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 The application of hyperspectral remote sensing technology to soil environment monitoring 
is a cost-effective and time-saving methodology. Owing to the complex multidimensional and 
nonlinear relationships of hyperspectral data, traditional machine learning models are limited in 
their ability to deal with such complex multidimensional and nonlinear relationships. Deep 
learning models have been proven to effectively handle this complex multidimensional and 
nonlinear relational data. We took 183 soil samples from Mojiang Hani Autonomous County, 
Pu’er City, Yunnan Province and selected them as the research subjects, and the concentration of 
arsenic in the soil was predicted on the basis of the results of visible and near-infrared (Vis–
NIR) spectroscopy, and proposed a lightweight convolutional neural network (CNN) model, 
LMetal-ResNet, aiming to predict soil arsenic concentration quickly and accurately. In addition, 
we also constructed two traditional machine learning models, partial least squares regression 
and support vector regression, and a CNN model, GoogleNet7, to predict arsenic concentration. 
In all the models, the data obtained by Vis–NIR spectroscopy with Savitzky–Golay convolution 
smoothing, min-max normalization preprocessing, and Pearson correlation coefficient feature 
band selection were used as input, and the output was soil arsenic concentration. Finally, the 
modeling accuracies of these four models were compared and analyzed. The experimental 
results showed that the modeling accuracies of the CNN models were higher than those of the 
traditional machine learning models, and  LMetal-ResNet achieved the highest prediction 
accuracy using 68.59% of the parameters of  GoogleNet7. LMetal-ResNet in the validation 
dataset had a root mean square error of 106.8862 mg/kg, a coefficient of determination of 
0.8744, and a relative analytical error of 2.8221. In addition, we also analyzed the top 20 
characteristic bands that contribute to LMetal-ResNet in predicting arsenic concentration using 
soil Vis–NIR spectroscopy data. This study provides scientific theoretical guidance and 
technical support for the prediction of concentration in soil using deep learning CNNs combined 
with hyperspectral remote sensing technology.
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1. Introduction

 Soil is the basis of human productive activities. Owing to the rapid development of 
urbanization and industrialization, the problem of soil pollution by heavy metals has become 
increasingly serious and poses serious health risks to plant growth and human health.(1,2) As a 
trace element, the heavy metal arsenic can promote the growth and development of animals and 
plants in appropriate amounts, but in excess, it can lead to serious toxic effects that affect the 
health and survival of plants and animals. Arsenic is currently recognized as number one on the 
list of substances that pose the most serious potential threat to human health, causing cancer and 
many types of organ toxicity.(3,4) The traditional method of detecting heavy metal concentrations 
in soil is to collect soil samples in the field and then bring the samples back to the laboratory for 
chemical analysis. This process is time-consuming and laborious. Therefore, the rapid and 
accurate detection of arsenic concentration in soil has become a focus of environmental scientists 
around the word.  Hyperspectral remote sensing technology is now widely used in environmental 
research, precision agriculture, and other fields owing to its characteristics of high speed, low 
cost, and richness of band information. An increasing number of researchers are using this 
technology to quantitatively predict the physicochemical properties of soil.(5,6)

 Most of the previous studies use traditional machine learning models combined with 
hyperspectral remote sensing technology to predict the various physical and chemical properties 
of soil.  For example, Zhou et al. used first derivative, second derivative, inverse-log, continuum 
removal, and multivariate scattering correction as preprocessing methods for spectra. Partial 
least squares regression (PLSR), support vector machine (SVM), and random forest (RF) were 
used as prediction models to estimate the physical and chemical properties of manganese, lead, 
and zinc in soil. In the end, RF achieved the best modeling effect.(7) However, estimating heavy 
metal concentrations or other substances in soil using traditional machine learning models 
requires a great deal of specialized knowledge and experience in correctly selecting spectral 
preprocessing methods. There are also some difficulties in deeply or effectively revealing the 
complex nonlinear relationship between reflectance spectra and soil properties.(8) 
 In recent years, owing to deep learning excellent feature capturing abilities, some deep 
learning models have also been introduced in the field of hyperspectral remote sensing. CNN, as 
one of the classics among deep learning models, has achieved considerable success in many 
fields such as computer vision, natural language processing, and biomedical information.(9,10) 
Some studies have applied CNN models to soil hyperspectral inversion.(11) For example,  Zhao et 
al. used a CNN model with an attention mechanism to model soil hyperspectral data to predict 
organic carbon and achieved good results.(12) These research results indicate the feasibility of 
applying CNN models in the prediction of soil components based on hyperspectral features, and 
they proved that CNN can effectively reveal the complex nonlinear relationship between soil 
reflectance spectra and soil properties. Despite the powerful learning capability of CNN models, 
in some resource-limited scenarios, such as edge devices with limited computational resources, 
the lightweighting of CNN models also needs to be considered. Therefore, in this study, a 
lightweight CNN model, LMetal-ResNet, was proposed, and the models PLSR, support vector 
regression (SVR), and GoogleNet7 were also constructed for the prediction of arsenic 
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concentration. All the models used visible and near-infrared spectral data processed by 
Savitzky–Golay (SG) convolution smoothing, min-max normalization, and Pearson correlation 
coefficients to predict soil arsenic concentration. In addition, the characteristic bands with the 
top 20 contribution degrees in predicting soil arsenic concentration by LMetal-ResNet are also 
listed.
 In summary, the aims of this study are as follows: (1) The performance characteristics of 
convolutional neural network (CNN) and traditional machine learning algorithms in predicting 
soil arsenic concentration using Vis–NIR spectroscopy are compared. (2) A lightweight CNN 
model, LMetal-ResNet, was established to explore its potential to predict soil arsenic 
concentration. (3) The feature bands with the top 20 contribution degrees were analyzed when  
LMetal-ResNet was used to predict soil arsenic concentration.

2. Materials and Methods

2.1 Study area and data collection

 The study area is located in Mojiang Hani Autonomous County, Pu’er City, Yunnan Province, 
China (101°08′–102°04′E, 22°51′–23°59′N). The research subject is the farmland soil in the area. 
According to the second soil census data of Mojiang County, lateritic red soil, latosol red soil, 
and red soil are the main types of soil in the area. There is also a gold mine in the study area. 
This gold mine has a long history since its development, and the mining process also resulted in 
some degree of contamination of the surrounding agricultural soils. Soil samples for this study 
were obtained from February 11 to 15, 2022, and a total of 183 soil samples were obtained by the 
grid method. Sampling requires clearing the surrounding materials such as stone particles, 
weeds, and other materials. The collection depth range of each sample is between 0 and 20 cm. 
The collected soil samples were then taken back to the laboratory for soil Vis–NIR spectroscopy 
and arsenic concentration determination. Vis–NIR spectroscopy was conducted in a dark room 
using an American ASD FieldSpec3 spectrometer (band range: 350–2500 nm), and the arsenic 
concentration was determined by chemical analysis.

2.2 Spectral data preprocessing and feature band selection

 For subsequent experimental modeling and improving the predictive performance of the 
model, the preprocessing of the spectral data and the selection of the feature bands are also 
required. We first used the five-point two-order SG convolution smoothing algorithm to denoise 
the spectral data. Then, to eliminate the impact of scale differences on the final experimental 
results and accelerate the convergence speed of the model, the spectral data and arsenic 
concentration were then subjected to min-max normalization processing. The min-max 
normalization calculation formula is

 min

max min

x xy
x x

−
=

−
, (1)
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where x and y represent the data before and after normalization, respectively. xmin and xmax 
represent the minimum and maximum absorbance values of the samples at the same wavelength, 
or the minimum and maximum values of arsenic in the sample, respectively. The feature band 
selection used the Pearson correlation coefficient feature selection method. We selected 947 
spectral bands with the absolute values of correlation coefficients greater than 0.6 as feature 
bands of the input model. 

2.3 Modeling methods

2.3.1 PLSR and SVR

 PLSR is a statistical modeling technique that is mainly used to deal with the relationship 
between multivariate data. SVR is a regression algorithm based on SVM, which uses the 
maximum interval idea and kernel trick of SVM to deal with regression problems. The main 
modeling process for the PLSR and SVR models in this study was to input the preprocessed 
Vis–NIR spectral data into the two prediction models. Then, parameter optimization was 
performed using the grid search method, and the final model output was the arsenic content.

2.3.2 CNN

 CNN is a deep learning model that is commonly used in visual processing and automatically 
learns feature representations mainly through convolutional and pooling layers. The network 
structure diagrams of the two CNN models used in this study, GoogleNet7 and LMetal-ResNet, 
are shown in Figs. 1 and 2, respectively. The modeling process is mainly divided into the 
following: (1) The training set spectral data with dimensions (122947) after preprocessing and 
feature band selection are input to the input layer, where 122 denotes the number of training 
datasets and 947 denotes the number of spectral features. (2) Then, the training dataset passes 
through the convolution layer, pooling layer, and other network layers, and outputs a predicted 
value in the range of 0–1 at the output layer, and then, reverse min-max normalization is carried 

Fig. 1. (Color online) GoogleNet7 structure diagram.
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out to obtain the predicted value of arsenic. During the entire training process, the model 
updates the network layer weights through continuous iterative training to minimize the loss 
function value and save the best network weight file. (3) After the model training was completed, 
the trained model was evaluated using the validation dataset in combination with evaluation 
metrics.
 To make the CNN models comparable, each model needs to fix the activation function and 
the values of certain hyperparameters. The specific settings are as follows: 1D convolutional 
kernels are used for all convolutional layers, the learning rate is 0.001, the optimizer is Nadam, 
the activation function for the output layer is Sigmoid, and the activation function for the other 
network layers is Tanh. The number of training Epochs is 2000, and the inactivation rate of the 
Dropout layer is 50%. To avoid model overfitting, an early stopping strategy is used, and the 
number of early stops is 200.

2.4 Evaluation criteria for the model

 We used RMSE, R2, and RPD as evaluation indicators of the prediction model. RMSE is used 
to characterize the difference between predicted and measured values, with a smaller RMSE 
indicating a better performance of the model. When R2 is closer to 1, the prediction accuracy of 
the model is considered high. RPD is used to assess the predictive ability of the model. When 
RPD < 1.0, the model is considered unable to carry out the prediction task. When 1.0 < RPD < 
1.4, the model has poor predictive performance. When 1.4 < RPD < 1.8, the model has average 
predictive performance. When 2.0 < RPD < 2.5, the model has very good predictive performance, 
and when RPD > 2.5, the model has excellent predictive performance. (13,14)

Fig. 2. (Color online) LMetal-ResNet structure diagram.
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3. Results and Discussion

3.1 Statistical description of arsenic concentration in soil

 The statistical description of arsenic concentration in the 183 experimental soil samples used 
in this study is shown in Table 1. Table 1 shows that the arsenic concentrations of these 183 soil 
samples varied from 5.79 to 1780 mg/kg with a coefficient of variation of 128.8805%. This 
shows that there is considerable variability in the geographical spatial distribution of soil arsenic 
concentration in this region.(15) We used the concentration ranking scheme to divide the dataset 
of these 183 soil samples in a 2:1 ratio. The soil samples were sorted in descending order 
according to arsenic concentration, and then every three samples were grouped into one set. The 
first two in a group were divided into the training dataset and the remaining one was the 
validation dataset. Finally, the number of training datasets was 122 and the number of validation 
datasets was 61. The coefficient of variation of the training datasets was 131.0852%, and the 
coefficient of variation of the validation datasets was 123.1885%. The coefficient of variation 
between the two was not much different, indicating that the distribution difference between the 
divided training and validation datasets was small. As a result, the large geographical spatial 
variability of arsenic concentration in the study area will not affect the final evaluation results.

3.2	 Comparison	of	modeling	accuracies	of	different	prediction	models

 The prediction accuracies of the four models, PLSR, SVR, GoogleNet7, and LMetal-ResNet, 
are shown in Table 2. In the validation dataset, the RPDs of the four prediction models all 
reached above 1.8, and the prediction accuracy of the CNN model was greater than that of the 
traditional machine learning model. Among all the models, LMetal-ResNet had the highest 
prediction accuracy, with RMSE = 91.1363 mg/kg, R2 = 0.9305, and RPD = 3.7932 in the training 
dataset. In the validation dataset, RMSE = 106.8862 mg/kg, R2 = 0.8744, and RPD = 2.8221. The 
RPD of LMetal-ResNet in the validation dataset was greater than 2.5, indicating its excellent 

Table 2
Accuracies of four models in predicting arsenic.

Model Training dataset Validation dataset
RMSE R2 RPD RMSE R2 RPD

PLSR 122.4128 0.8746 2.8241 166.6468 0.6948 1.8101
SVR 146.6997 0.8199 2.3565 152.9526 0.7429 1.9722
GoogleNet7 96.7499 0.9217 3.5731 107.9214 0.8720 2.7951
LMetal-ResNet 91.1363 0.9305 3.7932 106.8862 0.8744 2.8221

Table 1
Statistical description of soil arsenic.

Attributes Sample 
datasets Num Max Min Mean SD CV (%)

Arsenic
(mg/kg)

Entire 183 1780 5.79 257.4367 331.7858 128.8805
Training 122 1780 5.98 263.7216 345.6999 131.0852

Validation    61 1372 5.79 244.8670 301.6480 123.1885
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predictive ability. The model with the second highest prediction accuracy was GoogleNet7, 
which had RMSE = 107.9214 mg/kg, R2

 = 0.8720, and RPD = 2.7951 in the validation dataset. Its 
predictive ability was also excellent. For traditional machine learning models, SVR had the 
highest prediction accuracy, and PLSR had the lowest prediction accuracy. In the validation 
dataset, RMSE = 152.9526 mg/kg, R2 = 0.7429, and RPD = 1.9722 for SVR, and RMSE = 
166.6468 mg/kg, R2 = 0.6948, and RPD = 1.8101 for PLSR. The accuracies of both models are 
average. LMetal-ResNet has the highest prediction accuracy compared with PLSR, which has 
the lowest prediction accuracy; RMSE decreased by 59.7606 mg/kg, R2 increased by 0.1796, and 
RPD increased by 1.012.

3.3 Discussion

 Previous studies using Vis–NIR spectroscopy to predict soil heavy metals mostly used 
traditional machine learning models, while there were fewer studies using CNN models in deep 
learning for prediction. Deep learning CNN has significant advantages over traditional machine 
learning models when dealing with complex nonlinear relationships and high-dimensional Vis–
NIR spectroscopy data.(16) However, deep learning models usually have a large number of 
parameters and complex network architecture. This results in a large amount of calculation and 
memory consumption, so that its deployment on edge devices faces huge challenges.(17)

 Therefore, in this study, we propose a lightweight CNN model, LMetal-ResNet, to predict   
arsenic concentration in soil. The experimental results in Table 1 show that the CNN models are 
better than the traditional machine learning models, and LMetal-ResNet achieved the highest 
prediction accuracy (in the validation dataset, RPD = 2.8221 and R2 = 0.8744). This is then 
analyzed in conjunction with the scatterplot of the four models in the validation dataset, as 
shown in Fig. 3.
 On the scatter plot, the predicted points of the CNN model are closer to the 1:1 fitting line 
than those of the traditional machine learning model. This is consistent with the experimental 
results of Pyo et al. using a CNN model with an autoencoder combined with visible and near-

Fig. 3. (Color online) Scatter plots of (a) PLSR, (b) SVR, (c) GoogleNet7, and (d) LMetal-ResNet on the validation 
dataset.

(a) (b)
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infrared spectroscopy for heavy metals such as arsenic in soil (R2 = 0.86).(18) The prediction 
accuracy of LMetal-ResNet is even higher. Additionally, the traditional machine learning 
models, PLSR and SVR, both exhibited instances of predicted points with negative values. Then, 
we analyzed the scatter plots of the two CNN models GoogleNet7 and LMetal-ResNet. We found 
that the fitting lines of the two scatter plots are roughly the same. Given that the prediction 
accuracies of the two are roughly the same, we further analyzed the parameter quantities of the 
models. The parameter quantity statistics are shown in Table 3. Table 3 shows that the number of 
parameters in LMetal-ResNet is reduced by 31.41% relative to that in GoogleNet7. Moreover, it 
maintains almost the same prediction accuracy as GoogleNet7 or even better, even when the 
number of parameters is reduced. We analyzed the reason and found that it is mainly because the 
introduction of the residual learning module allows LMetal-ResNet to avoid the loss of feature 
information when stacking multiple network layers. A shortcut connection between layers 
enables the network to be effectively trained and optimized even as the network depth increases, 
and problems such as gradient vanishing and gradient exploding are alleviated.(19) In the residual 
learning module of LMetal-ResNet, a large number of 1 × 1 convolution kernels are used. 
According to the calculation [Eq. (2)] of the convolution layer parameters, using a 1 × 1 
convolution kernel can effectively reduce the number of parameters of the model.

 ( )* * *out w h inp c k k c b= +  (2)

Here, p represents the number of parameters, cin and cout represent the numbers of channels of 
the feature map input and output, respectively. kw and kh represent the width and height of the 
convolution kernel, respectively, and b represents the number of parameters calculated for the 
bias term (b = cout).
 We also used the deep learning interpreter DeepExplainer in the SHAP library to analyze the 
contribution of the characteristic bands when LMetal-ResNet predicts arsenic concentration in 
the soil. This interpreter is inspired by game theory and uses the model’s internal information to 

Fig. 3. (Color online) (continued) Scatter plots of (a) PLSR, (b) SVR, (c) GoogleNet7, and (d) LMetal-ResNet on 
the validation dataset.

(c) (d)
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calculate the SHAP value.(20) If the SHAP average absolute value of a certain feature is high, the 
feature is considered to contribute more to the model’s prediction task. We used the validation 
set to conduct a feature band contribution test experiment on LMetal-ResNet, and the feature 
bands with the top 20 contribution degrees were extracted. The results are shown in Fig. 4.

4. Conclusions

 In this paper, a lightweight CNN model, LMetal-ResNet, was proposed. The model uses the 
results of the preprocessed Vis–NIR spectroscopy of soil as input to the model to predict arsenic 
concentration. We compared LMetal-ResNet with two traditional machine learning models, 
PLSR and SVR, as well as the CNN model GoogleNet7 in deep learning. The experimental 
results showed that the deep learning CNN models exhibit higher prediction accuracies than the 
traditional machine learning models. In particular, LMetal-ResNet outperformed the prediction 
accuracy of GoogleNet7 when using 31.41% fewer parameters than GoogleNet7 (RMSE = 
106.8862 mg/kg, R2 = 0.8744, and RPD = 2.8221). The results of this study can provide 
theoretical and technical guidance for predicting arsenic concentration using soil Vis–NIR 
spectroscopy.

Table 3
Statistics on the parameters of the convolutional and dense layers of GoogleNet7 and LMetal-ResNet.
Model Convolutional layer Dense layer Total parameters
GoogleNet7 936 434401 435337
LMetal-ResNet 2214 296401 298615

Fig. 4. (Color online) Feature bands with the top 20 contribution degrees.
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