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 Compared with traditional soil nickel (Ni) content determination methods, visible near-
infrared spectroscopy (Vis–NIR) technology can achieve the fast and non-destructive prediction 
of soil Ni content. However, Vis–NIR spectroscopy data are susceptible to environmental factors 
during the collection process; thus, it is necessary to perform appropriate preprocessing 
operations before modeling to improve the data quality and modeling accuracy. In this study, we 
focus on the polluted farmland around the gold mine in Mojiang Hani Autonomous County, 
Yunnan Province. First, Savitzky–Golay smoothing was applied to the spectrum (R), and then 
the impact of using second-order derivative processing (R’’) on modeling accuracy was 
investigated. The potentials of recurrent neural networks (RNNs), random forests (RFs), and 
partial least squares regression (PLSR) to predict soil Ni content were explored. The results 
indicated the following: (1) The model established by transforming R with second-order 
derivatives has shown a clear improvement in prediction accuracy. The use of second-order 
derivatives helps eliminate the effect of baseline drift on the spectra and also serves to remove 
noise and amplify differences between features. (2) RNN has the best performance among the 
three modeling methods, followed by RF and PLSR. Owing to the complex nonlinear 
relationships between spectral data, RNN has a greater advantage in coping with this situation, 
and RF has a limited capability to deal with this situation, which PLSR as a linear model does 
not have. (3) The best model for predicting soil Ni content in this study is R’’-RNN, which has 
high prediction accuracy and generalization ability. Its validation set root mean square error 
(RMSE), coefficient of determination (R2), relative analysis error (RPD), and ratio of 
performance to interquartile range (RPIQ) are 116.81 mg/kg, 0.85, 2.55, and 4.05, respectively. 
This study provides a new reference approach for monitoring heavy metals in contaminated 
farmland soil around gold mines.
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1. Introduction

 Yunnan Province is located in the southwestern region of China, which contains abundant 
mineral resources. The Mojiang Gold Mine is one of the largest gold mines in Yunnan Province, 
dating back more than 300 years since the late Ming Dynasty. As a result of long-term mining, 
there has been some pollution of the surrounding environment, especially heavy-metal soil 
pollution. Nickel (Ni) is one of the eight major heavy metals causing soil pollution in China. 
Although Ni is an essential trace element for living organisms, excessive intake of Ni can have 
negative effects on animals and plants. Ni in soil is not easily transported and degraded, and 
long-term accumulation will affect the ecological balance of the soil.(1) However, the traditional 
method of measuring soil Ni content is complex and time-consuming, making it difficult to 
detect soil Ni content in large areas. Visible near-infrared spectroscopy (Vis–NIR) technology is 
widely used in agriculture, food, environmental detection, and other fields because of its high 
efficiency, reliability, and environmental friendliness. In recent years, a large number of scholars 
have utilized Vis–NIR spectroscopy to predict soil-related elements.(2,3)

 However, the measurement of soil spectra is susceptible to natural light and other 
uncontrollable factors, leading to problems such as large amounts of noise and baseline drift in 
the spectral data. Appropriate preprocessing methods need to be adopted before modeling to 
improve data quality. Numerous scholars have proven that selecting relevant preprocessing 
techniques can improve model prediction accuracy.(4,5) The commonly used spectral 
preprocessing techniques currently include Savitzky–Golay smoothing, standard normal 
transformation, and multivariate scattering correction. Second-order derivative transformation 
is a classic preprocessing method, which can effectively reduce the impact of baseline drift on 
the spectrum. It also has the function of denoising and amplifying differences between features.
(6) However, the potential of second-order derivative transformation for improving the accuracy 
of soil Ni content prediction models is still unclear.
 Partial least squares regression (PLSR) as a classical linear regression model is still chosen by 
many scholars.(7) With the advancement of science and technology, PLSR is gradually replaced 
by more complex models such as support vector machine regression and random forest (RF) in 
machine learning. These models can capture the nonlinear relationship between data and better 
fit the data, thereby improving the prediction accuracy of the model.(8,9) The emergence of deep 
learning has driven science and technology further. The convolutional neural network (CNN), 
deep belief network (DBN), and recurrent neural network (RNN) are common deep learning 
algorithms. Deep learning algorithms have a complex network structure. They enable the 
automatic extraction of data features and better capture the intrinsic structure and patterns of the 
data by abstracting the features. Deep learning models typically have the characteristics of high 
accuracy and high generalization ability.(10,11) Recently, some scholars have used Vis–NIR 
spectroscopy and deep learning algorithms to predict soil properties. For example, Bai et al. 
used four deep learning algorithms, namely, 1D-CNN, 2D-CNN, long short-term memory 
network (LSTM), and DBN, to combine five feature selection algorithms to predict the content 
of soil inorganic carbon.(12) Among the four modeling methods, LSTM performed the best, with 
an R2 of 0.92 for the optimal model validation set.(12) However, there are few reports on deep 
learning algorithms for soil monitoring in Yunnan Province.
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 Overall, the goal of this study is to seek a high-precision soil Ni content prediction model. In 
the following, the impacts of different preprocessing and modeling methods on model prediction 
accuracy are discussed and analyzed.

2. Materials and Methods

2.1 Study area overview and data collection
 The research area is located in Mojiang Hani Autonomous County, Yunnan Province. 
Mojiang County is located at the southwest edge of the Yunnan-Guizhou Plateau, with a total 
area of 5312 square kilometers. The Tropic of Cancer passes through this area. The territory of 
Mojiang County is mountainous and contains rich mining resources. Here, the rainfall is 
abundant, with a clear distinction between dry and wet seasons. Owing to the mountainous 
terrain, the farmland within the area is mainly terraced, and the soil is mostly acidic. The main 
crops include rice, corn, and tea. The distribution of sampling points in the study area is shown 
in Fig. 1.
 The contaminated farmland around the gold mine in Mojiang Hani Autonomous County, 
Yunnan Province was used as the research site. A total of 122 samples were collected from the 
farmland near the gold mine from February 11 to 15, 2022. We collected soil samples from 0 to 
20 cm below the soil surface, with each sample weighing approximately 1 kg, and recorded the 
specific location information of the samples during collection. The samples were brought back 
to the laboratory, and dried naturally to remove the effect of moisture on the spectra. The 
samples were ground and sieved through a 2 mm fine sieve and divided into two equal parts. 
One part was used to measure the Vis–NIR spectroscopy reflectance, and the other part was 
used to determine the soil Ni content. Vis–NIR spectroscopy was conducted using an ASD 

Fig. 1. (Color online) Research sampling area.
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FieldSpec® 3 portable ground spectrometer (350–2500 nm). To avoid the effect of natural light, 
the spectrum measurement experiment was conducted in a dark room. Each sample was 
measured three times, and the average value was finally taken as the spectral reflectance of the 
sample.

2.2 Spectral preprocessing and dataset partitioning

 The entire band of the original spectrum was subjected to Savitzky–Golay (S–G) second-
order 15-point smoothing, and then second-order derivative transformation was performed.(13) 
Min-max normalization was performed on the observed values, and the data were denormalized 
after the model prediction was completed.
 The dataset was divided into the calibration set (67%, 82 samples) and validation set (33%, 40 
samples) according to the concentration ranking scheme. The specific steps for dividing the 
dataset are the following: sort the samples in ascending order of the Ni content, and every three 
samples from a group. The first two samples in a group are assigned to the calibration set, and 
the remaining one is assigned to the validation set. This partitioning method can evenly partition 
the dataset, making the distribution of the calibration set and validation set consistent.

2.3 Modeling methodology

 RNN is a special type of neural network and has the function of short-term memory. Its 
hidden layer is a cyclic structure, and the output at the current moment will affect the input at the 
future moment. Specifically, the input of the hidden layer at the current moment includes not 
only the output of the input layer at the previous moment, but also the output of the hidden layer 
at the previous moment. Thus, RNN can learn long-term dependences between data.(14) 
Meanwhile, RNN can achieve end-to-end learning. The structure diagram of RNN is shown in 
Fig. 2.

Fig. 2. (Color online) Structure of RNN.
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 RF is a type of ensemble learning that consists of multiple decision trees, each of which 
works independently. RF considers all the decisions of the decision tree to obtain the final 
prediction result using certain rules, which largely reduces the risk of overfitting. Owing to the 
simultaneous operation of multiple decision trees, it considerably shortens the time for model 
training and prediction, so RF is often used to process high-dimensional data.(15)

 PLSR is a classic linear model that exhibits strong predictive performance when there are 
multicollinearity relationships between data. It uses the idea of principal component analysis to 
reduce the dimensionality of data, overcoming the challenge of multivariate collinearity by 
creating new low-dimensional representations of independent and dependent variables. On these 
new dimensions, PLSR seeks models to reduce the covariance between predictor and response 
variables, thereby improving the predictive ability and stability of the model.(16)

2.4 Model evaluation

 In this study, we comprehensively evaluated the performance of a model using the root mean 
square error (RMSE), the coefficient of determination (R2), the relative analysis error (RPD), and 
the ratio of performance to the interquartile range (RPIQ).(17) RMSE measures the gap between 
the predicted and observed values of the model; the smaller the RMSE value, the more accurate 
the prediction of the model. R2 describes the correlation between the predicted values and the 
observed values. The value of R2 is between 0 and 1, and the larger the R2 value, the better the 
performance of the model. RPD and RPIQ are used to evaluate the prediction accuracy of the 
model. When RPD is above 2.0 and RPIQ is above 2.2, it suggests that the model has excellent 
predictive ability. When the RPD is between 1.8 and 2.0, it shows that the model has good 
predictive ability. When the RPD is between 1.4 and 1.8 and the RPIQ is between 1.7 and 2.2, it 
demonstrates that the model has average predictive ability. When RPD is less than 1.4 and RPIQ 
is less than 1.7, it indicates that the model is unable to make predictions. The formulas for the 
four evaluation indexes are as follows:
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where  iy  is the predicted value, iy  is the mean of the observed value, yi is the observed value, n is 
the number of samples, SD is the standard deviation of the predicted value, Q1 is the lower 
quartile of the predicted value, and Q3 is the upper quartile of the predicted value.

3. Results and Discussion

3.1	 Modeling	effects	of	the	original	spectra	and	the	transformed	second-order	derivatives

 Six quantitative prediction models for soil Ni content were constructed using RNN, RF, and 
PLSR, with spectral R and spectral R’’ transformed by the second-order derivative as 
independent variables and soil Ni content as the dependent variable. The performance of each  
model is shown in Table 1. It can be seen that among the three models established using R, only 
RNN showed good predictive ability (validation RPD greater than 1.8). The RMSE of the RF and 
PLSR validation sets is above 200 mg/kg, R2 is around 0.5, RPD is around 1.4, and RPIQ is 
around 2.2. This indicates that the stability and prediction accuracy of R-RF and R-PLSR are 
relatively low, and they do not qualify as quantitative prediction models. The prediction accuracy 
of the model built after R was transformed by the second-order derivative has been clearly 
improved. Specifically, all models based on R’’ qualify as predictive models. Among them, R’’-
RNN has an excellent ability to predict Ni, and R’’-RF and R’’-PLSR can also predict the soil Ni 
content well. Compared with the model based on R, the RMSE of the validation set of the model 
based on R’’ is within the range of 116.81–163.41 mg/kg, illustrating that the error between the 
observed and predicted values is reduced. The R2 values are all above 0.7, indicating that the 
ability of the model to fit the data has been improved. The values of RPD and RPIQ have also 
been improved by one level, further demonstrating that the model prediction accuracy has been 
clearly improved. This is attributed to several benefits of using the second-order derivative 
transformation for spectral data: first, this helps eliminate baseline drift in the spectra, thus 
improving the quality and reliability of the spectral data. Second, second-order derivative 
processing can highlight feature peaks and valleys, that is, amplify the key features, based on 
which the model can show better prediction ability. Finally, second-order derivative processing 
removes a portion of noise, which reduces the effect of noise on the spectrum and makes the 
spectral data more suitable for quantitative modeling.(18)

Table 1
Performance of each quantitative prediction model for soil Ni content.

Model Calibration Validation
RMSE (mg/kg) R2 RPD RMSE (mg/kg) R2 RPD RPIQ

R-RNN 141.20 0.79 2.18 155.26 0.73 1.92 3.04
R-RF 156.55 0.74 1.97 209.02 0.51 1.43 2.26
R-PLSR 200.94 0.57 1.53 218.92 0.46 1.36 2.16
R''-RNN 77.41 0.94 3.98 116.81 0.85 2.55 4.05
R''-RF 135.56 0.81 2.27 155.10 0.73 1.92 3.05
R''-PLSR 164.52 0.71 1.87 163.41 0.70 1.82 2.89
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3.2	 Predictive	performance	of	different	modeling	approaches

 From the perspective of different modeling methods, RNN performs the best among the three 
models under R and R’’. RNN can also predict Ni well by using spectrum R as an input variable 
without second-order derivative processing, and the prediction accuracy is even higher than that 
of R’’-PLSR. Among all soil Ni content prediction models, R’’-RNN has the highest prediction 
accuracy, with validation sets of RMSE, R2, RPD, and RPIQ of 116.81 mg/kg, 0.85, 2.55, and 
4.05, respectively. First, this is facilitated by the fact that RNN is good at processing time series 
data, which means that RNN can combine the context of the data to fully mine the information 
of minute details in the data. Usually, it is this detailed information that determines the prediction 
quality of a model. Second, the hidden layer in RNN is a cyclic structure. RNN can remember 
the output of the data at the previous time and affect the output at future times, allowing RNN to 
learn the long-term dependences present in the data and better fit the observed values during 
prediction. Third, as a deep learning algorithm, RNN can achieve end-to-end learning without 
the need for additional feature extraction operations. This is also an important reason why deep 
learning algorithms are generally superior to machine learning algorithms and linear models. 
RNN also has another advantage of deep learning algorithms: a keen ability to capture complex 
nonlinear relationships between data.(19)

 The performance of RF is moderate. Since RF is composed of multiple decision trees, it has a 
natural advantage in dealing with high-dimensional data such as Vis–NIR spectroscopy data. As 
a type of ensemble learning, RF considers the judgment of multiple decision trees, which 
reduces the risk of data overfitting and improves the model’s generalization ability. In addition, 
RF divides the data into multiple subsets and constructs decision tree analysis for each subset, 
resulting in feature selection operations that are not necessary for RF.(20) This is also the reason 
why RF was chosen in machine learning algorithms in this study. However, RF has limited 
ability in handling complex nonlinear relationships in data. From the above facts, RF achieved 
moderate predictive performance in this study. 
 The worst performance of PLSR is due to the complex nonlinear relationships between  
hyperspectral data, whereas PLSR is only good at dealing with multicollinear relationships 
between the data. In addition, PLSR does not have feature extraction capabilities, and facing 
such a large number of data, PLSR cannot fully learn them, resulting in unsatisfactory modeling 
results. In this study, the performances of the three modeling methods were ranked in the 
following order: RNN > RF > PLSR. This gradient relationship can be clearly and intuitively 
seen in Fig. 3.
 To more intuitively demonstrate the predictive performance of each model, scatter plots of 
predicted and observed values for six model calibration and validation sets were drawn (Fig. 4). 
The red line in the figure represents the fitting line of the predicted value points in the validation 
set. The closer the fitting line is to the 1:1 line, the better the predictive performance of the 
model. Meanwhile, the more points in the graph are clustered on the 1:1 line, the smaller the 
error between the predicted value and the observed value. As can be seen from the left side of 
Fig. 4, the modeling effect based on R is not ideal. The points of the three models are relatively 
scattered, and the angle between the fitting line and the 1:1 line is relatively large, implying that 
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(a) (b)

(c) (d)

Fig. 3. (Color online) Quantitative prediction models for soil Ni content: (a) RMSE value, (b) R2 value, (c) RPD 
value, and (d) RPIQ value.

Fig. 4. (Color online) Scatter plots of Ni content predicted by the models: (a1) R-RNN, (a2) R''-RNN, (b1) R-RF, 
(b2) R''-RF, (c1) R-PLSR, and (c2) R''-PLSR.

(a1) (a2)
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the prediction accuracy of the model is low. The prediction accuracy of the model built based on 
R’’ is clearly improved (right panels of Fig. 4), and the points in the panels are more clustered on 
a 1:1 line. Among all the models, only the predicted values of the PLSR model have negative 
values. This is because PLSR cannot learn the nonlinear relationship between hyperspectral 
data, resulting in low prediction accuracy and generalization ability of the model, and even 
negative values.

4. Conclusions

 In this study, 122 soil Vis–NIR spectroscopy data were first processed using Savitzky–Golay 
smoothing, and then the effect of second-order derivative processing on predicting soil Ni 
content was analyzed. Second-order derivative processing can highlight important features in 
the spectrum while reducing the impact of noise and baseline drift, thus improving the quality 
and reliability of spectral data. Subsequently, the prediction accuracies of different modeling 
methods were compared, and the performances of the three modeling methods were ranked in 

Fig. 4. (Color online) (Continued) Scatter plots of Ni content predicted by the models: (a1) R-RNN, (a2) R''-RNN, 
(b1) R-RF, (b2) R''-RF, (c1) R-PLSR, and (c2) R''-PLSR.

(b1) (b2)

(c1) (c2)



5028 Sensors and Materials, Vol. 36, No. 11 (2024)

the following order: RNN > RF > PLSR. In addition to learning long-term dependences in data, 
RNN can also sensitively capture nonlinear relationships between data and better fit observed 
values in prediction. Finally, we developed a high-precision and stable soil Ni content prediction 
model (R’’-RNN) and provided a new approach for the large-scale detection of soil elements.
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