
4849Sensors and Materials, Vol. 36, No. 11 (2024) 4849–4864
MYU Tokyo

S & M 3835

*Corresponding author: e-mail: k0464@gcloud.csu.edu.tw
**Corresponding author: e-mail: cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM5103

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Node-RED Web-based Monitor and Control of Power System
Using Modbus and Message Queuing Telemetry Transport

Communication in Raspberry Pi Embedded Platform

Ming-Hung Lin,1 Sheng-Han Wu,2 Bo-Wun Huang,2 Po-Hsun Chen,1
Chao-Hung Huang,3 Cheng-Yi Chen,1* and Cheng-Fu Yang4**

1Department of Electrical Engineering, Cheng Shiu University, Kaohsiung City 833301, Taiwan
2Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City 833301, Taiwan

3Department of Mechanical Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung City 807618, Taiwan

4Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

(Received April 30, 2024; accepted September 4, 2024)

Keywords: Raspberry Pi, MQTT communication protocol, Internet of Things, node-RED, programmable
logic controller

 The rapid development of the industrial Internet of Things (IIoT) has transformed
manufacturing processes, particularly in industries such as electronics and aerospace. While
larger enterprises have successfully implemented IIoT applications to enhance productivity and
facilitate smart manufacturing, small and medium-sized enterprises have faced challenges in
adopting these technologies owing to financial constraints and limitations in their existing
equipment. Therefore, in this paper, we propose to use Raspberry Pi as the hardware basis and
the Cheng Shiu University laboratory as the research target. The approach presented in this
paper involves integrating open-source packages to design both the programmable logic
controller (PLC) publishing pattern and the PLC subscribing pattern. The proposed approach
uses a message queuing telemetry transport (MQTT) communication protocol for transmitting
Modbus transmission control protocol (TCP) register data and bidirectional data exchange with a
remote monitoring system. An MQTT Broker is established to act as a bridge between the
monitoring platform and the control system. A Node-RED-based IoT platform is set up to
subscribe to topics from the PLC publisher for data collection. Additionally, the human–machine
interface (HMI) in the monitoring system utilizes MQTT communication to publish PLC control
commands, and a database is implemented for the historical analysis of monitoring data. In this
study, we aim to establish a web-based cross-platform monitoring and control system using low-
cost integration through Raspberry Pi 4B embedded systems and various communication
protocols. The design facilitates the IoT transformation of PLC control systems. This integrated
system has broad applications in construction, production equipment, and power system
monitoring to achieve power monitoring and energy conservation.

mailto:k0464@gcloud.csu.edu.tw
mailto:cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM5103
https://myukk.org/

4850 Sensors and Materials, Vol. 36, No. 11 (2024)

1. Introduction

 The release of the iPhone in 2007 and the development of the Android system in 2008 made
mobile communications increasingly popular. In addition to the touch screen subverting the way
mobile phones are operated and becoming a milestone in modern mobile phones, smartphones
have also become an integral part of everyone’s life, and with the widespread adoption of mobile
communication, the interconnectivity among individuals has gradually extended to IoT.(1) IoT
refers to a system comprising sensing devices, computing units, and controlled devices. Each
device can communicate and transmit data through networks and is equipped with unique
identifiers.(2) IoT’s rapid application and development have found broad use in data collection,
remote monitoring, and automated algorithms, thereby expediting the progress of big data, AI,
Industry 4.0, and smart factories.(3,4)

 IoT has penetrated lifestyles and various application levels. Smartphones have become a part
of everyone’s life, and the execution of mobile applications has become the terminal device of
the human–machine interface (HMI) of IoT, allowing remote control of equipment. The IoT
architecture can be divided into perception, network, and application layers.(5) The perception
layer is dedicated to recognizing, sensing, and controlling various states of end objects. The
network layer facilitates the transmission of sensed information to the database system in the
application layer. At the application layer, diverse data analysis technologies are synthesized to
cater to the distinct application needs of various enterprises. The network layer of IoT operates
on a network architecture based on transmission control protocol (TCP)/IP transmission.
Depending on the distance and application scenario, it is categorized into long-distance
transmission, utilizing technology such as 5G communication, and short-distance transmission
such as Wi-Fi and Bluetooth.(6) In 1999, IBM developed the message queuing telemetry transport
(MQTT) protocol for data transmission in inspecting oil pipelines in deserts.(7) Since then, it has
evolved into the most widely utilized communication protocol in the field of IoT. MQTT is
specifically designed for machine-to-machine connections, facilitating the interconnection of
various actuators and sensors through the internet. This architectural framework involves
message transmission between message publishers and subscribers, relaying data through a
message broker. Importantly, it ensures data transmission with minimal volume, optimizing
efficiency in communication.(8–10)
 The implementation of Industry 4.0 relies on digitizing production data and equipment
automation, equipment communication links and data exchange, equipment monitoring, data
collection, and managing resources to achieve optimized production capacity and rapid
development response capabilities.(4,11,12) With the changes in manufacturing, the mass
production model is not the only way to maintain business operations, create profits, and reduce
costs. To gain a competitive advantage, adapting to small-scale, diversified production,
enhancing product-added value, and adopting flexible manufacturing methods with high
efficiency are essential. Therefore, applying the industrial IoT (IIoT) involves transmitting a
substantial amount of sensor information in smart factories. This pursuit aims to optimize the
manufacturing process, enable product traceability, and simultaneously reduce costs while
enhancing production output.(13) The composition of the programmable logic controller (PLC)

Sensors and Materials, Vol. 36, No. 11 (2024) 4851

control systems can be a collection of multistation equipment. Each station’s PLC controller can
connect to a centralized monitoring system through the Modbus communication protocol. The
PLC programming for automated equipment includes conditions for equipment startup,
conditional control with branching logic, sequential control procedures, anomaly detection,
emergency shutdown, and monitoring of the operational status of each component.(14) Through
communication links, equipment systems can be connected in parallel or in series, facilitating
workflow adjustments and enabling production methods to be either substation production or
flow production. However, compatibility issues may arise owing to different PLC brands and
programming languages. While most PLC brands support Modbus communication, it becomes a
key condition for integrating diverse systems.(15) In the application of power monitoring control
systems, the InduSoft professional development software platform is applied to design a web-
based remote monitoring and control system for building power and environmental conditions.
(16) The system allows graphical control of laboratory devices, monitors power data, and displays
results using curve graphs. As the costs of professional supervisory control and data acquisition
development software continue to rise, it may not be cost-effective for general purposes.
Reference 17 also highlights the potential benefits of integrating existing control systems with
IoT by converting Modbus data into MQTT communication format, making sensor data easily
interpretable. Effective data management and application can enhance visibility and usability in
smart factories. With Node-RED as an IoT remote monitoring platform, node functions process
raw data, monitor instrument outputs, and store data in databases. The established database can
aid in optimizing production processes.
 In this paper, we refer to the experimental system presented in Ref. 16, where the air
conditioning system was replaced, and a modified control method was incorporated. A gateway
utilizing the MQTT protocol was established for message exchange. Python programming was
employed for real-time conversion to the Modbus communication format, enabling bidirectional
data acquisition and control functions with the PLC. The acquired data can be stored in a
database system for future data analysis and applications. The frontend web design and website
development adopted IBM’s Node-RED visual programming tool to create a web-based
graphical remote monitoring system. In this study, we elevate existing control systems and
devices to a web-based IoT platform for remote monitoring and control by integrating Modbus
and MQTT communication protocols. Administrators can monitor the system’s status and
functionality anytime through this integrated Web-based monitoring system.

2. Design of a Cross-platform Monitoring and Control System

 In this study, the monitoring system uses the Node-RED visual IoT development tool as the
leading software for system planning. The overall system software architecture is shown in Fig.
1. A Python program is developed as an execution sequence, utilizing the paho.mqtt.client and
pyModbusTCP.client functions to implement the Modbus TCP communication protocol for
reading PLC register data and converting it into the MQTT communication format for
publishing. Similarly, it converts the MQTT communication format data back into the Modbus
TCP communication protocol for writing into PLC registers, completing the subscribing

4852 Sensors and Materials, Vol. 36, No. 11 (2024)

endpoint program. Furthermore, subscription and publishing nodes relayed through the MQTT
broker to Node-RED flows undergo data processing, flow control, and HMI construction,
enabling bidirectional data retrieval and remote control within the IoT architecture. Through
internet connectivity, computers, smartphones, and tablets can log in to the HMI graphical
interface, clearly representing the system status and immediate remote device control. On the
basis of the laboratory hardware architecture in Ref. 16, we can exhibit overall power monitoring,
subdistribution power monitoring, power data inquiry, and air conditioning control. The design
screen of each tab is adjusted in accordance with the required functions. The clear visual
interface increases its convenience. It is easy to control the system’s various functions and
understand the device’s status. The general design content and function description are discussed
next.
 The design and execution process of the power monitoring system, as illustrated in Fig. 2,
includes the following steps: (1) reading Modbus registers and publishing power monitoring data
in MQTT format; (2) designing Node-RED flow processes, including subscribing to topics for
data reception, generating power demand data, creating graphical monitoring interfaces, and
outputting system alerts; (3) designing Node-RED flow processes for the real-time monitoring
screen of today’s demand units, calculating the 15 min average power demand, obtaining the
daily highest demand value and occurrence time from the 96 demand units, using the daily
highest demand as the basis for the statistical recording of yearly, monthly, and daily power
demand values and power usage records in a MariaDB database; (4) designing a query form
interface to query the MariaDB database and generate historical charts of power demand and
power usage.

2.1 Modbus power data acquisition and MQTT message publishing

 The laboratory power data is measured from the multiloop digital power meter SMB350. The
I-8837 PLC#3 programmable controller obtains the measured power information from the
SMB350 through Modbus RS485 RTU communication and stores the data in the Modbus
register. The main control unit can use the Modbus TCP communication protocol to read power

Fig. 1. (Color online) Software architecture of web-based monitoring and control system.

Sensors and Materials, Vol. 36, No. 11 (2024) 4853

data from the programmable controller I-8837 PLC#3 using IP: 192.168.254.104 with port 502.
Since the meter measurement value can be changed with time, the system is configured to
update data every second. Considering the allocation of hardware resources, the PLC publisher
program in the main control unit is configured to poll the registers on the PLC server every 3 s
to obtain the latest power data. The acquired power data is then published in the MQTT
communication format. The MQTT Broker forwards this data to the subscribing node in Node-
RED, which can graphically display the data in accordance with the planned layout. The power
measurement data is distributed across Modbus registers at addresses 7 to 191.
 The main control monitoring system integrates the functions of pyModbusTCP.client and
paho.mqtt.client to establish a connection between the PLC publisher program, PLC, and the
MQTT Broker, as illustrated in Fig. 3. The read_input_registers function is utilized to retrieve a
maximum of 125 register data each time. Therefore, it is necessary to obtain array-type data in
two separate instances. The variable reg_list acquires the array values starting from address 0,
capturing 125 registers. The variable reg_list2 acquires the array values starting from address
125, capturing 66 registers. Figure 4 illustrates an example of monitoring 220 V loop current.
The three-phase total current I_1 value is obtained from the array reds_1 (corresponding to
Modbus address 73). The client.publish() function is employed to publish MQTT messages with
the topic “laboratory/I_1” and the payload of the I_1 value in JSON format. Similarly, the values
of the R, S, and T phase currents are also published as MQTT messages using the same code and
approach.

Fig. 2. (Color online) Design and execution workflow of power monitoring system.

4854 Sensors and Materials, Vol. 36, No. 11 (2024)

2.2 Node-RED HMI and MQTT messages

 Figure 5 illustrates the Node-RED MQTT subscriber node settings, where one can subscribe
to topics published by the PLC endpoint. Within the flow, by double-clicking the mqtt in node,
one can access the attribute editor and input the MQTT Broker address: 127.0.0.1 and port: 1883,
with the topic set to “laboratory/I_1”, quality of service configured as 2, and output set to “a
parsed JSON object”. The settings for the remaining three-phase current configurations are
completed using the same method. This node configuration can be directly applied to the entire
Node-RED project, facilitating the swift addition of subscription topic flows. The node and flow
configurations are illustrated in Fig. 6. The MQTT in the node receives the topic “laboratory/I_1”,
with msg.payload values being integers. Within the node of “set flow I_1”, the reading values are
multiplied by a factor of 0.001 to obtain actual measurement values. Subsequently, the topic is
specified as “220 V Main Loop electric circuit” through the change node. By connecting the
“mqtt in”, “change”, and “gauge” nodes with dragging lines, upon deployment, the msg.payload
values can be directly transmitted to the gauge node, displaying the current status graphically
under the title “220 V_Main Loop electric circuit”. The function of the “220 V alarm output
function” node is shown in Fig. 7. When the current value exceeds 50 A, the msg.payload value
represents the content of the overload alarm voice output. Since the power data is updated every
3 s, the voice alarm needs to undergo a delay node, with a 10 s interval for output. This prevents
messages from accumulating and causing alerts to fail to stop when the condition is resolved.
The “audio out” node serves as the voice output module. Upon deployment of the aforementioned
connections, the electric current monitoring HMI interface can be easily completed.

Fig. 3. (Color online) Part of the PLC publisher program used to establish a connection between
pyModbusTCP.client and MQTT Broker.

Fig. 4. (Color online) Part of the PLC subscriber program used to obtain current value and publish it in MQTT
format.

Sensors and Materials, Vol. 36, No. 11 (2024) 4855

2.3 Monitoring power average demand and consumption

 After signing a contract with power consumers, Taiwan Power Company (TPC) provides the
contract capacity (kW) to consumers. The calculation of basic power tariffs is also based on the
contract capacity. The charge is twice the basic power rate for excess power consumption of less
than 10% of the contracted capacity; excess power consumption exceeding 10% of the contracted
capacity is charged at thrice the basic power rate. As the cost of exceeding the basic contract

Fig. 6. (Color online) Process and nodes of 220 V loop current monitoring.

Fig. 5. (Color online) Subscriber settings of “mqtt in” node in Node-RED.

Fig. 7. (Color online) Function node settings and alarm voice output.

4856 Sensors and Materials, Vol. 36, No. 11 (2024)

capacity is prohibitively high, the essential purpose of demand monitoring lies in the reasonable
allocation of power usage and scheduling power consumption time to reduce power cost. TPC’s
demand unit operates on a 15 min cycle, accumulating effective power within the cycle and
calculating its average value. There are 96 demand units per day, totaling approximately 2880
demand units per month, with the highest demand representing the maximum value. To promptly
understand the usage status of demand, the design of monitoring screens should include a real-
time display of demand values, 15 min average demand values, and alarm outputs so that the
electricity of some equipment can be unloaded before exceeding the system′s set demand value.
The process and nodes of real-time demand display are shown in the line chart and Node-RED
flowchart, as shown in Fig. 8.
 The laboratory database for recording power consumption data is illustrated in Fig. 9 and
comprises 12 tables. These tables are distinguished on the basis of power loops and categorized
into 220 and 110 V. Tables “220v_kwdata” and “110v_kwdata” are utilized to record 96 demand
unit values per day, along with timestamps. Tables “220v_daykwdata” and “110v_daykwdata”
log the maximum demand unit values per day and the corresponding dates. Similarly, tables
“220v_monkwdata” and “110v_monkwdata” are designated for storing the monthly maximum

Fig. 8. (Color online) Process and nodes for displaying real-time demand using a line chart.

Fig. 9. (Color online) Database and table settings for proposed system.

Sensors and Materials, Vol. 36, No. 11 (2024) 4857

demand unit values. Tables “220v_kwh” and “110v_kwh” record the total daily meter values.
Tables “220v_daykwh” and “110v_daykwh” log the daily power consumption values and dates.
Lastly, tables “220v_monkwh” and “110v_monkwh” are intended to store monthly power
consumption values. Node-RED establishes a connection between MySQL nodes and the
MariaDB database server. The connection settings specify the MariaDB server location,
connection port:3306, username, password, and the database name to be connected. Following
the configuration update, the connection setup is completed successfully.
 The process and nodes for calculating demand units are illustrated in Fig. 10. Taking the 220
V power loop as an example, the global variable KW1 represents the real-time demand value
updated every second. The global variable “sun_kw” accumulates the KW1 variable 60 times
per min and 900 times every 15 min. However, one second of the program is designed to reset
the variable at the 1st second. Therefore, the sum of values accumulated over 15 min is divided
by 899 to obtain the average demand unit value. The calculation cycle occurs at the 15th, 30th,
45th, and 0th minute of each hour. The content of the function node comprises MariaDB
insertion record commands. Data for each demand unit data is stored in the table
laboratory/220v_kwdata according to date and time. The “series” field in the table records the
title, the “data” field inserts the demand value, the “system_time” field inserts the record time,
and the “labels” field inserts the period when the demand unit occurred, such as 15:00. After
inserting the record, the variable “sun_kw” is reset to continue accumulating and calculating the
next demand unit, recording the demand variations at different times.
 From the laboratory database, querying the 220v_kwdata table for real-time demand involves
setting up a line chart that updates every 30 s. The average 15 min demand values for the day are
outputted to the chart node by sorting the data based on the current date. Figure 11 illustrates the
screen displaying the line chart of today’s demand records for power real-time monitoring.
Similarly, other power data, such as power factor, should be arranged and set up in the layout
using the same method and process.

Fig. 10. (Color online) Process of unit demand calculation and database insertion record table code snippet.

4858 Sensors and Materials, Vol. 36, No. 11 (2024)

 Owing to the PLC register’s 16-bit integer range of −32768 to 32767 and the fact that
multiloop meters accumulate values in 32 bits, two 16-bit registers are used for calculation. The
calculation formula is High_bit × 32767 + Low_bit. Figure 12 illustrates an example of a 220 V
power loop, depicting the nodes and processes involved in displaying and utilizing the power
consumption on the HMI screen.
 The msg.payload values of KWH1_2Lbit and KWH1_2Hbit are obtained separately by the
“mqtt in” nodes and set as flow variables. These values in the 220V_KWH function node are
then multiplied by a factor of 0.01 to convert them into actual power consumption values. The
power consumption value is then set as a global variable KWH1_2. Apart from the total power
consumption display, Fig. 13 depicts storing the KWH1_2 variable value into the 220v_kwh
table at 23:56:00 daily. It retrieves the previous day’s power consumption value from the table,
subtracts it to obtain the current day’s power consumption, and then stores it in the 220v_daykwh
table. On the 1st day of every month at 01:00, the system reads the table 220v_daykwh, calculates
the total power consumption for the month, and stores it in the 220v_monkwh table to complete
the power consumption trend database.

2.4 Power consumption historical trend query

 Power consumption trend data is generated from daily power consumption data processing.
The accumulated data can generate annual, monthly, and daily power consumption trend charts,
which can be used to analyze applications in production capacity allocation and appropriate
power usage, for example, how to schedule power usage during peak, off-peak, and shoulder
periods, as well as plan the layout for peak and off-peak power prices during summer and non-
summer months. Taking the demand unit records of the 220 V power loop as an example, the
method implemented in this study for generating data involves reading the table 220v_kwdata at
00:01 daily to obtain the previous day’s maximum demand value, which is then stored in the
table 220v_daykwdata to record the maximum demand value for each day. Similarly, at 00:01 on
the 1st of each month, the table 220v_daykwdata is read to obtain the record of the highest
demand for the current month, which is then stored in the 220v_monkwdata table to record the
occurrence of the highest demand for the month.

Fig. 11. (Color online) The query data table is displayed on the monitoring screen as a line chart.

Sensors and Materials, Vol. 36, No. 11 (2024) 4859

 The power monitoring data query page can utilize a form node to generate input forms, with
the date format set as the sorting value for the database tables. Figure 14 illustrates the query of
the table system_time field of 220v_kwdata for the sorting value of 2023-03-25, resulting in the
retrieval of 96 demand unit data for that day. The output can be exported as an Excel file using
the Excel node, while the chart node can generate line charts or bar charts to represent the power
consumption trend. For monthly demand trend queries, the system_time field of the table 220v_
daykwdata is queried with the sorting value of 2023-03. Similarly, for annual demand trend
queries, the system_time field of the 220v_monkwdata table is queried with the sorting value of
the year 2022. The “Chart Function” node obtains the required data by database query command
and transposes it into the data array format. Using the multiple entries of the same procedure
enables the chart node to display multiple data sets as bar charts. For example, the relationship
between various fields queried from the 220v_kwdata table based on the day parameter and
displayed by the chart node is shown in Fig. 15.

Fig. 12. (Color online) Kilowatt-hour numerical conversion process and partial program of the function.

Fig. 13. (Color online) Process and function of total power consumption record.

4860 Sensors and Materials, Vol. 36, No. 11 (2024)

2.5 Air conditioning control system

 The laboratory has two variable-frequency constant-temperature air conditioners with a total
cooling capacity of 14.0 kW. The air conditioners can be set to memory mode with predefined
temperature and fan speed settings, and they start operating in accordance with these settings
once the power is turned on. The main unit can control the air conditioners’ operation by driving
external relays to open or close the electromagnetic contactors using the GPIO outputs of a

Fig. 15. (Color online) Correlation between date trend query data table and chart node display.

Fig. 14. (Color online) Node process for querying year/month/day demand trends.

Sensors and Materials, Vol. 36, No. 11 (2024) 4861

Raspberry Pi 4B. Figure 16 illustrates the nodes and processes for integrating the air conditioners
into the HMI interface control. The topics “laboratory/air_conditioner ON” and “OFF” are used
to control the air conditioner’s operation, with msg.payload set to 1 for ON and 0 for OFF. The
button node is similar to the HMI Button node, while the LED node displays the air conditioner’s
status (ON or OFF). The msg.payload input values for the rpi-gpio out node control the specified
GPIO channel to output either low voltage (OFF) or high voltage (ON), corresponding to 0 and 1,
respectively.

3. Experimental Results

 The integration of experimental software and hardware to convert Modbus register data into
MQTT communication for publishing is achieved through the “poll_ip101.py”, “poll_ip102.py”,
and “poll_ip104.py” programs. Conversely, the program for subscribing to MQTT and writing to
Modbus registers is designed by the “subscribe_101.py” and “subscribe_102.py” programs.
Node-RED is utilized for all flow designs, HMI screen setups, data visualization, debugging,
and integration with installed environments such as Mosquitto MQTT Broker, Node-RED, and
MariaDB on the hardware Raspberry Pi 4B for stability testing. The practical test results of
accessing HMI screens and displaying data by logging into the Node-RED dashboard are
discussed next.

3.1 Power monitoring system

 Upon logging into the Node-RED dashboard at IP: 120.118.143.181:1880/ui and entering the
username and password, users are immediately directed to the real-time power monitoring HMI
screen shown in Fig. 17. Figure 17 shows the power monitoring trend and data value of the circuit
loops of 220 and 110 V. This includes real-time and 15 min average power demand values, as
well as the R, S, and T phase voltages and currents, apparent power, and reactive power. Other

Fig. 16. (Color online) Process and nodes of air-conditioning HMI control.

4862 Sensors and Materials, Vol. 36, No. 11 (2024)

Fig. 17. (Color online) Real-time power monitoring screen for 220 and 110 V main circuit.

Fig. 18. (Color online) Cross-platform testing: (a) 5.1-inch Android smartphone running Chrome, (b) 5.5-inch
iPhone running Safari, and (c) 10.6-inch Android tablet running Chrome.

Sensors and Materials, Vol. 36, No. 11 (2024) 4863

data on electrical consumption include power factor and energy consumption. In instances
where the real-time demand exceeds the contracted capacity or when the main circuit’s current
usage is too high, a voice alarm is triggered, alerting users to take action to reduce power load
and inspect equipment accordingly.

3.2 Cross-platform testing of monitoring system

 The remote monitoring interface designed by Node-RED has cross-platform functions and
can automatically adjust the display style to fit different screen sizes. Figure 18 shows the results
of a cross-platform test of real-time power monitoring using different operating systems and
screen resolutions. Figures 18(a) and 18(b) show the monitoring screens executed using Android
and iPhone mobile phones, respectively. In contrast, Fig. 18(c) shows the monitoring screen
results executed on a 10.6-inch tablet using the Chrome browser.

4. Conclusions

 In this study, we utilized Node-RED as a web-based IoT integration platform, employing
Python programming to integrate MQTT and Modbus communication protocols to achieve
cross-platform system monitoring and control functionalities for various laboratory devices,
accessible via mobile devices. All functionalities were executed through a user-friendly
graphical interface. The following results were achieved in this research implementation.
Embedded integration was achieved at a low cost using open-source software packages and
Raspberry Pi 4B hardware, including Node-RED, Mosquitto MQTT Broker, MariaDB, and
MQTT subscriber and publisher programs for reading and writing Modbus registers. PLC
control systems can be upgraded to a networked control system, utilizing flow control and an
HMI designed with Node-RED. Commands were issued to PLC control systems in a scenario-
control manner, enabling functional control actions to be executed simultaneously. It was
demonstrated that devices supporting Modbus in PLCs can easily realize PLC IoT control
systems, providing existing devices with the possibility of sustainable use without the need for
complete replacement. PLC system monitoring data was transformed into meaningful and easily
recognizable data types in MQTT communication format. From the perspective of industrial
production management, these processed data will become part of the big data sources. The
power monitoring system displays real-time graphical interface information for each circuit,
includes power demand and current monitoring alarm systems, stores data such as power
demand and power consumption in the database, and generates yearly, monthly, and daily data in
line charts and bar charts for trend analysis and report generation through database query forms.
We established a complete web-based monitoring architecture and implementation method,
which can be expanded for future smart building security management and monitoring
applications.

4864 Sensors and Materials, Vol. 36, No. 11 (2024)

Acknowledgments

 This research was partially supported by projects under grant No. CS-111-03.

References

 1 R. Kamal: Internet of Things: Architecture and Design Principles, McGraw Hill Education (Chennai, India,
2022) 2nd ed., Chap. 1.

 2 A. K. Gupta and R. Johari: Proc. 2019 IEEE 4th Int. Conf. Internet of Things: Smart Innov. Usages (IEEE,
2019) 1–5. https://doi.org/10.1109/IoT-SIU.2019.8777342

 3 P. Kiartsilapin and W. Sawangsri: Proc. 2019 3rd Int. Conf. Robot. Automat. Sci. (IEEE, 2019) 233–237. https://
doi.org/10.1109/ICRAS.2019.8808939

 4 S. K. Jagatheesaperumal, M. Rahouti, K. Ahmad, A. Al-Fuqaha, and M. Guizani: IEEE Internet Things J. 9
(2022) 12861. https://doi.org/10.1109/JIOT.2021.3139827

 5 P. Sethi and S. R. Sarangi: J. Electr. Comput. Eng. 2017 (2017) 1. https://doi.org/10.1155/2017/9324035
 6 N. Ahmed, D. De, F. A. Barbhuiya, and M. I. Hussain: IEEE Internet Things J. 9 (2022) 916. https://doi.

org/10.1109/JIOT.2021.3104388
 7 Introduction to MQ Telemetry: https://www.ibm.com/docs/en/ibm-mq/9.0?topic=telemetry-introduction-mq

(accessed July 2023).
 8 K. Namee, R. Kaewsaeng-On, J. Polpinij, G. M. Albadrani, K. Rueagraklikhit, and A. Meny: Proc. 2022 17th

Int. Joint Symp. Artif. Intell. Natural Lang. Process. (IEEE, 2022) 1–6. https://doi.org/10.1109/iSAI-
NLP56921.2022.9960287

 9 R. A. Light: J. Open Source Softw. 2 (2017) 265. https://doi.org/10.21105/joss.00265
 10 C. R. M. Silva and F. A. C. M. Silva: Proc. 2019 SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. (IEEE,

2019) 1–3. https://doi.org/10.1109/IMOC43827.2019.9317637
 11 D. Cemernek, H. Gursch, and R. Kern: Proc. 2017 IEEE 15th Int. Conf. Ind. Inform. (IEEE, 2017) 239–244.

https://doi.org/10.1109/INDIN.2017.8104778
 12 M.-Q. Tran, M. Elsisi, K. Mahmoud, M.-K. Liu, M. Lehtonen, and M. M. F. Darwish: IEEE Access 9 (2021)

115429. https://doi.org/10.1109/ACCESS.2021.3105297
 13 P. Kiartsilapin and W. Sawangsri: Proc. 2019 3rd Int. Conf. Robot. Automat. Sci. (IEEE, 2019) 233–237. https://

doi.org/10.1109/ICRAS.2019.8808939
 14 G. Bhandari, M. Prakash Hiremath, A. Joglekar, A. Kulkarni, D. Kulkami, C. Mahadeva, S. B. Mohanty, D.

Raghunath, M. B. Raju, and R. Shorey: Proc. 2020 Int. Conf. Commun. Syst. Netw. (IEEE, 2020) 688–690.
https://doi.org/10.1109/COMSNETS48256.2020.9027475

 15 S. Tamboli, M. Rawale, R. Thoraiet, and S. Agashe: Proc. 2015 Int. Conf. Smart Technol. Manage. Comput.,
Commun., Controls, Energy Mater. (IEEE, 2015) 258–263. https://doi.org/10.1109/ICSTM.2015.7225424

 16 C. Y. Chen, C. Y. Liu, C. C. Kuo, and C. F. Yang: Micromachines 8 (2017) 241. https://doi.org/10.3390/
mi8080241

 17 K. Ferencz and J. Domokos: Proc. 2020 IEEE Int. Conf. Automat., Quality and Testing, Robot. (IEEE, 2020)
1–6. https://doi.org/10.1109/AQTR49680.2020.9129934

https://doi.org/10.1109/IoT-SIU.2019.8777342
https://doi.org/10.1109/ICRAS.2019.8808939
https://doi.org/10.1109/ICRAS.2019.8808939
https://doi.org/10.1109/JIOT.2021.3139827
https://doi.org/10.1155/2017/9324035
https://doi.org/10.1109/JIOT.2021.3104388
https://doi.org/10.1109/JIOT.2021.3104388
https://www.ibm.com/docs/en/ibm-mq/9.0?topic=telemetry-introduction-mq
https://doi.org/10.1109/iSAI-NLP56921.2022.9960287
https://doi.org/10.1109/iSAI-NLP56921.2022.9960287
https://doi.org/10.21105/joss.00265
https://doi.org/10.1109/IMOC43827.2019.9317637
https://doi.org/10.1109/INDIN.2017.8104778
https://doi.org/10.1109/ACCESS.2021.3105297
https://doi.org/10.1109/ICRAS.2019.8808939
https://doi.org/10.1109/ICRAS.2019.8808939
https://doi.org/10.1109/COMSNETS48256.2020.9027475
https://doi.org/10.1109/ICSTM.2015.7225424
https://doi.org/10.3390/mi8080241
https://doi.org/10.3390/mi8080241
https://doi.org/10.1109/AQTR49680.2020.9129934

