
4835Sensors and Materials, Vol. 36, No. 11 (2024) 4835–4847
MYU Tokyo

S & M 3834

*Corresponding author: e-mail: chenhy@ncut.edu.tw
https://doi.org/10.18494/SAM5224

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Tackling Class-imbalanced Learning Issues Based on Local
Neighborhood Information and Generative Adversarial Networks

Chien-Chih Chen,1 Yao-San Lin,2 and Hung-Yu Chen1*

1Department of Information Management, National Chin-Yi University of Technology, Taiwan, ROC.
2Department of Industrial Engineering and Management, National Chin-Yi University of Technology,

Taiwan, ROC.

(Received June 29, 2024; accepted October 23, 2024)

Keywords:	 class-imbalanced data, data augmentation, local neighborhood information, generative
adversarial networks

	 Sensors are extensively used to collect data from systems. For example, in intelligent
manufacturing, accelerometers are employed to gather process inputs and outputs in real time.
However, abnormal events represent a small portion of the data, posing challenges for machine
learning algorithms. Most algorithms lack the ability to account for equivalent sample
representations. When addressing class imbalance, the widely used synthetic minority
oversampling technique (SMOTE) has limitations. SMOTE does not consider the relative
distributions between minority and majority class samples, potentially creating minority samples
within the majority distribution. Additionally, its linear approach may miss nonlinear
relationships among sample attributes. To overcome these issues, we propose a novel data
augmentation method based on local neighborhood information and generative adversarial
networks (GANs). Our approach first leverages density-based spatial clustering of applications
with noise to identify minority class noises and then computes neighborhood types for minority
samples using the k-nearest neighbors algorithm. On the basis of these neighborhood types (safe
or dangerous), we create synthetic samples using GANs and bootstrapping. Evaluation on ten
publicly available imbalanced datasets shows that our proposed method surpasses all other
approaches for the majority of the datasets.

1.	 Introduction

	 Sensors, such as temperature sensors and scintillation detectors, are extensively used to
collect data from various systems.(1,2) With the help of machine learning algorithms, intelligent
systems are developed to monitor abnormal events. In most management tasks, decision-makers
are particularly concerned with abnormal events because they have the potential to significantly
impact future operations. However, abnormal events typically constitute a small minority within
a dataset. This class imbalance can lead to biased inferences from machine learning algorithms
and deep learning networks, despite their effectiveness in extracting valuable information from
data.

mailto:chenhy@ncut.edu.tw
https://doi.org/10.18494/SAM5224
https://myukk.org/

4836	 Sensors and Materials, Vol. 36, No. 11 (2024)

1.1	 Research background

	 Class-imbalanced data, such as skewed data, present a common challenge in machine
learning algorithms for classification tasks. In class-imbalanced data, the distribution of classes
is not even. Some classes have significantly more examples (named majority classes or negative
classes) than in other classes (named minority classes or positive classes). Class-imbalanced data
arise in many real-world scenarios, such as medical data analysis,(3) heart transplant outcome
prediction,(4) and customer credit risk assessment.(5) In these cases, the minority classes are often
critical and misclassifying them can be costly. When using traditional machine learning
algorithms to train classifiers with imbalanced data, the models tend to be biased towards the
majority class. This happens because the minority class examples are often treated as acceptable
errors during the training process.
	 However, not all class-imbalanced data are difficult to learn. As illustrated in Fig. 1, there are
three typical scenarios. In Fig. 1(a), where there is no overlap between the majority and minority
class samples (referred to as minority samples), most classifiers can accurately discriminate
between the two classes. Figure 1(b) depicts a possible decision-tree-like representation of this

Fig. 1.	 Three scenarios for class-imbalanced data: (a) non-overlapping and (b) decision tree for non-overlapping;
(c) mild overlapping and (d) decision tree for mild overlapping; (e) extreme overlapping and (f) decision tree for
extreme overlapping.

Sensors and Materials, Vol. 36, No. 11 (2024)	 4837

scenario. In Fig. 1(c), a situation called mild overlap occurs, where some minority samples are
surrounded by the majority class. Here, most classifiers can still identify minority samples, but
with a potentially lower accuracy rate. This is because the surrounded minority samples might
be treated as negligible errors during training, leading the classifier to misclassify a similar
minority sample as belonging to the majority class. Figure 1(d) shows this effect. In Fig. 1(e), we
see extreme overlap, a situation particularly common in big data. Here, minority samples, often
consisting of only a few data points (disjuncts), are scattered and surrounded by the majority
class. In this case, as shown in Fig. 1(f), classifiers may incorrectly infer that all samples belong
to the majority class.
	 Previous research on handling class imbalance can be broadly categorized into three
approaches.
1.	� Cost-sensitive methods modify the training phase of traditional machine learning algorithms.

These methods assign higher penalties for misclassifying minority samples or adjust the
weight of each data point based on whether it is classified correctly.(6)

2.	� Kernel-based methods focus on modifying the kernel function used by machine learning
algorithms, for example, support vector machines (SVMs), to create a more robust model
during training with imbalanced datasets.(7)

3.	� Data-oriented methods(8) directly address the class imbalance in the training data itself. This
category includes two main approaches: undersampling and oversampling. Undersampling
attempts to create a more balanced training set by removing majority class instances.
Oversampling methods, conversely, generate additional minority class instances. A popular
example is the synthetic minority oversampling technique (SMOTE).(8) SMOTE relies on the
k-nearest neighbors (kNNs) algorithm to generate synthetic data. SMOTE identifies kNNs
belonging to the minority class for a given minority instance. Then, SMOTE creates new
synthetic instances (SMOTE instances) by interpolating between a minority instance (called
the seed example) and one of its kNNs (called the selected example), as illustrated in Fig. 2
and Eq. (1).

	 ()
()

1 1 1 1 1

2 2 2 2 2

,
,

x x x x s
x x x x s

 ′′′ = ′′ + ′ − ′′ ×
 ′′′ = ′′ + ′ − ′′ ×

	 (1)

	 where s1 ∈ [0,1] and s1 ∈ [0,1] are random numbers.

Fig. 2.	 (Color online) SMOTE generates synthetic instances between a seed minority sample and one of the seed’s
kNNs.

4838	 Sensors and Materials, Vol. 36, No. 11 (2024)

	 While SMOTE effectively addresses class imbalance, it neglects the distribution of the
majority class when generating synthetic instances. This can lead to noise data, as some SMOTE
instances become isolated by the majority. To address these limitations, several SMOTE
extensions have been developed, which can be broadly categorized into two groups. 1. Data
cleaning approaches(9,10) remove noise instances through an iteration process after sample
creation. 2. Seed example selection approaches identify suitable minority examples as seed
examples for SMOTE to prevent the generation of noisy synthetic data. In the second group,
some typical methods are borderline-SMOTE (B1-SMOTE and B2-SMOTE),(11) ADASYN,(12)

safe-level SMOTE (SL-SMOTE),(13) and local neighborhood SMOTE (LN-SMOTE).(14)

	 Focusing on seed example selection approaches, there are three main strategies employed to
assess whether a minority sample can be considered a seed example. As illustrated in Fig. 3,
these approaches categorize minority samples into three regions: safe, boundary, and dangerous.
The classification of these regions is based on the class ratio within a minority sample’s kNNs.
When k = 1, meaning all k neighbors belong to the minority class, the region is considered safe.
Conversely, when k = 0, indicating all k neighbors belong to the majority class, the region is
considered dangerous. When k falls between 0 and 1, i.e., some k neighbors belong to the
majority class, the region is considered a boundary area, where classifiers would potentially
draw a discriminant line. Table 1 summarizes SMOTE extensions and their advantages and
disadvantages in accordance with the seed example selection strategy they adopt.

Fig. 3.	 SMOTE generates synthetic instances between a seed minority sample and one of the seed’s kNNs.

Table 1
Categories of SMOTE extensions based on their seed example selection strategies.
Categories Dangerous area Boundary area Safe area

Extensions ADASYN,(12)
and MWMOTE(15)

B1-SMOTE,(11)
B2-SMOTE,(11) and BIBO(16)

SL-SMOTE(13)
and LN-SMOTE(14)

Advantages

Improve the identification of
minority instances, especially
those surrounded by majority
instances.

Improve the identification of
minority instances, especially
those in boundary areas.

Improve the identification of
minority instances.

Disadvantages Increase misclassification of
majority instances.

Increase misclassification of
majority instances.

Information on the minority
instances surrounded by
majority instances is still
missing.

Sensors and Materials, Vol. 36, No. 11 (2024)	 4839

1.2	 Research motivation

	 While SMOTE and its extensions have been effective in handling class-imbalanced data,
their reliance on Eq. (1) for linear synthetic sample generation can lead to noisy samples,
especially when there are nonlinear relationships between attributes. Recognizing this limitation,
researchers(17,18) have explored generative adversarial networks (GANs)(19) as an alternative.
However, current GAN-based approaches lack a mechanism to identify suitable seed examples
from the minority class. Additionally, generating synthetic samples in areas where the majority
class is dominant can lead to misclassifications.
	 Accordingly, we propose a novel mechanism to identify suitable seed examples from the
minority class for GAN-based synthetic sample generation. The proposed mechanism first
utilizes density-based spatial clustering of applications with noise (DBSCAN)(20) to eliminate
minority class noise. Subsequently, kNN is employed to classify the neighborhood types (local
neighborhood information) of the remaining minority samples. Minority samples identified as
having “safe” neighborhoods are used to train the GAN, while those with “dangerous”
neighborhoods are included in a bootstrapping procedure.(21)

	 To assess our method’s efficacy, we employed ten datasets from the UC Irvine Machine
Learning Repository (UCI) encompassing various class imbalance ratios. We compared our
method’s effectiveness against established benchmarks, including SMOTE, B1-SMOTE,
ADASYN, SL-SMOTE, and LN-SMOTE. The results convincingly demonstrate that our
proposed method surpasses all other approaches on the majority of datasets.
	 The remainder of this study is organized as follows. In Sect. 2, we explain the proposed
method. Section 3 concerns the details the experimental datasets and setup and the obtained
results are presented. Finally, Sect. 4 is the conclusion.

2.	 Proposed Method

	 The proposed method is illustrated in Fig. 4. It consists of three main steps: clustering the
minority class with DBSCAN, identifying the neighborhood types of minority samples using
kNN, and generating synthetic minority samples. Details are provided below.

2.1	 Data normalization

	 Clustering algorithms often rely on distance metrics to group data points. When attributes
have significantly different scales, distances between points can be misleading. To address this
issue, data normalization is typically performed before clustering. In this study, the min-max
normalization is employed. This technique transforms each numerical attribute’s values to a
range between 0 and 1. The transformed value xi,j' is computed as

	 [],
, 0,1 ,i j j

i j
j j

x min
x

max min
−

′ = ∈
−

	 (2)

4840	 Sensors and Materials, Vol. 36, No. 11 (2024)

where xi,j is the ith original value in the jth attribute, minj is the minimum value in the jth
attribute, and maxj is the maximum value in the jth attribute.

2.2	 Data clustering

	 The purpose of DBSCAN is to assist in identifying the distributions of minority samples.
Samples from the minority class that are far from other data points are considered noise. These
noisy points may be surrounded by majority class samples, indicating they are located in
dangerous neighborhoods. Creating samples in such dangerous neighborhoods can lead models
to misclassify majority class instances. Conversely, if the noisy points are surrounded by other
minority samples, they are in safe neighborhoods. However, creating samples in safe
neighborhoods may lead models to output classification rules that do not exist in the real data.
DBSCAN relies on two parameters: Eps (the search radius) and MinPts (the minimum number of
data points needed to form a cluster). Figure 5 illustrates the process of finding clusters in
DBSCAN involving three types of points.
1.	� Core points: These have at least MinPts (e.g., 2) other points within a distance of Eps from

them (e.g., point p in Fig. 5).
2.	� Border points: These are located within Eps of one or more core points but do not have

enough neighboring points within Eps to be considered core points (e.g., point B).
3.	 Noise points: These are neither core nor border points (e.g., point C).
	 Suppose we have an untested point q (the qth instance). The closeness function of a core point
p determines whether q is part of the same cluster by

	 () ()1, if ,
0, otherwisep

dist p q Eps
N q

 ≤
= 


	 (3)

Fig. 4.	 Processes of the proposed method.

Sensors and Materials, Vol. 36, No. 11 (2024)	 4841

where p ≠ q and dist(p, q) is defined as

	 ()
1

2 2
, ,1 ., m

p j q jjdist p q x x
=

 = −  ∑ 	 (4)

When p ≠ q, dist represents the Euclidean distance and m is the number of attributes. When
q ∈ Eps(p) and |Eps(p)| ≥ MinPts are satisfied, points p and q belong to the same cluster. In this
study, MinPts is set to 2 and the default Eps value is calculated as

	

1
2 21

, ,1 1
11
1

,/
n n

i j k jm i k i
nj
i

x x
Eps m

i

−
= = +

−=
=

  −  =      

∑ ∑∑
∑

	 (5)

where n is the number of minority samples.

2.3	 Neighborhood type identification

	 Following the implementation of DBSCAN, we will utilize kNN to calculate the class ratio
for each minority sample within its kNNs. The class ratio is computed as nn/k, where nn
represents the number of minority class neighbors and k is typically set to 5 in SMOTE
extensions.(12,14) On the basis of the class ratio, the neighborhood type for each minority sample
is defined, as detailed in Table 2.

2.4	 Sample generation

	 In this study, we employ two sample generation strategies. Referring to Table 2, minority
samples are first categorized into two groups: safe (encompassing safe, relatively safe, and
slightly safe) and dangerous (including dangerous, relatively dangerous, and slightly dangerous).

Fig. 5.	 Process of finding clusters in DBSCAN.

4842	 Sensors and Materials, Vol. 36, No. 11 (2024)

Samples belonging to the safe group are then used to train a GAN for sample generation, while
those in the dangerous group and those identified as noises by DBSCAN are treated as a
population for bootstrapping, as shown in Fig. 6. The strategy is to avoid creating synthetic
samples that would lower the models’ discriminant power of the majority class.

3.	 Empirical Evaluation

	 In this section, we will introduce the experimental datasets, experimental environment, and
experimental results.

3.1	 Experimental datasets

	 There are ten public datasets taken from the UCI dataset repository for our experiments, as
summarized in Table 3. In Table 3, “A” and “B” denote the number of dataset samples and the
number of minority class samples, respectively. Imbalanced rates are computed as B/(A − B), i.e.,
the number of minority samples divided by the number of majority class samples. The datasets
Abalone, Poker, Satimage, and Vowel have been modified to simulate binary class-imbalanced
datasets. “Abalone_9_v_18” means the dataset contains samples with class labels 9 and 18;
“Poker_5_v_6”, “Poker_5_v_7”, and “Poker_6_v_7” denote datasets containing samples with
class labels 5 and 6, 5 and 7, and 6 and 7, respectively. “Satimage” contains class label 4 as the
minority class and the other class labels as the majority class. “Vowel0” contains class label 0 as
the minority class and the other class labels as the majority class.

3.2	 Experimental environment

	 Table 4 summarizes the key details of our experimental settings. To ensure robust evaluation,
we employed ten times stratified tenfold cross-validation for all experiments. Performance was
measured using both accuracy and F1-score. Accuracy provides a baseline indicator for
classification tasks, whereas F1-score is particularly well-suited for evaluating datasets with
imbalanced classes. We utilized Python as the programming language and leveraged two
powerful libraries: scikit-learn (sklearn) and PyTorch. Scikit-learn facilitated various tasks
including min-max normalization, DBSCAN, kNN, bootstrapping, C4.5 decision tree
construction, and metric calculation. PyTorch, on the other hand, was instrumental in building

Table 2
Class ratios and their definition of neighborhood types.
Class ratio Neighborhood type
1.0 Safe
0.8 Relatively safe
0.6 Slightly safe
0.4 Slightly dangerous
0.2 Relatively dangerous
0.0 Dangerous

Sensors and Materials, Vol. 36, No. 11 (2024)	 4843

GANs. The effectiveness of the proposed method was compared against those of established
oversampling techniques: SMOTE, B1-SMOTE, ADASYN, SL-SMOTE, and LN-SMOTE. All
these comparison methods were also implemented in Python.

Fig. 6.	 Flow of the proposed sample generation.

Table 3
Details of the datasets adopted in our experiments.

Dataset # of samples (A) # of attributes Minority class # of minority
samples (B) Imbalanced rate

Abalone_9_v_18 731 8 18 42 0.061
Bupa 345 6 Positive 142 0.725
Cleveland 303 13 Recurrent 35 0.130
Haberman 306 3 Die 81 0.360
Pima 768 8 Positive 268 0.536
Poker_5_v_6 3510 10 6 1460 0.712
Poker_5_v_7 2286 10 7 236 0.115
Poker_6_v_7 1696 10 7 236 0.162
Satimage 6435 36 Label_4 626 0.108
Vowel0 990 13 0 90 0.100

Table 4
Details of experimental settings.
Parameter Value
Evaluation approach Ten times stratified tenfold cross-validation
Performance metrics Accuracy rates (%) and F1-scores
Programming language Python
Imported packages scikit-learn (sklearn) and PyTorch
	 Evaluation approach sklearn.model_selection.StratifiedKFold

	 Performance metrics sklearn.metrics. accuracy_score
sklearn.metrics.f1_score

	 Data normalization (min-max) sklearn.preprocessing.MinMaxScaler
	 Data clustering (DBSCAN) sklearn.cluster.DBSCAN
	 Data neighbor searching (kNN) sklearn.neighbors.NearestNeighbors
	 Data oversampling (bootstrapping) sklearn.utils.resample
	 Data oversampling (GAN) PyTorch
	 Data modeling (C4.5 decision trees) sklearn.tree.DecisionTreeClassifier

4844	 Sensors and Materials, Vol. 36, No. 11 (2024)

	 For a binary classification dataset, the model’s forecasting performance can be summarized
using a confusion matrix, as shown in Table 5. Referring to the four key categories, true positive
(TP), true negative (TN), false positive (FP), and false negative (FN), we can compute
performance metrics such as accuracy, recall, precision, and F1-score using Eqs. (6)–(9),
respectively.

3.3	 Experimental results

	 Tables 6 and 7 summarize the experimental results. “Original” refers to results obtained with
a C4.5 decision tree trained on a dataset without any oversampling technique. Boldface values in
the tables indicate the best-performing method among the seven tested on each dataset.

	 TP TNAccuracy rate
TP FP FN TN

+
=

+ + +
	 (6)

	 TPRecall =
TP + FN

	 (7)

	 TPPrecision
TP FP

=
+

	 (8)

	 - TPF1 score
TP FP

=
+

	 (9)

Table 5
Confusion matrix.

Predicted values
Positive Negative

Actual
values

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

Table 6
Summary of the experimental results: accuracy rates (%).

Datasets Original SMOTE B1-SMOTE ADASYN SL-SMOTE LN-SMOTE Proposed
method

Abalone_9_v_18 91.792 87.686 91.096 91.671 91.123 91.478 91.525
Bupa 63.781 63.347 62.000 63.389 63.800 63.071 63.542
Cleveland 72.760 72.715 72.588 73.615 73.062 72.671 74.051
Haberman 65.276 63.794 65.125 63.690 63.619 63.206 66.362
Pima 69.767 68.791 67.879 69.039 70.209 69.832 71.661
Poker_5_v_6 93.832 98.672 97.561 98.066 98.604 98.553 98.878
Poker_5_v_7 96.461 100.000 96.234 99.676 100.000 99.948 100.000
Poker_6_v_7 81.525 74.240 74.789 74.765 74.903 74.273 75.620
Satimage 90.890 90.082 90.315 90.539 90.466 90.566 91.125
Vowel0 98.348 98.061 98.864 98.465 98.202 98.187 98.595

Sensors and Materials, Vol. 36, No. 11 (2024)	 4845

	 An analysis of the data in Tables 6 and 7 reveals that the proposed method generally
outperforms the others across the ten datasets. Consider the Haberman dataset as an example.
While the accuracy rates (%) of SMOTE, B1-SMOTE, ADASYN, SL-SMOTE, and LN-SMOTE
fall below that of the “Original” method (65.276%), their F1-scores show the opposite trend. This
suggests a trade-off: these methods improved the C4.5 decision tree’s ability to discriminate the
minority class but weakened its discrimination of the majority class. This likely occurs because
these five methods generate unsuitable minority samples that confuse the model with respect to
the majority class. In contrast, the proposed method creates samples using bootstrapping only
when the local neighborhood is deemed “safe,” mitigating this issue.
	 An interesting discovery is the result for the “Poker_6_v_7” dataset. Using oversampling
techniques, including the proposed method, worsened both accuracy rates and F1-scores. The
created synthetic instances became noisy samples, leading to unfavorable decision tree outputs.

4.	 Conclusions
	
	 Nowadays, various sensors are extensively used to collect data from systems, particularly in
intelligent manufacturing. Sensors, such as cameras and accelerometers, are installed in
equipment to monitor abnormal events in real time. Decision-makers are concerned about
abnormal events, which can significantly impact future operations. However, these abnormal
events (minority class samples) are much rarer than normal events (majority class samples) in the
data. This type of data is called class-imbalanced data. Traditional machine learning algorithms
tend to be biased towards the majority class as they consider minority class examples to be
acceptable errors during training. In the past few decades, SMOTE has shown effectiveness in
handling class-imbalanced data. However, it neglects the majority class distribution, leading to
the generation of noisy synthetic instances. SMOTE extensions, including data cleaning and
seed example selection approaches, are aimed at improving synthetic sample generation. Seed
example selection approaches categorize minority samples into safe, boundary, and dangerous
regions in accordance with the class ratio of their kNNs. However, these approaches still rely on

Table 7
Summary of the experimental results: F1-scores.

Datasets Original SMOTE B1-SMOTE ADASYN SL-SMOTE LN-SMOTE Proposed
method

Abalone_9_v_18 0.316 0.288 0.311 0.332 0.284 0.302 0.395
Bupa 0.560 0.573 0.564 0.568 0.578 0.570 0.583
Cleveland 0.698 0.698 0.697 0.706 0.702 0.697 0.713
Haberman 0.329 0.367 0.381 0.350 0.342 0.351 0.782
Pima 0.565 0.573 0.559 0.570 0.586 0.577 0.594
Poker_5_v_6 0.926 0.984 0.971 0.977 0.983 0.982 0.986
Poker_5_v_7 0.822 1.000 0.807 0.984 1.000 0.998 1.000
Poker_6_v_7 0.374 0.197 0.202 0.211 0.214 0.195 0.232
Satimage 0.543 0.551 0.542 0.559 0.551 0.558 0.565
Vowel0 0.912 0.900 0.939 0.918 0.907 0.907 0.920

4846	 Sensors and Materials, Vol. 36, No. 11 (2024)

linear methods to create samples, which can lead to noisy samples when the relationships
between attributes are nonlinear. In recent years, researchers have explored GANs as an
alternative to SMOTE for synthetic sample generation. However, these studies still lack a
mechanism for identifying suitable seed examples.
	 In this paper, we proposed a novel method that addresses this gap. We first employed
DBSCAN to identify and remove noise from the minority samples. Then, we used kNN to
classify the remaining minority samples into safe and dangerous neighborhoods on the basis of
their local characteristics. Samples residing in safe neighborhoods were used to train the GAN,
while those in dangerous neighborhoods were used in a bootstrapping procedure. The evaluation
results on ten publicly available imbalanced datasets demonstrated that our proposed method
outperforms all other approaches on the majority of the datasets. While we used Eq. (5) to
determine a default value for the most critical parameter (Eps) in DBSCAN, the optimal value
often required manual fine-tuning. Exploring heuristic algorithms, such as genetic algorithms,
to automate Eps selection is a promising future direction.

References

	 1	 I. Ramirez-Zavala Sergio, E. Vargas-Rodriguez, D. Guzman-Chavez Ana, and M. Salazar-Martinez Oscar:
Sens. Mater. 36 (2024) 2943. https://doi.org/10.18494/SAM5026

	 2	 H. Kimura, T. Fujiwara, M. Tanaka, T. Kato, D. Nakauchi, N. Kawaguchi, T. J. S. Yanagida: Sens. Mater. 35
(2023) 513. https://doi.org/10.18494/SAM4146

	 3	 D.-C. Li, C.-W. Liu, and S. C. Hu: Comput. Biol. Med. 40 (2010) 509. https://doi.org/10.1016/j.
compbiomed.2010.03.005

	 4	 A. Dag, A. Oztekin, A. Yucel, S. Bulur, and F. M. Megahed: Decis. Support Syst. 94 (2017) 42. https://doi.
org/10.1016/j.dss.2016.10.005

	 5	 X. Zhang and L. Yu: Expert Syst. Appl. 237 (2024) 121484. https://doi.org/10.1016/j.eswa.2023.121484
	 6	 I. D. Mienye and Y. Sun: Inf. Med. Unlocked 25 (2021) 100690. https://doi.org/10.1016/j.imu.2021.100690
	 7	 J. Ren, Y. Wang, Y.-m. Cheung, X.-Z. Gao, and X. Guo: Pattern Recognit. 133 (2023) 108992. https://doi.

org/10.1016/j.patcog.2022.108992
	 8	 N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer: J. Artif. Intell. Res. 16 (2002) 321. https://doi.

org/10.1613/jair.953
	 9	 J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera: Inf. Sci. 291 (2015) 184. https://doi.org/10.1016/j.

ins.2014.08.051
	10	 G. E. Batista, R. C. Prati, and M. C. Monard: ACM SIGKDD Explorations Newsletter 6 (2004) 20. https://doi.

org/10.1145/1007730.1007735
	11	 H. Han, W.-Y. Wang, and B.-H. Mao: Advances in Intelligent Computing (ICIC, 2005) 878. https://doi.

org/10.1007/11538059_91
	12	 H. Haibo, B. Yang, E. A. Garcia, and L. Shutao: 2008 IEEE Int. Joint Conf. Neural Networks (IEEE, 2008)

1322. https://doi.org/10.1109/IJCNN.2008.4633969
	13	 C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap: Advances in Knowledge Discovery and Data

Mining (PAKDD, 2009) 475. https://doi.org/10.1007/978-3-642-01307-2_43
	14	 T. Maciejewski and J. Stefanowski: 2011 IEEE Symp. Computational Intelligence and Data Mining (CIDM,

2011) 104. https://doi.org/10.1109/CIDM.2011.5949434
	15	 H. He and E. A. Garcia: IEEE Trans. Knowl. Data Eng. 21 (2009) 1263. https://doi.org/10.1109/TKDE.2008.239
	16	 D. C. Li, Q. S. Shi, Y. S. Lin, and L. S. Lin: Entropy 24 (2022) 322. https://doi.org/10.3390/e24030322
	17	 R. Sauber-Cole and T. M. Khoshgoftaar: J. Big Data 9 (2022) 98. https://doi.org/10.1186/s40537-022-00648-6
	18	 B. Zhu, X. Pan, S. vanden Broucke, and J. Xiao: Inf. Sci. 609 (2022) 1397. https://doi.org/10.1016/j.

ins.2022.07.145
	19	 G. Ian, P.-A. Jean, M. Mehdi, X. Bing, W.-F. David, O. Sherjil, C. Aaron, and B. Yoshua: arXiv:1406.2661

(2014). https://doi.org/10.48550/arXiv.1406.2661

https://doi.org/10.18494/SAM5026
https://doi.org/10.18494/SAM4146
https://doi.org/10.1016/j.compbiomed.2010.03.005
https://doi.org/10.1016/j.compbiomed.2010.03.005
https://doi.org/10.1016/j.dss.2016.10.005
https://doi.org/10.1016/j.dss.2016.10.005
https://doi.org/10.1016/j.eswa.2023.121484
http://doi.org/10.1016/j.imu.2021.100690
https://doi.org/10.1016/j.patcog.2022.108992
https://doi.org/10.1016/j.patcog.2022.108992
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1016/j.ins.2014.08.051
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1007/11538059_91
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1007/978-3-642-01307-2_43
https://doi.org/10.1109/CIDM.2011.5949434
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.3390/e24030322
https://doi.org/10.1186/s40537-022-00648-6
https://doi.org/10.1016/j.ins.2022.07.145
https://doi.org/10.1016/j.ins.2022.07.145
https://doi.org/10.48550/arXiv.1406.2661

Sensors and Materials, Vol. 36, No. 11 (2024)	 4847

	20	 J. Sander, M. Ester, H.-P. Kriegel, and X. Xu: Data Min. Knowl. Discovery 2 (1998) 169. https://doi.
org/10.1023/A:1009745219419

	21	 B. Efron and R. J. Tibshirani: An Introduction to the Bootstrap (New York, Chapmen and Hall, 1994) 1st ed.
https://doi.org/10.1201/9780429246593

About the Authors

	 Chien-Chih Chen is an assistant professor in the Department of Information
Management of National Chin-Yi University of Technology, Taiwan. His
current interests are focused on machine learning with small data sets. His
articles have appeared in Decision Support Systems, Omega, Automation in
Construction, Computers and Industrial Engineering, International Journal of
Production Research, Neurocomputing, and other publications.

		 (frick@ncut.edu.tw)

	 Yao-San Lin is an associate professor in the Department of Industrial
Engineering and Management of National Chin-Yi University of Technology,
Taiwan, and has taught statistical analysis, information management and
machine learning for many years. In the past ten years of research, he has
twice won the IEEE Best Paper Award (2019 and 2013), and his research
results have been published in international academic journals: Applied Soft
Computing, Decision Support Systems, Neurocomputing, European Journal of
Operational Research, International Journal of Production Research,
Computers & Operations Research, and Expert Systems with Applications.
His current research interests are mainly in the field of manufacturing and
natural language processing. (yslin@ncut.edu.tw)

	 Hung-Yu Chen is an assistant professor in the Department of Information
Management of National Chin-Yi University of Technology, Taiwan. His
current interests are concentrated on human behavior with misinformation.
His ar ticles have been published in Decision Suppor t Systems,
Neurocomputing, International Journal of Advanced Manufacturing
Technology, and other publications. (chenhy@ncut.edu.tw)

https://doi.org/10.1023/A:1009745219419
https://doi.org/10.1023/A:1009745219419
https://doi.org/10.1201/9780429246593
mailto:frick@ncut.edu.tw
mailto:yslin@ncut.edu.tw
mailto:chenhy@ncut.edu.tw

