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 In this study, we propose a reparameterization You-Only-Look-Once v5 (YOLOv5) algorithm 
model for strip-steel surface defect detection to address low precision and poor timeliness in 
traditional methods. The proposed model introduces a re-parameterized VGG Light module, an 
enhanced bidirectional feature pyramid network feature structure, and a bounding box 
regression loss function fused with a normalized Gaussian-Wasserstein distance metric to 
improve small-target-defect detection accuracy. The experimental findings reveal a mean 
average precision (mAP) of 82.1% on the NEU-DET dataset, representing a notable improvement 
of 4.1% over the baseline YOLOv5s algorithm. Furthermore, the proposed algorithm model 
demonstrates superior detection accuracy compared with other prevalent object detection models 
and effectively mitigates challenges such as false detections and missed detections of small 
targets. Notably, it achieves an impressive detection speed of 68 FPS, affirming its efficacy in 
real-time applications.

1. Introduction

 Strip steel is a critical component in the industrial and economic landscape, with widespread 
use in the automobile industry, home appliances, mobile phone electronics, and construction. 
There is an increasing need for strip steel with superior surface quality that meets stringent 
performance standards and demonstrates exceptional durability. However, environmental 
conditions, variations in raw material quality, and manufacturing processes can contribute to the 
generation of surface defects during production. These defects can significantly impact the 
steel’s wear resistance, corrosion resistance, and fatigue strength while also posing potential 
risks during practical usage scenarios.
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 With the evolution of computer technology, machine-vision-based defect detection has 
become widely prevalent in industrial applications.(1,2) Recent advancements in deep learning 
algorithms for object detection have been particularly notable owing to the rapid progress in 
convolutional neural network (CNN) architectures. The existing literature classifies deep 
learning object detection algorithms into two primary categories: two-stage and single-stage 
methods. Two-stage methods encompass faster region-based CNNs (F-RCNNs)(3,4) and 
improved F-RCNNs,(5) while single-stage methods primarily include the You-Only-Look-Once 
(YOLO) series(6–13) and the single-shot multibox detector (SSD).(14–16)

 The YOLO series object detection algorithm has gained widespread adoption in various 
fields owing to its fast and accurate detection results. According to Ref. 7, an enhanced YOLOXs 
model was developed for identifying subhealth regions on rape plants during the bolting stage in 
agriculture. Moreover, multiple enhanced versions of YOLOv5 models have been developed for 
detecting helmets,(8) lithium battery poles,(9) road damage,(10) and obstacles in crab ponds.(11) 
Additionally, improved YOLOX models are specifically designed for face mask recognition of 
masked people and traffic sign detections.(12,13)

 A single-stage target detection algorithm model, such as the YOLO series, unifies the tasks of 
target classification and localization, resulting in rapid detection speed that aligns with the 
stringent demands of high-speed industrial detection applications. The detection of steel surface 
defects has been extensively researched using various iterations of YOLO algorithms. In Ref. 17, 
an enhanced YOLOv3 model was proposed, while in Refs. 18 to 21, the issue of steel-surface 
defect detection was addressed by introducing several YOLOv5-based models with different 
modified submodules. More recent advancements have been made with improved YOLOX 
algorithms.(22,23) The aforementioned effort is directed towards refining feature extraction to 
address the low detection accuracy associated with the single-stage algorithm. The goal is to 
achieve a more optimal balance between detection accuracy and speed. However, it remains 
challenging to simultaneously meet the requirements for both speed and accuracy in industrial 
defect detection.
 Motivated by the results of prior analysis, an improved model associated with machine 
learning technology, named the reparameterization strip-steel surface defect detection (RSSDD) 
YOLO algorithm model, is introduced to address the real-time and accuracy requirements of 
strip-steel surface defect detection. Among the four primary models in the YOLOv5 series 
(YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x), we opt for the lightweight model and real-
time performance of the YOLOv5s network structure. The main aim is to further enhance 
detection accuracy while ensuring swift processing. Consequently, the key contributions and 
innovations of our study are evident in several aspects.
(1) In this study, a re-parameterized VGG Light (RepVGG–Light) module based on the original 

RepVGG module(24) has been developed to replace the C3_1 module in the Backbone. This 
modification results in the establishment of an enhanced Backbone feature extraction 
network that maintains a multibranch structure during training, thereby amplifying the 
model’s representational power. Furthermore, a single branch structure is utilized during the 
inference stage to expedite inference speed and strike a balance between detection accuracy 
and speed.
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(2) We develop an enhanced BiFPN-FE structure to improve the Neck module of the original 
YOLOv5s model. By incorporating weighted connections, we effectively integrates in this 
design shallow and deep features, maximizing the utilization of the Backbone extracted 
features to improve the model’s multiscale prediction capability to detect surface defects on 
strip steel.

(3) The bounding box regression loss function, which integrates the normalized Gaussian-
Wasserstein distance (NGWD) metric as the WD-IoU loss function, was proposed. It is 
combined with the CIoU loss function in the original YOLOv5s model to optimize the 
regression loss for predicted bounding box. The refined algorithm model presented in this 
study shows promise in significantly enhancing detection accuracy, particularly for small 
target defects.

 This paper is structured into the following sections. Section 2 offers a concise exposition of 
the original YOLOXv5s model architecture and delineates the functionalities of its submodules. 
In Sect. 3, we introduce the RSSDD YOLO model architecture and propose three strategies for 
improving the original YOLOXv5s model, including the implementation of a RepVGG–Light_N 
module and the elaboration of the BiFPN-FE network structure as well as the characteristics of 
the WD-IoU loss function. Section 4 encompasses the training and efficiency verification of the 
proposed RSSDD YOLO model using the NEU-DET dataset.(25) Finally, a summary is provided.

2. Architecture of YOLOv5s Model

 As illustrated in Fig. 1, the architecture of the YOLOv5s model is compartmentalized into 
four primary parts, that is, the Input, the Backbone, the feature fusion Neck, and the detection 
network Head. Submodules within YOLOv5s are further detailed in Fig. 1, with comprehensive 

Fig. 1. Architecture of YOLOv5s model.
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definitions and operational guidelines provided in Ref. 26. The functions of each primary part 
are as follows.
(1) Input: the input image is preprocessed so that the size of the picture becomes 640 × 640 × 3 

and the image data is normalized.
(2) Backbone: the Backbone module is composed of ConvBNSiLU, C3_1, and spatial pyramid 

pooling fast (SPPF) modules. The ConvBNSiLU and C3_1 modules are responsible for the 
hierarchical extraction and abstraction of image features from the input data. On the other 
hand, the SPPF module integrates feature information across multiple scales, thereby 
establishing a robust foundation for subsequent object detection tasks. The input image is 
processed through Backbone convolution, resulting in size changes from 640 × 640 × 3 to 
320 × 320 × 64, and then to 160 × 160 × 128. It undergoes processing by the C3_1 module to 
maintain its size unchanged. The image is further reduced to 80 × 80 × 256 and remains the 
same after processing with the C3_1 module again. Then, it is compressed to 40 × 40 × 512 
before being downsized to 20 × 20 × 1024 and processed by the C3_1 module. Finally, local 
and global features are integrated within the SPPF module to provide improved network 
capabilities.

(3) Neck: the Neck module employs a hybrid architecture that combines top-down feature 
pyramid networks (FPNs)(27) and a bottom-up path aggregation network (PANet),(28) enabling 
improved integration of semantic and localization features to extract more comprehensive 
feature information. 

(4) Head: the Head consists of three detection layers, each predicting targets of different scales 
(80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024), culminating in the generation of detection 
results through loss function calculation.

 The loss function of YOLOXv5s is composed of three key components: the positional 
regression’s loss function, LIoU, the cross-entropy loss function for classification, Lcls, and the 
bounding box regression’s loss function, Lreg. Both Lcls and Lreg make use of the binary cross-
entropy loss.(5) Furthermore, LIoU incorporates the CIoU loss function.(29) The LCIoU function is 
precisely defined as 
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The IoU (intersection over union) is the ratio of the area of overlap between the predicted 
bounding box Apred and the ground truth bounding box Agt to the area of their union. ρ(Apred, Agt) 
represents the Euclidean distance between the center points of Apred and Agt, while D represents 
the diagonal length of the smallest external rectangle that encompasses both boxes. The variables 
wgt and hgt indicate the width and height of the ground truth frame, whereas wpred and hpred 
represent those of the predicted frame. Additionally, α is a positive trade-off parameter used in 
optimization algorithms, while v is a measure of the aspect ratio consistency between wgt/hgt and 
wpred/hpred.

3. RSSDD YOLO Algorithm Model

 The RSSDD YOLO algorithm model proposed in this study represents a refinement of the 
YOLOv5s network. Firstly, the operation of a RepVGG–Light_N module is performed to replace 
the C3_1 module in the Backbone of YOLOv5s, thereby reducing the parameter count and 
accelerating the model reasoning speed while upholding detection accuracy. Secondly, the 
feature-strengthening BiFPN-FE structure is integrated to augment the network’s feature fusion 
capability. Lastly, the bounding box loss function WD-IoU is employed in the feature prediction 
section to optimize predicted bounding boxes and enhance the small target detection capability.

3.1 RepVGG–Light_N module

 The C3_1 module in the YOLOv5_s Backbone leverages a multibranch and layered approach 
to augment model parameters; this potentially leads to overfitting. Consequently, additional data 
may be required for training and model fine-tuning. While training with a larger dataset can 
enhance classification accuracy, it also results in prolonged training times, which diminishes 
memory bandwidth utilization on hardware such as GPUs. To ensure real-time defect detection 
and algorithmic accuracy enhancement, we propose substituting the original Backbone’s C3_1 
module with the RepVGG module proposed in Refs. 30 and 31. RepVGG has demonstrated 
promising potential in image classification by amplifying accurately while curbing 
computational complexity through structural reparameterization. 
 The RepVGG module’s training and inference networks are depicted in Fig. 2, with the 
training network in Fig. 2(a) comprising three layers, each incorporating 3 × 3 convolution 
branches, 1 × 1 convolution branches, and identity residual branches. Notably, the initial layer 
omits the inclusion of an identity residual branch. Leveraging convolution kernels of diverse 
sizes within a multibranch structure enables the RepVGG module to attain varying receptive 
fields and amalgamate feature information from these fields to augment feature extraction 
capabilities. Furthermore, the integration of multiple residual branch structures endows the 
network with numerous gradient flow paths, thereby mitigating potential issues related to 
vanishing gradients in deep-level networks while concurrently enhancing overall network 
efficiency for feature extraction purposes. 
 The multibranch architecture of the RepVGG module enhances network detection accuracy, 
albeit at the cost of a substantial increase in the count of network training parameters. To 
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mitigate this drawback, during the Inference stage, the RepVGG module employs the structural 
reparameterization fusion strategy(30) to amalgamate the original three-way branch in the 
training network into a single branch, resulting in a significant reduction in the count of 
parameters for the RepVGG module’s inference network, as depicted in Fig. 2(b). Additionally, 
existing software acceleration libraries have undergone extensive optimization for 3 × 3 we can 
achieve convolution operations. By transforming the inference network of the RepVGG module 
into a single-path model using 3 × 3 convolutions, we can realize superior performance 
optimization using existing software increasing libraries, thereby increasing the inference speed 
for the RepVGG module.
 To enhance the object detection efficiency of the original YOLOXv5_s model without unduly 
inflating the network’s parameter count, we introduce an improved RepVGG–Light_N module. 
Here, N denotes the number of sequentially connected RepVGG modules, as depicted in Fig. 3. 
Prior to input into the RepVGG module, a 1 × 1 convolutional layer is employed to downsample 
the number of input feature channels by half, while another 1 × 1 convolutional layer is utilized 
post-RepVGG processing to restore the original channel count. 
 In this study, the C3_1 module in the original YOLOXv5_s model’s Backbone has been 
replaced with the proposed RepVGG–Light_N module to enhance detection accuracy while 
maintaining the real-time performance of the entire network. The refined Backbone network, as 
illustrated in Fig. 4, forms an essential part of the RSSDD YOLO algorithm model.

Fig. 2. (Color online) Structure of training network and inference network of RepVGG module. (a) Training 
network and (b) inference network.

(a) (b)
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3.2 Structure of BiFPN-FE module

 In the YOLOv5s algorithm model, the shallow network features abundant detailed 
information but lacks strong semantic information owing to fewer convolutional operations. On 
the other hand, deep network features can generate richer semantic information through multiple 
convolution operations, but its capability to capture tiny details is somewhat weakened.(27) 

Fig. 3. Structure of RepVGG–Light_N module.

Fig. 4. Architecture of RSSDD YOLO model.
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Therefore, it is crucial to integrate both deep and shallow features to enhance the model’s 
performance. 
 The original FPN structure integrates high-level semantic information with precise spatial 
position details at lower levels using a top-down feature fusion method to generate multiscale 
feature maps.(32) However, the extended transmission path for spatial location data impedes the 
effective integration of high- and low-level information. As shown in Fig. 5(a), the PANet 
introduces a bottom-up pathway within the FPN framework, shortening the transmission paths 
and enhancing network accuracy. Nevertheless, when fusing features from different input types 
in both FPN and PANet, there is a lack of differentiated weighting configuration or discernment 
of distinct input feature significance during simple addition operations.(33)

 To address this issue, we introduce a simple and efficient BiFPN structure in this study, as 
depicted in Fig. 5(b). The BiFPN is based on the PANet architecture and utilizes the fast 
normalized weighted optimization strategy and incorporates trainable adjusted weight 
ωi, i = 1, 2, ..., 9 to learn and define the importance of different input features. This allows for a 
more rational merging of information from various features across deep and shallow layers 
within the network. 
 To better integrate the BiFPN structure into the YOLOv5s model and tailor it for strip-steel 
surface defect detection, in this study, we made three improvements to the BiFPN and devised a 
feature-enhanced BIFPN-FE module.
(1) Modification of the feature fusion layer structure. 
 As depicted in Fig. 5(b), an additional cross-stage connection path is incorporated between 

the input and output nodes of the same scale, based on the PANet structure of the YOLOv5s 
model, enabling the integration of more features without increasing computational cost. 
Nodes with minimal contribution are eliminated to enhance feature fusion efficiency. This 
modification reduces two feature fusion layers compared with the original BiFPN, aligning 
with the three feature layers of the output detector in the Head. 

(2) Modification of the feature fusion operation.
 The feature fusion operation has been enhanced with the integration of trainable and 

Fig. 5. Structures of PANet and BiFPN. (a) PANet and (b) BiFPN.

(a) (b)
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learnable weights across all fusion paths. This facilitates feature graph fusion through a 
series-parallel mode of channel paths, thereby superseding the original PANet’s arithmetic 
method of summation-by-channel. In this way, the multiscale features are extracted from the 
input image. In Fig. 5(b), the BiFPN implements rapid normalized fusion,

 , 1, 2, 3,jout in
i j

k kj
P P i

ω
δ ω

= ⋅ =
+ Σ∑  (5)

where in
jP  and out

iP  are the input and output nodes, respectively. ωj, ωk are nonnegative 
learnable normalized weights in each path and δ = 0.0001. The rectified linear unit is adopted 
to ensure the data stability. Each normalized weight falls between 0 and 1. 
 While direct summation of channels may reduce computational complexity, the series-
parallel operation of channel paths excels in integrating feature information from diverse 
branches and ensuring stable defect detection performance. The feature maps extracted by 
the BiFPN-FE module significantly enhance the final classification and prediction 
capabilities of the YOLOv5s network. 

(3) Modification of the up-sampling operation of the Neck module.
 In YOLOv5s, the up-sampling operation utilizes nearest-neighbor and bilinear interpolations. 

This approach offers the benefits of reduced computational complexity, a straightforward 
algorithm, and rapid processing. However, the nearest-neighbor interpolation method only 
considers the gray-level binary values of the closest pixels to the sampling point as input, 
neglecting the values of other adjacent pixels. Consequently, the original YOLOv5s’ up-
sampling operation may result in a loss of image information and decreased object detection 
accuracy.(34) 

 In contrast to the nearest-neighbor interpolation, which focuses solely on the immediate 
pixel region around the sample point, the content-aware reassembly of features (CARAFE) 
module enables up-sampling across a broader receiving range by aggregating continuous 
information from neighboring regions.(35) By employing adaptive and optimized 
recombination cores at different locations, the CARAFE module achieves finer feature maps 
with minimal detail loss and more suitable sampling for strip-steel surface defect 
characteristics. 
 The CARAFE module serves as a reassembly operator employing content-aware kernels 
and comprises two sequential steps: the prediction of a reassembly kernel for each target 
location based on its content, followed by the reassembling of features using the predicted 
kernels. The operational processes are delineated by the following formula:

 ( )( ), ,l l encoderW N X kψ′ =  (6)

 ( )( ), , ,l l up lX N X k Wφ′ ′′ =  (7)

where ψ denotes the kernel prediction module and ϕ represents the content-aware reassembly 
module. Here, X signifies the original feature map, while X' refers to the new feature map 
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generated after up-sampling. The variable l denotes the original target position, and l' 
indicates the target position post-up-sampling. N(Xl, k) symbolizes the k × k subregion of X 
centered at position l, essentially representing the domain of Xl. Wl' pertains to the kernel 
prediction module ψ that predicts an appropriate kernel for each location l' using contextual 
information extracted from Xl. 
 Furthermore, in Eqs. (6) and (7), kup represents the reassembly kernel size, whereas 
kencoder is a convolution layer with a specific kernel size. An empirical formula such as 
kencoder = kup − 2 has been observed to strike an optimal balance between performance and 
efficiency in this context. For further details on CARAFE’s operations, refer to Ref. 35.

 The diagram in Fig. 4 illustrates the enhanced RSSDD YOLO algorithm model, focusing on 
the Neck component.

3.3 Bounding box regression loss function WD-IoU

 The NEU-DET dataset(25) utilized in this study is a publicly available collection specifically 
curated for the analysis of surface defects on steel material. Using the steel data sets, we 
calculated the ratio of surface defect area to image area for each picture, as detailed in Table 1. 
The findings revealed that approximately 24.2% of total defects have a defect area ≤5%, while 
about 44.8% of total defects have a defect area ≤10%. This underscores the significance of small 
surface defects and small- to medium-sized imperfections, such as inclusions, patches, roll 
scraps, and scratches, within steel data.
 Wang et al.(36) and Sun et al.(37) emphasized the high susceptibility of the intersection over 
union (IoU) metric to small-target bounding box displacement, as illustrated in Fig. 6. When the 

Table 1
Ratio of area for defect in NEU-DET dataset.
Ratio of defect area to image area No.
≤ 1% 51
1% < Ratio of Area ≤ 5% 963
5% < Ratio of Area ≤ 10% 863
> 10% 2312

Fig. 6. (Color online) IoU changes for small targets and large targets. (a) Large targets and (b) small targets.

(a) (b)
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predicted bounding boxes in Figs. 6(a) and 6(b) are shifted by an equal number of pixels, a more 
pronounced change can be seen in the IoU values in Fig. 6(a), indicating that IoU computation 
has a greater impact on small-target displacements. Here, Agt represents the true bounding box 
of the target, while Apred1 and Apred2 denote two different cases of predicted bounding boxes for 
the targets. Moreover, it is important to note that because of its reliance on the overlap ratio for 
position bounding box loss calculation, the CIoU loss function used in the original YOLOv5s 
model does not effectively capture distinguishing characteristics of small targets.
 Drawing from the surface defect data of diverse steel materials in NEU-DET,(25) as delineated 
in Table 1, and which encompass defect targets of varying dimensions, we introduce a calculation 
method for the Wasserstein distance IoU (WD-IoU) loss function 

IouWDL  of the predicted 
bounding box. This approach is tailored to concurrently accommodate targets of diverse sizes, 
thereby enhancing the regression accuracy of the RSSDD YOLO algorithm model and 
optimizing the efficiency of detecting and identifying defect targets. 
 The WD-IoU loss function 

IouWDL  is computed as follows. 

 1
IouWD IoUL WD= −  (8)

 ( )1 2,IoU gt pred IoUWD NGWD Dis Aspλ λ= ⋅ + ⋅ −   (9)

In Eq. (9), the WDIoU metric is constrained within the range of [0, 1] and [ ]1 2 0,1,λ λ ∈  denote the 
scale coefficients, which are tuned by the NEU-DET dataset.(25) The selection process for λ1 and 
λ2 is further described in Sect. 4. 

IouWDL  is primarily composed of three constituent parts; the 
detailed calculation procedures are outlined for each component below.
(1) ( ),gt predNGWD   .
 The rectangular box, defined by the vector R = [cx, cy, h, w]T representing its center 

coordinates (cx, cy), height h, and width w in the image map, can be accurately characterized 
as a two-dimensional Gaussian distribution. This model accurately captures the varying 
weights of pixels within the box, with the central pixel (cx, cy) exhibiting maximum weights 
with h and w and gradually decreasing towards the boundary on two axes. Mathematically, 
this representation aligns with the two-dimensional Gaussian distribution ( ),µ Σ ,

 
2

2

0 / 4 0
, ,

0 0 / 4

cx h
cy w

µ
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 (10)

where µ and Σ represent the covariance matrix of the mean vector and the Gaussian 
distribution. 

 The Wasserstein distance is a metric derived from optimal transport theory.(36,37) The 
Gaussian-Wasserstein distance (GWD) between two 2-dimensional Gaussian distributions 

( )1 1 1,m µ= Σ  and ( )2 2 2,m µ= Σ  can be formally defined as 

 ( )
222 1/2 1/2

2 1 2 1 2 1 22 2
.,W m m µ µ= − + Σ − Σ  (11)
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 Thereby, the vector R representations of the ground truth bounding box and the predicted 
bou nd i ng  box  a re  denot ed  a s  Rg t  =  [c xg t ,  c y g t ,  w g t /2 ,  h g t /2]T  a nd 
Rpred = [cxpred, cypred, wpred/2, hpred/2]T, respectively. Here, ( )gt gt,  cx cy  represent the center 
coordinates of the ground truth bounding box, while wgt and hgt denote its width and height. 
Similarly, ( )pred pred,cx cy  indicate the center point coordinates of the predicted bounding box, 
with wpred and hpred representing its width and height. Following Eq. (10), ( ),gt gt gtµ Σ  is 
obtained for modeling the multivariate Gaussian distribution of the ground truth bounding 
box, as well as ( ),pred pred predµ Σ  for the predicted bounding box. Subsequently, in 
accordance with Eq. (11), we calculate the GWD ( ) [ )2

2 gt pred, 0, W ∈ ∞   between these 
distributions to quantify their dissimilarity. The NGWD is further adjusted using an 
exponential function: 

 ( ) ( ) [ ]2
2

1, exp , 0,1 ,gt pred gt predNGWD W
γ

 
= − ∈ 

 
     (12)

where γ is a constant determined by the average absolute magnitude of the target in the 
dataset.

(2) Ratio of height difference to width difference: Asp.
 According to Ref. 38, an effective bounding box regression loss should take into account the 

overlapping area of the predicted bounding box and the ground truth bounding box, as well as 
the distance between their center points and aspect ratio. The NGWD introduced in Eq. (12) 
addresses both the overlapping area and the center distance between two boundary boxes 
simultaneously. Therefore, for incorporating the aspect ratio, we adopt the formula for 
calculating the ratio of height difference to width difference of the ground truth and predicted 
bounding boxes from the EIoU loss function.(29)

 ( ) ( )2 2

2 2

, ,pred gt pred gt

w h

w w h h
Asp

C C

ρ ρ
= +  (13)

 The variables wpred and hpred represent the width and height of the predicted bounding box, 
while wgt and hgt denote the width and height of the ground truth bounding box. The terms 
ρ2(wpred, wgt) and ρ2(hpred, hgt) signify the squared differences between the widths of the 
predicted and ground truth bounding boxes, as well as their heights, respectively. Cw and Ch  
respectively stand for the width and height of the minimum enclosing rectangle encompassing 
both the predicted and ground truth bounding boxes.

(3) Evaluation of positional regression for large predicted bounding boxes.
 The concentration of the foreground in the center of the bounding box for small targets and 

the background being predominantly distributed along the edge of the bounding box 
necessitates the utilization of NGWD to represent the overlap area between the ground truth 
and predicted bounding boxes. This approach also accounts for their distance from the center 
point, facilitating a gradual reduction in distribution weight from the center to the edge, 
aligning with characteristics specific to small targets. It is important to note that large targets 
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may not necessarily adhere to this distribution pattern. Given that large targets constitute a 
significant proportion of our dataset, as shown in Table 1, further consideration is required 
for elements such as real overlapping areas between two bounding boxes and distances 
between their respective center points. The relevant calculation formula is provided below.

 
( )2

2

,pred gtpred gt
iou

pred gt

A AA A
Dis

A A D

ρ∩
= −

∪
 (14)

 The first term in Eq. (14) is the IoU ratio, and the term ρ(Apred, Agt) refers to the Euclidean 
distance between the centroid of the predicted bounding box Apred and the centroid of the 
ground truth bounding box Agt. In this context, D signifies the diagonal length of the 
minimum enclosing rectangle formed by Apred and Agt. D is frequently employed in object 
detection applications to assess spatial alignment between predicted bounding boxes and 
their corresponding ground truth annotations.

4. Experimental Results and Analysis

4.1 Experimental dataset

 The NEU-DET dataset(25) utilized in this study is a publicly available collection specifically 
curated for the purpose of analyzing surface defects on steel sections. It encompasses six distinct 
defect categories: cracks (Cr), inclusions (In), patches (Pa), pittings (Ps), rolling scraps (Rs), and 
scratches (Sc). Visual examples of these six defect types are shown in Fig. 7. Each category 
consists of a total of 300 high-resolution images measuring 200 × 200 pixels. Each type of defect 

(a) (b) (c)

(d) (e) (f)

Fig. 7. Six defect categories of NEU-DET datasets (a) Cr, (b) In, (c) Pa, (d) Ps, (e) Rs, and (f) Sc.
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was randomly divided into training and test sets at a ratio of 9:1, resulting in 1620 pieces 
allocated to the training set with 270 pieces for each type; and 180 test sets, with 30 samples for 
each category.

4.2	 Experimental	configuration	setup	and	training	strategy

 The experimental setup utilized the Ubuntu 20.04 LTS operating system with 16 GB of 
memory, an AMD Ryzen 5 5600X CPU, and an NVIDIA GeForce RTX3060 GPU with 12 GB 
of VRAM. PyTorch version 1.10.1 and CUDA version 11.2 were employed for software 
implementation, while Python version 3.7 served as the primary programming language. 
 The training strategy remained consistent across all experiments, utilizing a batch size of 16 
and fixed input image size of 640 × 640 pixels. The training process involved a total of 120 
epochs, commencing with an initial learning rate set at 0.01 and a momentum value of 0.937 
using stochastic gradient descent (SGD) as the optimizer with a regression coefficient set to 
optimize the model at a value of 0.0005.

4.3 Evaluation index

 The identification of various types of defect on strip-steel surfaces is a critical task that 
requires the model to detect them quickly and accurately. In the experimental evaluation, the 
mean average precision (mAP), which is commonly used in object detection to reflect the overall 
accuracy of the model, the parameter count of the model, the giga floating point operations per 
second (GFLOPS), and the frames per second (FPS) were employed as key metrics to gauge the 
accuracy and real-time performance of the RSSDD YOLO algorithm model for strip-steel 
surface defect detection. 
 The equations for calculating mAP and FPS are as follows:

 
0

1 ,
n

i
i

mAP AP
n =

= ∑  (15)

 
_ ,
_

Frame NumFPS
Elapsed Time

=  (16)

where AP represents the average precision across all IoU categories. Frame_Num denotes the 
total number of frames to be processed, and Elapsed_Time signifies the total duration of model 
inference. A higher FPS indicates a higher model detection speed and greater throughput in 
terms of images processed per second.

4.4 Experimental analysis of BiFPN-FE module

 Feature fusion is a critical strategy for enhancing the performance of model detection 
algorithms. In this study, we introduce the CARAFE module within the BiFPN double-path 
weighted feature pyramid network, as depicted in the Neck in Fig. 4, to further augment feature 
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incharacterization and elevate model detection accuracy. Furthermore, in terms of the original 
YOLOv5s model, the experimental analysis in the section delves into (1) assessing the impact of 
channel dimension series operation and channel summation operation on the feature fusion 
capability of the BiFPN module, (2) evaluating how the CARAFE up-sampling method affects 
the feature extraction prowess of the model, and (3) examining the synergistic effect resulting 
from combining the CARAFE within the BiFPN module. The experimental findings are detailed 
in Table 2.
 By analyzing the results from Table 2, we can identify the following key points.
(1) The BiFPN utilizing channel dimension concatenation (Concat) operation demonstrates a 

2.6% increase in mAP compared with the original network with PANet, whereas the BiFPN 
using channel summation operation only shows a 1.1% enhancement.

(2) Following the incorporation of the CARAFE up-sampling module, both the PANet feature 
fusion mode and BiFPN under the Concat operation exhibit a significant improvement in 
mAP, indicating that the CARAFE module effectively enhances the model’s feature 
extraction capability and integrates well with the BiFPN module. Specifically, the mAP value 
of the BiFPN module utilizing Concat combined with CARAFE is 81.2%, marking a 3.2% 
improvement over the original Yolov5s model algorithm, whereas combining the channel 
summation operation with CARAFE results in only a 1.9% increase.

(3) Despite causing a reduction in the model detection speed, the CARAFE up-sampling module 
still meets real-time detection requirements. Experimental findings validate the effectiveness 
of employing Concat operation combined with CARAFE within the BiFPN structure for 
feature fusion, leading to its designation as a feature-enhanced BiFPN-FE module.

4.5 Experimental investigation of the WD-IoU bounding box regression loss function

 The WD-IoU loss function 
IouWDL  in Eqs. (8) and (9) includes two constants [ ]1 2 0,1,λ λ ∈ . 

When (λ1, λ2) = (0, 1), 
IouWDL  decreases to 

IouEL .(29) These constants must be carefully selected to 
ensure that [ ]0,1 IoUWD ∈ , and the optimal performance of the RSSDD YOLO model with 
respect to detection and identification tasks can be achieved. The selection of λ1 and λ2 involves 
evaluating the mAP value derived from the model’s detection results and conducting 
experimental analysis on the detection data to determine the appropriate combination of (λ1, λ2).
 As illustrated in Fig. 8, the Y axis represents the value of λ1 while the X axis corresponds to 
the value of λ2. The numbers within each grid denote the mAP values obtained from detection 
results generated by the RSSDD YOLO model under various combinations of (λ1, λ2). According 

Table 2
Experimental results of different types of feature fusion.

Type of feature fusion mAP (%) Parameter count 
(M)

GFLOPS 
(G) FPS

PANet 78.0 7.02 15.8 111
PANet (+CARAFE) 78.8 (+0.8) 7.16 16.1 68
BiFPN (Add) 79.1 (+1.1) 7.17 16.4 105
BiFPN (Add+CARAFE) 79.9 (+1.9) 7.31 16.7 64
BiFPN (Concat) 80.6 (+2.6) 7.09 16.0 108
BiFPN (Concat+CARAFE) 81.2 (+3.2) 7.23 16.3 68
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to Table 1, small- and medium-sized targets with a defect-area-to-image-area proportion of less 
than 5% account for approximately 24.2% of all targets, and those with a proportion below 10% 
make up about 44.8%. Consequently, the ratio of targets with an area proportion below 5% to 
other targets is roughly 0.319, while for those with a proportion below 10%, it stands at 
approximately 0.812.
 As depicted in Fig. 8, the incorporation of NGWD (λ1 ≠ 0) leads to a higher mAP value for the 
RSSDD YOLO model than in the case of CIoU alone (λ1 = 0, λ2 ≠ 0). When the ratio of λ1/λ2 is 
approximately 0.319 or 0.812, the mAP exceeds 80.50%. Therefore, because of the findings in 
Fig. 8, we further investigate the selected values of (λ1, λ2). The strategy for value selection 
involves fixing one of them to correspond to a larger mAP value in Fig. 8 while simultaneously 
satisfying λ1/λ2 = 0.319 or λ1/λ2 = 0.812. Table 3 presents the mAP values of the RSSDD YOLO 
model corresponding to the ratio of λ1/λ2.
 From the results presented in Table 3, it is evident that the model achieves a mAP value of 
80.55% when λ1 = 0.25 and λ2 = 0.784, whereas with λ1 = 0.609 and λ2 = 0.75, the mAP value is 
80.74%. Notably, a higher mAP value is observed when the ratio of λ1/λ2 = 0.812 than when λ1/λ2 
= 0.319. These findings suggest that leveraging the ratio of λ1/λ2 as an approximation for 
discerning targets with area ratios below 10% versus other targets has significant potential for 
enhancing the model’s detection accuracy. Subsequently, in our analysis of the experimental 
results, we selected λ1 = 0.609 and λ2 = 0.75 to compute the WD-IoU loss function 

IouWDL .
 Table 4 presents the experimental results of the RSSDD YOLO model, showcasing 
performance metrics obtained using three distinct loss functions, CIoU, NGWD, and WD-IoU. 
The AP50 metric represents the average precision at an IoU threshold of 0.5, while the AP75 
indicates the average precision at an IoU threshold of 0.75. Additionally, AP denotes the mean 
average precision across various IoU thresholds from 0.5 to 0.95, with APS, APM, and APL 
denoting the mean average precisions for small, medium, and large targets, respectively. The 
subsequent results can be inferred from the data in Table 4.

Fig. 8. (Color online) Experimental results for selection of λ1 and λ2.
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(1) Compared with the CIoU loss function, the utilization of the NGWD loss function in the 
model results in a 2.1% increase in the AP50 value, which indicates an increased detection 
accuracy for small- and medium-area objects, with improvements of 2.8% and 1.1% in APS 
and APM values, respectively.

(2) The CIoU loss function within the model yields superior detection performance for large-
area objects, leading to a 1.3% higher APL value compared with that achieved by applying the 
NGWD loss function.

(3) Under identical conditions, employing the WD-IoU loss function leads to the optimal 
detection performance for the model, where an AP50 of 80.7% was achieved. Furthermore, it 
attains the peak detection accuracy for small- and large-area targets among all three loss 
functions compared with using the CIoU loss function, and an APS of 36.9% and an APL of 
65.8% were obtained.

(4) The use of the WD-IoU loss function results in minimal disparity in detection accuracy 
between small-area and large-area objects of only 28.9%, which is 4.5% lower than when 
using the CIoU loss function and 0.4% lower than when using the NGWD loss function.

(5) Experimental findings indicate that the WD-IoU loss function effectively facilitates the 
precise regression of target bounding boxes while enhancing the overall defect detection 
performance across various sizes.

4.6 Ablation experiments

 The RSSDD YOLO model is an evolution of the original YOLOv5s model, integrating 
improvements in the Backbone, the feature fusion module, and the bounding box regression loss 

Table 3
Experimental results with various selections of (λ1, λ2).

Experiment (1) with λ1/λ2 = 0.319. Experiment (2) with λ1/λ2 = 0.319.
λ1 λ2 = λ1/0.319 mAP (%) λ1 = 0.319 λ2 λ2 mAP (%)

0.25 0.784 80.55 0.08 0.25 79.28
0.50 ∉[0,1] none 0.16 0.50 80.45
0.75 ∉[0,1] none 0.239 0.75 80.51
1 ∉[0,1] none 0.319 1 79.80

Experiment (3) with λ1/λ2 = 0.812. Experiment (4) with λ1/λ2 = 0.812.
λ1 λ2 = λ1/0.812 mAP (%) λ1 = 0.812 λ2 λ2 mAP (%)

0.25 0.308 80.62 0.203 0.25 80.56
0.50 0.616 80.67 0.406 0.50 80.40
0.75 0.924 80.42 0.609 0.75 80.74
1 ∉[0,1] none 0.812 1 80.71

Table 4
Detection results obtained with different loss functions.
Loss 
function

AP (%) AP AP50 AP75 APS APM APLCr In Pa Ps Rs Sc
CIoU 48.7 78.4 95.0 87.1 62.8 96.0 45.0 78.0 52.2 31.9 38.8 65.3
NGWD 50.8 80.2 94.7 92.2 66.8 95.9 46.1 80.1 53.2 34.7 39.9 64.0
WD-IoU 50.9 82.5 94.0 92.6 67.4 96.8 46.5 80.7 53.4 36.9 39.2 65.8
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function. A series of ablation experiments have been meticulously designed to evaluate the 
impact of these enhancements on the performance of the RSSDD YOLO model and to explore 
potential interactions between them, using the original YOLOv5s model as a reference point. 
The results of these experiments are detailed in Table 5 for comprehensive analysis.
(1) Upon the exclusive utilization of the BiFPN-FE module, there was an increase in the 

parameter count. However, compared with the original YOLOv5s model, a 3.2% rise in the 
mAP value was observed. This indicates that the BiFPN-FE module effectively augments the 
feature extraction capability and proficiently learns crucial features, thereby enhancing the 
detection performance of the model.

(2) Substituting the CIoU loss function with the WD-IoU loss function in the original YOLOv5s 
model ensures the efficient fitting of the ground truth bounding box for both small- and 
large-target predicted boxes during model training. Without altering the parameter count of 
the model or floating-point operations, there is a 2.7% increase in mAP.

(3) The introduction of the RepVGG–Light_N module resulted in a 2.6% increase in mAP 
compared with the original network. This signifies that the module adeptly extracts context 
information related to defects and enhances the overall detection effectiveness within the 
model. Furthermore, it can be simplified into a single-branch structure during the inference 
stage to improve the model detection speed.

(4) According to the results of experiment 8, when juxtaposed with the original YOLOv5s 
model, our proposed RSSDD YOLO model yields a 4.1% increase in the mAP value while 
achieving a detection speed of 68 FPS. It demonstrates superior detection accuracy with 
fewer parameters and shorter floating-point operation times than its predecessor while 
maintaining exceptional real-time detection capabilities.

 Furthermore, the empirical results obtained from experiments 5 to 7 have demonstrated that 
the various enhancement strategies proposed in this study can be effectively integrated. The 
inclusion of the BiFPN-FE module leads to a higher average detection accuracy for the RSSDD 
YOLO model than when the BiFPN-FE module is not included. This indicates that the BiFPN-
FE module makes a significant contribution to enhancing the detection accuracy of the original 
model. This finding aligns with experimental data showing that incorporating only the BiFPN-
FE module results in the largest increase in the mAP value. 
 The observed improvement can be attributed to several factors including the capability of the 
BiFPN-FE module to adaptively learn from salient features, assimilate richer semantic 

Table 5
Results of ablation experiments.

No. RepVGG–
Light_N BiFPN-FE WD-IoU mAP (%) Parameter 

count (M)
GFLOPS 

(G) FPS

1 78.0 7.0 15.8 111
2 √ 80.6 (+2.6) 6.7 15.0 114
3 √ 81.2 (+3.2) 7.2 16.3 68
4 √ 80.7 (+2.7) 7.0 15.8 112
5 √ √ 81.9 (+3.9) 6.9 15.5 66
6 √ √ 81.1 (+3.1) 6.7 15.0 116
7 √ √ 81.5 (+3.5) 7.2 16.3 70
8 √ √ √ 82.1 (+4.1) 6.9 15.5 68
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information, and aggregate contextual details surrounding image features. As a result, the 
BiFPN-FE module enables a more targeted focus on defect regions within the network 
architecture and proves more adept at addressing defect detection tasks than its predecessor.
 In addition, to comprehensively evaluate the performance of the RSSDD YOLO model 
algorithm proposed in this study, we compared the detection capabilities of the RSSDD YOLO 
model and the original YOLOv5s model. As depicted in Fig. 9, it is evident that the RSSDD 
YOLO model excels at detecting various defects, such as Cr, In, Rs, and Sc, which are 
undetectable by the original YOLOv5s model. Furthermore, the RSSDD YOLO model 
demonstrates its capability to successfully identify small target defects overlooked by the 
original YOLOv5s model in In, Rs, and Sc samples. These results indicate that the RSSDD 
YOLO model algorithm exhibits superior detail capture capability compared with the original 
YOLOv5s model. Additionally, while multiple defects were identified by the original YOLOv5s 
model in the right half of the Pa sample, only one defect was accurately identified by the RSSDD 
YOLO model. Thus, its advantage in global information extraction is highlighted.

4.7 Contrast experiments

 To evaluate the progress and effectiveness of the RSSDD YOLO model proposed in the study, 
comparative experiments were conducted with SSD, YOLOv3, and YOLOv4, as well as original 
algorithms such as YOLOv5s, YOLOX, and YOLOv7 on the NEU-DET dataset. The 
experimental results are presented in Table 6 for assessment.
 Upon a comprehensive analysis of the data presented in Table 6, several key insights were 
gleaned. 
(1) The mAP of the RSSDD YOLO model reached an impressive 82.1%, surpassing those of 

other mainstream single-stage object detection models. Notably, the RSSDD YOLO model 
demonstrated superior accuracy in detecting Pa, Rs, and Sc defects compared with alternative 
algorithm models. 

Fig. 9. (Color online) Detection results obtained using RSSDD YOLO and YOLOv5s models.
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(2) Furthermore, for the comparative evaluation of the scale of various detection models, the 
parameter count and GFLOPS serve as pivotal metrics. In contrast with SSD, YOLOv3-SPP, 
YOLOv4, YOLOv5s, and YOLOXs, the RSSDD YOLO model reduced the parameter count 
by 6.8, 55.7, 15.6, 0.1, and 2 M, respectively. When juxtaposed against the lightweight models 
such as YOLOv7-tiny and YOLOv7s, the increase was merely 0.9 and 0.7 M, respectively, 
signifying that the RSSDD YOLO algorithm model ensures heightened detection accuracy 
while augmenting the parameter count. 

(3) To effectively gauge the object detection speed of each model, the FPS, which is provided in 
Eq. (16), serves as a crucial metric. The RSSDD YOLO model’s detection speed is lower by 
43 FPS than that of YOLOv5s, 16 FPS than that of YOLOXs, and 73 FPS than that of the 
lightweight YOLOv7-tiny model. However, the RSSDD YOLO model still maintains a higher 
detection speed than the other types of detection model algorithm.

 To summarize, the RSSDD YOLO model not only improves the detection accuracy, but also 
ensures real-time algorithm execution, rendering it suitable for deployment in defect detection 
environments necessitating high precision and real-time performance.

5. Conclusions

 In the context of the formidable challenges associated with achieving both high precision and 
high speed in detecting surface defects on strip steel within a steel production plant, we 
introduced an improved RSSDD YOLO algorithm model based on the YOLOv5s model. We 
proposed three improvement strategies. 
(1) A RepVGG–Light_N module was introduced to replace the C3_1 module in the Backbone, 

thereby augmenting the feature extraction capability while preserving reasoning speed, 
equilibrium detection accuracy, and detection speed. 

(2) An enhanced BiFPN-FE structure for feature fusion was designed to improve the multiscale 
prediction capability for strip-steel surface defects.

(3) A bounding box regression loss function of WD-IoU was proposed to increase the detection 
accuracy for small target defects. 

Table 6
Result of comparative experiments with different object detection models.

Method
AP (%)

mAP(%)
Parameter 
count (M)

GFLOPS 
(G)

FPS
Cr In Pa Ps Rs Sc

1 SSD 35.2 91.3 92.2 53.3 50.3 34.1 59.4 13.7 15.4 50

2
YOLOv3-
SPP

38.9 65.4 71.7 88.2 49.4 67.5 63.5 62.6 117.1 41

3 YOLOv4 38.4 74.4 94.3 90.6 57.6 88.7 74.0 22.5 52.0 45
4 YOLOv5s 48.7 78.4 95.0 87.1 62.8 96.0 78.0 7.0 15.8 111
5 YOLOXs 51.2 80.9 93.3 89.4 64.2 95.6 79.1 8.9 26.8 84

6
YOLOv7-
tiny

39.6 77.4 95.5 93.5 52.7 87.5 74.4 6.0 13.1 141

7 YOLOv7s 60.2 81.8 96.4 88.5 63.3 94.7 80.8 6.2 103.2 57

8
RSSDD 
YOLO

58.9 82.0 97.2 92.4 66.1 96.2 82.1 6.9 15.5 68
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 The experimental results validated the efficacy of the RSSDD YOLO algorithm model, 
which exhibited superior detection accuracy compared with other mainstream object detection 
models and effectively mitigated issues such as the false detection and missed detection of small 
targets. Furthermore, the algorithm provided real-time detection results.
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