, and (3) major flank.

Fig. 5.	 (Color online) (a) Tool edge wear grayscale matrix. (b) Matrix of degree of tool edge wear.
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form a multiclass classifier (The drawback is that classification errors can affect subsequent 
nodes); (4) Multiclass Objective Functions where the objective function is modified to 
accommodate multiclass needs, but this approach has high computational complexity and is less 
commonly used. For addressing multiclass problems, we adopt the directed acyclic graph SVMs 
(DAG-SVMs) proposed by Agarwal et al.(37)

	 Traditional ML methods for image recognition require feature extraction in conjunction with 
classifiers, enabling algorithms to make predictions using unseen data. Histogram of oriented 
gradients (HOG) is a feature extraction technique that derives features by accumulating the 
intensity of gradients in various orientations within image blocks. HOG calculates a histogram 
of gradient directions for each block and uses it as a feature representation of the block. It divides 
the image into small regions called “cells.” Since HOG features operate on local units of the 
image, they maintain robustness to both geometric and photometric transformations.(38) The 
main steps of computing HOG features from an image are as follows.
1.	 Compute Gradient Magnitude and Orientation: Calculate the gradient of each pixel intensity 

in both horizontal and vertical directions.
2.	 Calculate Gradients: Use the Gx and Gy values for each pixel to determine the gradient 

magnitude and orientation, where the magnitude indicates the edge strength and the 
orientation indicates the edge direction.
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	 SVM is an ML technique aimed at correctly distinguishing different classes of data points by 
identifying the optimal hyperplane. The process of combining HOG and SVM involves first 
using HOG to extract features from images, and then inputting these features into the SVM 
model for image classification.	

3.2	 Convolutional neural networks

	 CNNs are a type of deep learning model particularly well suited for image recognition and 
processing. The advantages of CNNs can be summarized as follows. 
	 •	 High Image Recognition Capability: CNNs exhibit strong performance in recognizing 

various image patterns and transformations accurately. 
	 •	 Effectiveness in Image Classification: In recent years, CNNs have dominated visual 

recognition competitions, with winners frequently employing CNN architectures. 
	 •	 Efficient Information Retention: CNNs retain substantial information without excessively 

increasing the number of parameters, resulting in improved computational speed. 
	 A typical CNN architecture is shown in Fig. 6. The structure and steps of each neural layer 
are described below.
1.	 Convolutional Layers: These layers utilize multiple filters that slide over the input image to 

extract local features. Each filter captures different features such as edges and corners.
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2.	 Pooling Layers: Pooling layers reduce the dimensionality of feature maps by down sampling, 
which decreases the number of parameters and computation load while preserving essential 
features. Common pooling methods include max pooling and average pooling.

3.	 Fully Connected Layers: After several convolutional and pooling layers, the feature maps are 
flattened and fed into fully connected layers for classification. These layers function similarly 
to traditional neural network layers, integrating and classifying the input features.

4.	 Activation Functions: Activation functions, such as the rectified linear unit (ReLU), introduce 
nonlinearity into the model, enhancing its representational power. The ReLU function is 
defined as Eq. (4).

5.	 Loss Function and Optimization: The loss function (e.g., cross-entropy loss) measures the 
difference between the predicted and true values. Network weights are updated through 
backpropagation and optimization algorithms, such as gradient descent, to minimize this 
loss.

By leveraging these components, CNNs can efficiently process and classify images; this makes 
them a powerful tool in the field of computer vision.

	 ( ) if 0
0 otherwise
x x

ReLu x
>

= 


	 (4)

	 The CNN model architecture utilized in this study comprises the following components: 
batch normalization, convolutional layers, pooling layers, activation functions, loss function, 
and fully connected layers.
	 •	 Batch Normalization: Applied to the training data, this technique accelerates the training 

process and enhances model performance. 

Fig. 6.	 (Color online) Tool wear CNN framework.
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	 •	 Convolutional Layers: These layers perform feature extraction to obtain feature maps from 
the input images. 

	 •	 Pooling Layers: These layers are employed for down sampling to significantly reduce 
computational load. We use max pooling because of its superior performance in practical 
applications. 

	 •	 Activation Functions: The ReLU function is used to enhance the network structure, prevent 
gradient vanishing, and mitigate overfitting. 

	 •	 Fully Connected Layers: The purpose of these layers is to classify the feature information 
derived from the convolutional and pooling layers. 

	 •	 Loss Function: The Softmax function is used to obtain probability values for multiclass 
classification. The final model prediction categorizes tool wear into three classes representing 
dull, semidull, and sharp conditions. 

	 This comprehensive architecture leverages each component’s strengths to develop a robust 
model for classifying tool wear levels based on image features.

4.	 Results

4.1	 Experimental equipment

	 In this study, a high-magnification digital microscope was used throughout the experimental 
process. Images were captured for 14 worn tool samples and one set of new tool samples, 
focusing on the three cutting edges subjected to wear during the cutting process. After image 
acquisition, image preprocessing was performed. The detailed specifications of the experimental 
hardware are shown in Table 1.

4.2	 Experimental environment and interface development

	 The system processor used in this study is an Intel® Core™ i5-8250U 1.6GHz, paired with 
an NVIDIA GeForce 2070 dedicated graphics card. The program interface for the tool wear 
classification model was developed using MATLAB R2020 to design the graphical user 
interface (GUI), as shown in Fig. 7.

Table 1
Specifications of the digital microscope.
Image sensor Micron 1.3 m High-resolution CMOS sensor
Microscope lens Confocal 80X–200X
Light source White SMD LED × 8 pcs
Hardware interface USB 2.0
Software Measurement & Capture
Cable length 1.5 m
Dimensions 31 mm (diameter) × 120 mm (height)
Weight 125 g
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4.3	 Experiments

4.3.1	 Image preprocessing

	 According to the methodology described in Sect. 3, we developed a MATLAB-based tool 
image edge detection process. Step one involves loading the original tool image file and 
performing edge detection using the Sobel algorithm. The preprocessing results are shown in 
Fig. 8.
	 In this study, three different detection methods were employed to calculate the tool wear in 
three directions. The final wear grade was determined by analyzing the obtained data. 
Consequently, selecting different directions of samples will display the corresponding wear 
classification and the number of samples. When there is a need to change the input samples, this 
can be directly modified through the program interface to expedite the classification process. 
The practical operation results are shown in Fig. 9.
	 The initial experiment samples consisted of images capturing the tool tip, secondary relief 
face, and primary relief face of 15 tools. Images from three angles were obtained for each tool, 
resulting in a total of 45 tool wear images. These images were classified into three categories 
based on the severity of wear, ranging from severe to minor. The categories are dull, semi-dull, 
and sharp, as illustrated in Fig. 10.
	 On the other hand, data augmentation techniques were employed to fine-tune the existing 
tool image samples, enhancing the dataset’s diversity and improving its generalization capability. 
In this study, the dataset was expanded using methods such as rotating 30 degrees to the right, 
rotating 30 degrees to the left, horizontal flipping, vertical flipping, and contrast enhancement. 
After data augmentation, the tool tip dataset contained 1488 images, the secondary relief face 
dataset contained 1352 images, and the primary relief face dataset contained 1395 images. The 
actual effect of data augmentation is shown in Fig. 11.

4.3.2	 Parameter settings

	 In this study, an executable file (EXE) was compiled in the MATLAB environment. When 
using the system’s CNN model, the training parameters can be adjusted in accordance with 

Fig. 7.	 (Color online) Interface for tool wear classification.
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different samples and dataset sizes, as shown in Fig. 12. The parameters that need to be set 
include the maximum number of epochs, mini batch size, initial learning rate, and validation 
data frequency.

4.3.2.1	 SVM classification

	 To ensure an equal number of samples for each wear level, we balanced the sample sizes by 
reducing the number of samples in the other categories to match that in the smallest category. As 
shown in Fig. 13, the Sharp category, with 186 samples, was the smallest. Therefore, the total 

Fig. 8.	 (Color online) Tool wear image processing results.

Fig. 9.	 (Color online) CNN and SVM experimental models.

Fig. 10.	 (Color online) Three levels of tool wear.
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Fig. 12.	 (Color online) Experimental parameter settings.

Fig. 13.	 (Color online) SVM classification model.

Fig. 11.	 (Color online) Image data augmentation effect.
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sample size was set to 558 (186 × 3) tool wear images. Of these, 70% were randomly selected for 
training and 30% for testing. The results of this execution are shown in Fig. 14, including the 
confusion matrix, accuracy, and execution time. Figure 14 shows the prediction results for ten 
randomly selected test samples; misclassified results are highlighted in red.
	 The classification accuracies of the SVM model for wear samples at three tool angles (Corner, 
Minor Flank, and Major Flank) are shown in Fig. 15. It can be observed that the average 
classification accuracies for the Minor Flank and Major Flank samples are similar, whereas that 

Fig. 14.	 (Color online) SVM classification model.

Fig. 15.	 (Color online) SVM classification model test accuracy.
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for the Corner samples is significantly lower. Upon analysis, this decline in accuracy is attributed 
to the issue of sample size distribution. After balancing the sample sizes to ensure an equal 
number of samples for each wear level category, the total number of Corner samples was reduced 
to 558 images; the total number of Minor Flank samples was 744 images; and the total number of 
Major Flank samples was 837 images. This imbalance led to the SVM model underperforming 
in classifying the Corner samples compared with the Minor and Major Flank samples.

4.3.2.2	 CNN classification

	 The comparison of classification accuracies of the CNN model for wear samples at the 
Corner, Minor Flank, and Major Flank tool angles is shown in Fig. 15. The results indicate that 
despite the sample size differences across the three directions, the CNN model achieved an 
average accuracy of more than 93% for all three directions. This is in contrast to the SVM 
model, where the classification accuracy varied significantly under similar conditions, 
demonstrating a notable difference in classification accuracy between the two models given the 
same sample sizes. The confusion matrices for the classification results of the CNN and SVM 
models are presented in Fig. 16, while the classification quality is detailed in Table 2.

Table 2
CNN and SVM model classification qualities.
Classification Quality Index SVM Model CNN Model
Precision Class=Dull 1.00 1.00

Class=Semi-dull 0 1.00
Class=Sharp 0 1.00

Recall Class=Dull 1.00 1.00
Class=Semi-dull 0 1.00
Class=Sharp 0 1.00

Fig. 16.	 (Color online) Confusion matrices of CNN and SVM models.
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5.	 Conclusions

	 In this study, machine vision technology was utilized to capture images of wear on the tool 
tip, minor flank, and major flank. Following image preprocessing, wear measurements were 
obtained using three techniques: grayscale value, gray-level co-occurrence matrix, and area 
detection. The measurements were then clustered using the K-means algorithm to determine 
final wear grades. Tool wear images were subsequently classified using SVM and CNN models.
	 A comparison of the classification accuracies of the SVM and CNN models revealed that, 
despite differences in sample sizes across the three directions, the CNN model consistently 
achieved an average accuracy exceeding 93% in all directions. This performance markedly 
surpassed that of the SVM model, which exhibited significant variability in accuracy under 
similar conditions, highlighting the CNN model’s superior robustness and reliability in tool wear 
classification.
	 Compared with previous research on tool wear, this study was focused specifically on tool 
wear classification using machine vision, which yielded clear, actionable insights. Concrete, 
quantifiable results that demonstrate CNN’s superior accuracy over SVM were obtained, 
making CNN highly relevant for practical applications. By directly comparing SVM and CNN, 
we provide a solid basis for selecting the best AI model for tool wear classification. The emphasis 
on measurable performance ensures direct applicability to industry needs, and the detailed, step-
by-step guide for implementing the classification model further enhances its practical value.
	 The exploration of the integration of advanced deep learning techniques, such as transfer 
learning or hybrid models, to further enhance the accuracy and efficiency of tool wear 
classification is a subject for future research. Additionally, incorporating real-time data from 
industrial environments could lead to the development of adaptive models that continuously 
learn and improve from new data. Investigating the use of 3D imaging and more sophisticated 
image processing algorithms could also provide a more comprehensive analysis of tool wear by 
capturing subtle wear patterns that 2D images might miss. Finally, expanding the scope to 
include predictive maintenance systems, where the model not only classifies wear but also 
predicts future tool performance and lifespan, could significantly benefit industrial applications.
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