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	 Oral mucosal cell sampling is primarily utilized to gather samples of sloughed oral epithelial 
cells or cells in the throat for influenza DNA testing. In the robot sampling process, the image 
segmentation of the oral and pharyngeal swab sampling area plays a crucial role. However, 
owing to the complex nature of the oral sampling area, the accuracy of image segmentation can 
be slightly affected. A pharyngeal swab sampling image segmentation method based on an 
enhanced Deeplabv3+ model in the field of machine learning is proposed in this paper. The 
method applied hollow convolution to capture comprehensive information of each convolution 
output. We utilized deep learning of machine learning methods to enhance and refine the 
segmentation accuracy of the sampling area and gathered 1774 oral images from 81 volunteers, 
including children, youth, and middle-aged and elderly individuals, for training, validation, and 
testing. By comparing the experimental results of U-Net, Mobilenetv2, and Xception, it has been 
proven that the improved Xception network model has good segmentation performance, with 
accuracy, recall, and precision of 92.12, 92.86, and 97.69%, respectively. The experimental 
results indicate that this method accurately and efficiently segments the M-region of the 
pharyngeal swab sampling area, overcomes boundary discontinuity or ambiguity issues common 
in other segmentation methods, and possesses a high segmentation accuracy.

1.	 Introduction

	 Currently, oral mucosal genetic testing is utilized as a clinical testing method for detecting 
the genetic structure and composition of the oral mucosa. This method enables swift screening 
for bacteria, fungi, and viruses, and also aids in diagnosing and treating related oral diseases 
such as oral mucosal inflammation and oral cancer. Typically, oral pharyngeal swabs are used 
for sample collection; however, there are concerns for the safety of medical personnel conducting 
the test, particularly in cases where patients cough and generate a significant amount of droplets 
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or aerosols. Additionally, the skill level and inconsistent collection operations of medical staff 
can lead to varying sample quality and misdiagnosis risks.
	 To mitigate infection risks and standardize oral mucosal detection sampling, a visual-guided 
oral mucosal sampling robot has been developed to replace manual sampling. However, the 
accuracy of image segmentation for the oral sampling area can be challenging owing to its 
complex environment. Precise identification and segmentation of the oral cavity’s sampling area 
(i.e., M-region as depicted in Fig. 1) play a key role in the oral mucosal sampling robot’s sampling 
process.
	 Image segmentation is a crucial preprocessing step for image recognition and computer 
vision in the field of machine learning. However, segmentation relies solely on the brightness 
and color of pixels within the image, which leads to various challenges when processed 
automatically by computers. Uneven illumination, noisy regions, unclear parts, and shadows 
frequently cause segmentation errors. Further exploration is necessary to advance image 
segmentation, which divides images into subsets called regions to isolate objects from their 
background.(1) Standard methods for image segmentation include threshold, clustering, and edge 
detection. Digital image processing comprises three stages: image processing, image analysis, 
and image understanding.(2) Image segmentation plays an essential role in this processing, as it 
extracts objects from their backgrounds,(3–7) and significantly impacts image recognition. 
Moreover, segmentation can transform high-resolution images into an abstract form for analysis 
and comprehension,(8) enabling recognition, characterization, and measurement of targets on the 
basis of their segmentation. In biomedical image segmentation tasks, the U-Net architecture is 
widely used,(9) such as for optic disc and cup image segmentation,(10) blood vessel 
segmentation,(11) and tumor segmentation.(12) U-Net architecture uses an encoder–decoder 
structure to accurately locate targets of different scales through path expansion in the prediction 
stage, and jump connections are used to fuse multilevel features. Such connections help restore 
the full spatial resolution of the network output and effectively solve issues caused by the 
insufficient resolution of feature maps, ensuring accuracy of the segmented boundary.
	 Major image segmentation strategies utilize multiple scale features, leveraging scale 
consciousness, context information, and robustness enhancement for enhanced segmentation 
precision and resilience.(13–16) An image pyramid, where subsequent images are scaled down 
using an average strategy, is constructed. Each pixel contains a local average that corresponds to 

Fig. 1.	 (Color online) Oral cavity and marked M-region in the field of machine learning.
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the pixel neighborhood in the lower level of the pyramid. Once this segmentation method is 
completed, the pyramid is upsampled and aggregated. This method is considered reasonable as it 
processes coarse and fine scale information interactively on the basis of the human visual 
system. Multiscale methods have found widespread applications in medical image processing. 
Lin et al. proposed a multiscale level set for echo image segmentation.(17) Kumar et al. suggested 
an edge detection and segmentation of leukocyte nuclei based on K-means, which enables 
hematologists to quickly and clearly identify leukocytes.(18) Rezaee et al. combined the pyramid 
image with the fuzzy c-means clustering algorithm and proposed an unsupervised image 
segmentation method(19) that showed good results for LV cavity detection in MR images.
	 Taking into account the practical application requirements of developing a visually guided 
oral mucosal sampling robot, in this article, we focus on the problem of discontinuous or blurry 
boundaries in the M-region of the oral cavity, which occurs because of insufficient lighting and 
feature image resolution. A method for oral mucosal sampling image segmentation and 
recognition based on the improved Deeplabv3+model is proposed in this paper. The method 
includes a large amount of cavity convolution in the encoder section, while expanding the 
receptive domain of void convolution and adding an improved Xception module to enhance the 
model’s adaptability to target scale migration. The experimental results reveal that the algorithm 
possesses good recognition abilities for the oral M-region, refines the region’s boundary, and 
improves the detection accuracy. It is also highly portable and has important engineering 
application value.
	 The main academic contributions of this paper are summarized as follows.
1.	� In this study, we envisage an ingenious methodology for the tribulation and identification of 

oral mucosa sampling imagery, leveraging an augmented domain of machine learning by 
applying the advanced Deeplabv3+ model. This approach harnesses the merits of the U-Net 
Ed architecture and the atrous spatial pyramid pooling (ASPP) configuration, and augments 
the receptive field of cavity convolution to alleviate deficiencies associated with inadequate 
illumination and resolution, thus refining the imaging segmentation precision.

2.	� Traditional segmentation models can approximate the M-region in the exit cavity, but the M- 
region’s edge segmentation precision is subpar, potentially leading to significant medical 
image segmentation inaccuracy. In this study, we integrate an enhanced Xception module 
into the machine learning domain’s image segmentation recognition algorithm, thereby 
amplifying the model’s capacity to adapt to alterations in the target scale, fortify its image 
feature learning prowess, and meticulously refine the region’s boundary intricacies with 
greater precision. This enhancement substantially augments the algorithm’s processing 
accuracy and detail management capabilities.

2.	 Deeplabv3+ Model

	 Deeplabv3+ is a top-performing semantic segmentation network. It incorporates a 
straightforward yet powerful decoder to enhance the segmentation results, particularly those at 
the boundary of the target object, by combining the spatial pyramid pool module and the codec 
structure. The Deeplabv3+ semantic segmentation series model builds on the pyramid structure 
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to expand the receptive field without altering the resolution ratio, making it ideal for multiscale 
segmentation. By leveraging the benefits of the U-Net Ed structure and ASPP configuration, 
Deeplav3+ stands out as an outstanding semantic segmentation algorithm with impressive 
overall performance.

2.1	 Enhanced Deeplabv3+ model

	 The upgraded Deeplabv3+ incorporates expansion convolution residuals with varying rates 
to establish connections and extract enhanced features. This improves the network’s receptive 
field and enhances its feature receptivity. The process of segmenting the M region is 
demonstrated in Fig. 2.
	 The improved Deeplabv3+ model comprises two main components: encoder and decoder. 
The oral image input is processed by the Xception trunk network in the encoder, and the image 
is sequentially extracted by the entry flow, middle flow, and exit flow in the Xception network. 
The data first goes through the entry flow, then through the repeated middle flow eight times, 
and finally through the exit flow. The image features’ receptive field is then increased using 
atrous convolution. Subsequently, the dynamic convolution neural network (DCNN) produces 
two effective feature layers: the shallow effective features and the deep effective features. The 
latter undergoes further enhancement through the ASPP structure, followed by a new feature 
layer generated through 1 × 1 convolution. 
	 A new feature layer is created using a 3 × 3 convolution with an expansion rate of 6, which is 
then transferred to a 3 × 3 convolution with expansion rates of 12 and 18 for residual connection. 
This process helps improve the convergence speed and performance. The deep effective feature 
layer is residually connected with the new feature layer generated by the 3 × 3 convolution with 

Fig. 2.	 (Color online) Enhanced Deeplabv3+ model.
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an expansion rate of 6. The new feature layer is then subjected to a 3 × 3 convolution with an 
expansion rate of 12, which is transferred to a 3 × 3 convolution with an expansion rate of 18 for 
residual connection. The deep effective feature layer is residually linked with two new feature 
layers generated by convolution with expansion rates of 6 and 12. The new feature layer is 
obtained by a 3 × 3 convolution with an expansion rate of 18. Finally, the image pooling 
technique is utilized to generate a new feature layer for the deep effective feature layer. The five 
new feature layers obtained from the above procedures should be concated, and the number of 
channels is adjusted using 1 × 1 convolution. This results in the feature layer containing  
relatively high semantic information, denoted by the light green feature block in Fig. 3, which is 
then passed on to the decoder.
	 In the decoder, we obtain the shallow effective feature layer from the encoder. The channel 
number is adjusted using 1 × 1 convolution to derive a new feature layer, denoted by the purple 
feature block in Fig. 3. The purple and light green feature blocks are then stacked after four 
rounds of upsampling, which leads to the final effective feature layer that represents the entire 
image. After adjusting the number of channels using 1 × 1 convolution and four more rounds of 
upsampling, the width and height of the final output layer match those of the input image.

2.2	 Cavity convolution

	 Cavity convolution is an essential component of the Deeplabv3+ model and contribute to the 
extraction of multiscale information by controlling the receptive field size without altering the 
feature map’s dimensions. Figure 3(a) shows a traditional convolution, and Fig. 3(b) shows a 
cavity convolution. Cavity convolution is the inserti a 0 in the middle of the traditional 
convolution kernel, which looks like there is a hole in the middle, so it is called cavity 
convolution. Cavity convolution has the same number of parameters as traditional convolution, 
and the output feature map size is the same. The receptive field refers to the area size of the input 
layer corresponding to an element in the output result of the convolution module. The larger the 
receptive field, the less likely image information is to be lost. In Fig. 3, a 3 × 3 convolution 
kernel can achieve a receptive field size of 5 × 5 (dilated rate = 2).

Fig. 3.	 (Color online) (a) Traditional convolution and (b) cavity convolution.

(a) (b)
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2.3	 Major networks

	 Deeplabv3+ offers two main network options—Xception and Mobilenetv2. In this study, the 
Xception network was employed owing to its intermediate structure between traditional 
convolution and deep separable convolution. Xception is completely decoupled into deep 
separable convolution, allowing for the complete decoupling of cross channel correlation and 
spatial correlation in the feature mapping of convolutional neural networks. The Xception 
network architecture is divided into three parts: entry flow, middle flow, and exit flow. It 
consists of 36 convolution layers that make up the network’s feature extraction library. These 36 
convolution layers are divided into 14 modules, with the first and last modules being 
disconnected while the rest are linearly connected. First, data goes through the entry flow, then 
it moves to the middle flow eight times and finally to the exit flow.

2.4	 Depthwise separable convolution

	 Depthwise separable convolution (DSC) is used to reduce network parameters and improve 
computational efficiency. Its core idea is to decompose a complete convolution operation into 
two parts, namely, depthwise convolution and pointwise convolution. The detailed structure is 
shown in Fig. 4. The conventional convolutional kernel needs to perform convolution operations 
on each channel of the input, while depthwise convolution uses a convolution kernel for each 
channel of the input feature map, and then concatenates the outputs of all convolution kernels to 
obtain its final output, as shown in Fig. 4(a). The number of feature maps after depthwise 
convolution is the same as the depth of the input channels. The operation of pointwise 
convolution is very similar to conventional convolution operations, as shown in Fig. 4(b). The 
main function of pointwise convolution is to change the number of channels in the feature map. 

Fig. 4.	 (Color online) (a) Depthwise convolution and (b) pointwise convolution.

(a)

(b)
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By adjusting the number of output channels, feature dimensionality can be increased or 
decreased without changing the spatial dimension of the feature map.

2.5	 Loss function

	 The loss function employed in this study comprises two components, namely, the standard 
cross-entropy loss function and the set similarity metric. For pixel classification, the cross-
entropy loss function employs softmax, which is commonly used for minimizing losses. 
Specifically, Eq. (1) represents the cross-entropy loss function.

	
1
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Here, C represents the number of categories, C = 1; pi is the true value; qi is the predicted value; 
s is the Dice coefficient, which is usually used to calculate the similarity of two samples, and the 
value range is [0, 1]. The Dice coefficient s is determined using
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Here, X Y  is the intersection between X and Y; X  and Y  are the numbers of elements 
representing X and Y, respectively. The higher the Dice coefficient, the better the performance, 
indicating a stronger match between the predicted and actual results. Hence, when the probability 
of predicting the future is larger, the value of the Dice coefficient is larger.

3.	 Experimental Methods

3.1	 Data collection and environment configuration

	 The robotic device for collecting oral mucosal samples incorporates a flexible arm [shown in 
Fig. 5(a)], a camera, a wireless transmitter, and a module for recognizing the oral M-region. 
Leveraging the power of AI, this system ensures accurate sampling and automated navigation, 
as well as automatic recognition and calibration of force control. The robotic arm employs 
cutting-edge motion planning technology to autonomously collect oral mucosal samples. 
Additionally, with the help of a computer vision system, it tracks and precisely locates the 
patient’s mouth and throat, enabling it to retrieve oral mucosal samples with the utmost precision.
	 In this study, we gathered oral images from 81 participants comprising individuals of 
different ages. A total of 1569 oral images were collected and expanded to 7845 images through 
horizontal flipping and rotation. The researchers utilized annotation tools to label each image 
and create corresponding training sets under the professional guidance of respiratory doctors in 
hospitals during data collection and calibration work. The specific usage of the collected images 
is as follows: 80% as training data, 10% as validation data, and 10% as testing data. We strictly 
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categorize the sample images of volunteers of different ages into the training dataset, validation 
dataset, and testing dataset in sequence. For example, if a patient’s sample image is used as 
training set data, it cannot be placed in the validation or testing dataset. The images were also 
normalized for faster convergence speed in the loss function during network training. 

3.2	 Model training

	 The model training process consists of two stages: freezing and thawing. During the freezing 
stage, the trunk network of the model is fixed and only the feature extraction network is fine-
tuned, which minimizes video memory usage. Meanwhile, during the thawing stage, the trunk 
network is unfrozen and the feature extraction network is modified, leading to increased video 
memory usage as all network parameters are changed. The Xception model is utilized as the 
trunk extraction network, and the pytorch GPU environment is used for model training. The 
training process employs a ratio of 8:1:1 for the training set, validation set, and test set, 
respectively. The loss function obtained from the training process is shown in Fig. 6, which 
depicts a gradual decrease and convergence of the loss value curve (train loss: 0.08613) for the 
training set and the loss value curve (val loss: 0.10026) for the validation set. As shown in Fig. 6, 
it can be seen that the loss value curves of the training set and the test set gradually decrease and 
converge, indicating that the training network is the most ideal situation. To improve the 
generalization ability of the model, we used validation set data (10%) to determine the 
hyperparameters, such as the number of network layers and the number of neurons in each layer.

3.3	 Evaluating indicator

	 To assess the segmentation outcome of the M-region, accuracy, recall, and precision serve as 
evaluation metrics. The calculation formulas are provided below.

	 TP TNAccuracy
TP FP FN TN

+
=

+ + +
	 (3)

	 TPRecall
TP FN

=
+

	 (4)

(a) (b)

Fig. 5.	 (Color online) Composition of pharyngeal swab sampling system and experimental test scenario: (a) 
sampling mechanical arm and (b) sampling robot.
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	 TPPrecision
TP FP

=
+

	 (5)

	 In classification analysis, true positive (TP) represents the accurate prediction of a positive 
class; false positive (FP) refers to the incorrect prediction of a positive class instead of the true 
negative (TN) class; TN indicates the correct detection of a negative class; and false negative 
(FN) signifies the misclassification of a positive class as a negative class. Researchers evaluate 
and categorize the segmentation results of an image and determine the appropriate values 
accordingly.

4.	 Experiment

4.1	 Model training

	 Owing to the fact that the number of validation data samples in this study is only 10% of the 
total number of collected samples, to fully verify the accuracy and stability of this model, we 
collected 205 fresh oral images as model validation data to further verify the performance of the 
model. At the same time, we can also quickly adjust parameters (such as network layers, network 
nodes, iteration times, etc.) to obtain the current optimal model. This set comprised 182 standard 
oral images, as well as 23 nonstandard ones. The prediction outcomes were then subjected to 
review by professional oral sampling doctors to ensure that they met medical standards. The 
Xception test classification results are presented in Table 1 as follows: 169 TPs, 4 FPs, 19 TNs, 

Fig. 6.	 (Color online) Model training curve.

Table 1
Xception classification results.
Xception N P
F 13 4
T 19 169
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and 13 FNs. As such, the model demonstrates an accuracy of 92.12%, a recall rate of 92.86%, 
and a precision rate of 97.69%.

4.2	 Model training

	 To evaluate the segmentation performance of the improved Deeplabv3+ model using 
Xception, we compared it with U-Net and Mobilenetv2 models of the same Deeplabv3+ 
architecture. The detection and classification results for the U-Net model are presented in Table 
2, whereas those of the Mobilenetv2 model are shown in Table 3. We evaluated the performance 
of the Deeplabv3+ model with Mobilenetv2, Xception networks, and U-Net on the test set, as 
shown in Table 4, which displays the accuracy, recall, and precision values. From the results in 
Table 4, it is evident that the Xception network outperforms the two other models.
	 The segmentation outcomes of U-Net, MobileNetv2, and Xception are shown in Fig. 7. The 
first two rows of the initial column include oral mucosa images of the M-region, whereas the last 
two rows do not contain any oral mucosa images of the M-region. The initial two rows of the 
second column represent the M-region contour marked by a doctor, whereas the nonstandard 
acquisition region is left unmarked in the last two rows. The third, fourth, and fifth columns 
indicate the performances of U-Net, MobileNetv2, and Xception, respectively, in separating the 
M-region from the background region. The experimental outcomes demonstrate that the 
improved Xception method can effectively distinguish the M-region from the background region 
and enhance the accuracy of M-region contour prediction. 
	 To sum up, the network structure of Xception consists of a series of depthwise separable 
convolutional layers, which also introduce residual connections and layer-by-layer increasing 
methods. Residual connections can effectively solve the problems of vanishing and exploding 
gradients, enabling the network to train and optimize better. Compared with traditional models, 

Table 2
U-Net classification results.
U-Net N P
F 33 14
T 9 149

Table 3
Mobilenetv2 classification results.
Mobilenetv2 N P
F 19 13
T 10 163

Table 4
Results of different networks.

Accuracy (%) Recall (%) Precision (%)
U-Net 84.44 89.56 92.61
Mobilenetv2 77.07 81.87 91.41
Xception 92.12 92.86 97.69
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Xception has the following advantages. 1. Small number of parameters: Xception adopts DSC 
operation, reducing the number of parameters in the network, thereby reducing the storage and 
calculation load of the model. 2. Better generalization ability: Xception allows the network to 
better adapt to different image datasets and have better generalization ability through residual 
connections and layer-by-layer addition. Hence, this proposed segmentation method based on an 
enhanced Deeplabv3+ model accurately and efficiently segments the M-region of the pharyngeal 
swab.

5.	 Conclusions

	 Accurate segmentation of the oral mucosal sampling area is crucial for guiding robots to 
sample the oral mucosa. However, the complex environment of the oral sampling area can 
negatively impact the accuracy of image segmentation. Therefore, achieving precise 
segmentation of the M-region is essential in the robot oral mucosal sampling process. The 
experimental results show that the proposed model based on the improved Xception network 
model demonstrates an accuracy of 92.12%, a recall rate of 92.86%, and a precision rate of 
97.69%. Compared with the U-Net and Mobilenetv2 model, the improved Xception network 
model improves accuracy, recall rate, and precision by approximately 10%.
1.	� To address the above issue, we introduced improvements to the Xception network structure 

of Deeplabv3+. Specifically, the improved Xception network model incorporates hole 
convolution, multiscale feature fusion, and self-attention mechanisms to extract valuable 
features more effectively. 

2.	� Experimental data were obtained from oral images of 81 volunteers of various ages. The 
experimental results of U-Net, Mobilenetv2, and Xception were compared. The improved 
Xception network model can effectively distinguish the M-region from the background 
region and shows excellent segmentation performance. These improvements effectively 
enhance the network’s segmentation performance and successfully address the problem of 
gradient disappearance.

Fig. 7.	 (Color online) Segmentation results of U-Net, Mobilenetv2, and Xception.
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3.	� During the model training phase, TP, FP, FP, and TN were subjectively determined by 
researchers under the guidance of professional doctors. We are also exploring the use of other 
evaluation indicators in the future, such as the receiver operating characteristic curve and the 
PR curve, for objective evaluation.

4.	� The research scenario of this study is to develop an automatic oral and pharyngeal swab 
collection system for hospital systems. As a core part of it, the accurate segmentation of the 
oral mucosal sampling area is crucial for guiding robots to sample the oral mucosa. There is 
no publicly available oral image database for verification testing, and only volunteer data is 
used for model validation. In the future, it is hoped that public database resources can be 
established or found. At the same time, we will conduct an abortion experiment in our future 
research.
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