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	 Gears are frequently used in transmission components, and essential information regarding 
gear transmission can be effectively analyzed by performing vibration detection. Therefore, in 
this research, we proposed a method of using deep learning models to establish an effective 
defect detection system for spur gears. In this system, data are collected and transformed using 
the symmetrized dot pattern (SDP) and discrete wavelet transform (DWT) techniques to detect 
defects in spur gears. The results of this study revealed that convolutional neural network models 
and deep neural network models can perform SDP detection at accuracy levels of 99% and 96%, 
respectively. Therefore, SDP and DWT are suitable for detecting defects in spur gears.

1.	 Introduction

	 Gears are commonly used in transmission components, and their prolonged use inevitably 
causes wear and tear. Therefore, ensuring the effectiveness of gear inspections is crucial. 
Current gear inspection practices include visual inspection, ultrasonic testing, and vibration 
analysis. Vibration analysis involves techniques such as time-domain analysis, frequency-
domain analysis, and symmetrized dot pattern (SDP) analysis.
	 Vibration analysis can be used to effectively extract crucial information during gear 
transmission. Wu et al.(1) employed the SDP technique for vehicle motors to enable the 
adjustment of delay coefficients and weighting coefficients, with the technique yielding 
high accuracy rates. Sun et al.(2) enhanced the SDP technique to improve Manhattan 
distance calculation and successfully diagnosed rolling bearing faults; their results 
demonstrated the considerable feasibility and effectiveness of their proposed method. 
Huang et al.(3) converted SDP data into 2D images to enable the inspection of permanent 
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magnet synchronous motors and demonstrated the considerable advantages of their 
proposed method with a small sample size. Liu et al.(4) transformed signals into SDP data 
and employed a ResNet50 deep learning model for detection purposes; they reported that 
their proposed detection method shows excellent performance under both transient and 
steady-state conditions. Sun and Li(5) applied the SDP technique and convolutional neural 
networks (CNNs) to perform detection with remarkable stability across various bearing 
conditions. Tang et al.(6) analyzed faults in rotary machinery by applying the SDP 
technique and employing random forest classification; their proposed method yielded 
highly accurate and stable results. Sian et al.(7) diagnosed faults in power cables through 
the discrete wavelet transform (DWT) and SDP techniques and a deep learning model based 
on probability neural networks, and they achieved a high accuracy rate of 96%. Ye et al.(8) 
inspected infrared gas systems by employing the SDP technique, and they identified a 
99% correlation among infrared absorption spectroscopy results, the peak maximum 
radius, and methane concentration. Lin et al.(9) employed deep learning methods to 
diagnose faults in ball bearings and achieved improved classification accuracy relative to 
that achievable through traditional methods.
	 In this study, we proposed an efficient detection method based on deep learning 
models and used it to create a detection system for spur gears. In the model, collected 
signals are transformed into SDP and DWT data. Subsequently, CNN and deep neural 
networks (DNNs) are used for deep learning to detect defects in spur gears. The primary 
contributions of this study are as follows.
1.	� A novel detection method to enhance the accuracy of defect detection for spur gears was 

proposed.
2.	� A spur gear fault detection system involving the application of the SDP and DWT techniques 

was developed.
3.	 The effectiveness of the proposed method was validated through deep learning models.
4.	 A fault detection accuracy of up to 99% was achieved during spur gear inspections.

2.	 System Architecture

2.1	 SDP

	 The SDP technique is a method of transforming time-domain signals into 2D images. Each 
point in the signal is projected onto the diameter of a polar coordinate, and adjacent points are 
projected onto the angle of the polar coordinate. Finally, these points are transformed into a 
snowflake pattern in the polar coordinates. Zhu et al.(10) applied the SDP technique and CNNs to 
perform rotor fault detection and achieved a high level of accuracy. Xu et al.(11) combined the 
SDP technique and image matching to develop a straightforward and effective method for 
performing fan defect detection.
	 Figure 1 depicts the principle for performing the SDP technique. r(i) represents the radius in 
polar coordinates, which is calculated using Eq. (1). ∅(i) denotes the counterclockwise rotation 
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angle in polar coordinates from the initial position and is computed using Eq. (2). θ(i) 
representing the clockwise rotation angle in polar coordinates from the initial position is 
calculated using Eq. (3). xi denotes any point in the data, xmin the minimum value in the data, 
xmax the maximum value in the data, xi+l the rotated angle of the symmetrical figure in the SDP 
diagram, ϑ the initial rotation angle, and d the weighting coefficient.
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2.2	 DWT

	 The DWT technique is effective in extracting local features from signals. Unlike the 
continuous wavelet transform technique, the DWT technique involves a discrete approach, 
which enables rapid computation. In the DWT technique, signals are decomposed into high-
frequency and low-frequency components, and the details obtained through decomposition are 
subsequently reconstructed. Generally, the inverse DWT technique is employed for 
reconstruction. Lai and Wu(12) employed the DWT technique and DNNs for gear defect 
detection, and they discovered that the DWT technique can effectively identify defects in spur 
gears. Bouzida et al.(13) employed the DWT technique to accurately perform fault diagnosis on 
electromechanical systems under various loads. DWT(i, k) represents the discrete wavelet 

Fig. 1.	 Principle for performing SDP technique.
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coefficient at level i and position k. x(t) denotes the original discrete signal, with t representing 
time. φ represents the wavelet function. The formula for performing DWT is
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2.3	 CNN

	 A CNN is a type of deep learning model with an architecture comprising convolutional 
layers, pooling layers, and fully connected layers. The convolutional layers perform feature 
extraction, which is achieved through the operation of convolutions with kernels of varying 
sizes. The pooling layers, typically placed after convolutional layers, compress image data, 
which reduces the computational complexity. The fully connected layers comprise flattened, 
hidden, and output layers, which can predict the results of the convolutional and pooling layers, 
and adjust the weights of the fully connected layers, thereby enabling a CNN to perform 
complex learning tasks. The CNN architecture implemented in this research is depicted in 
Fig. 2. Jian et al.(14) applied a CNN model to detect defects on metal surfaces after cutting and 
reported that their proposed method enhanced detection efficiency and reduced inspection costs. 
Wang et al.(15) used the SDP technique and CNNs to detect power quality faults, and they 
reported that their proposed method was accurate in identifying fault conditions.

2.4	 DNN

	 A DNN is a type of feedforward neural network that builds on the feedforward neural 
network structure by incorporating multiple hidden layers, with each containing multiple 
neurons. The first layer of the DNN is the input layer, which is responsible for receiving data. 
The second layer is the hidden layer, which assigns weights to received data and then activates 

Fig. 2.	 CNN architecture.
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the data. The third layer is the output layer, which classifies data and produces output. The CNN 
architecture used in this study is depicted in Fig. 3. Park et al.(16) used a multi-DNN model to 
detect defects in cover glass, achieving an accuracy rate of up to 99%. Malekzadeh et al.(17) 
employed a DNN model to swiftly and accurately detect defects in aircraft fuselage.

3.	 Experimental Setup

	 In this study, we developed a deep-learning-based gear defect detection model by employing 
CNN and DNN models for training. Experiments were conducted using gears with a module of 
3 and either 30 or 20 teeth. The gears were categorized as being in a healthy or worn state. 
During the experimentation, a small gear and a large gear were set as the driving gear and driven 
gear, respectively. An accelerometer was placed above the bearing to record the vibration during 
gear transmission. Recorded signals were then transformed into DWT and SDP data. A DNN 
and a CNN were trained using DWT and SDP data, respectively. The detection process 
performed in the present experiment is depicted schematically in Fig. 4.

Fig. 3.	 Deep neural network architecture.

Fig. 4.	 Gear defect detection system.
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	 In our experiment, the vibration signal was sampled at a frequency of 1024 Hz for a total 
acquisition duration of 800 s, resulting in 819200 data points. For each state of the gears during 
transmission, 800 data samples were collected. These 800 data samples were divided into a 
training set and a test set at an 8:2 ratio. Therefore, for the healthy state of the spur gears, 640 
and 160 data samples were allocated to the training and test sets, respectively. Similarly, for the 
worn state of the spur gears, 640 and 160 data samples were allocated to the training and test 
sets, respectively.

4.	 Results and Discussion

	 In this study, we focused on detecting faults in spur gears. The vibration signals that were 
generated during gear transmission were collected using accelerometers and transformed into 
DWT signals and SDP data. Subsequently, the DWT signals and SDP data were analyzed using a 
DNN model and a CNN model, respectively, as part of a deep learning process. This process 
was performed to establish a reliable gear inspection system.
	 In this study, we investigated the influences of delay coefficients and weighting coefficients 
on SDP images. During the plotting of SDPs, weighting coefficients (values = 10, 30, 50, 80, and 
100) and delay coefficients (values = 0, 1, and 2) were used. The patterns were plotted with 60° 
intervals to create snowflake-like visualization. The symmetrized dots during gear transmission 
were mapped (Fig. 5). When the delay coefficient increased and the weighting coefficient 
changed, the overlapping points in the images spread out, and the lines became more pronounced.
	 By analyzing the influences of the weighting coefficients and delay coefficients on deep 
learning accuracy, we discovered that when the delay coefficient remained constant, a high 
accuracy of 99% can be achieved, regardless of changes in the weighting coefficient (Fig. 6). 
However, when the weighting coefficient remained constant, varying the delay coefficient did 
not lead to the desired level of accuracy.
	 The average vibration amplitude for healthy teeth gears was ±0.004568572, whereas that for 
worn teeth gears was ±0.011178025 (Fig. 7). A vibration amplitude of approximately ±0.011 
during gear transmission indicates the presence of wear on gears. When this occurs, the gears 
should be maintained or replaced.
	 In this study, a DNN deep learning model was built using DWT. The model was trained using 
different numbers of epochs (i.e., 10, 30, 50, 80, and 100). As indicated in Fig. 8, when the 
number of epochs was set to 10, a 93% accuracy was achieved. When the number was set to 30, 
the accuracy improved to 96%. The accuracy remained consistently at 95% when 50 epochs 

Fig. 5.	 SDP zeta = (a) 10, (b) 30, (c) 50, (d) 80, and (e) 100.

(a) (b) (c) (d) (e)
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(a) (b)

(c)

Fig. 6.	 (Color online) Confusion matrices for detection with time delays of (a) 0, (b) 1, and (c) 2.

Fig. 7.	 Coefficient charts for (a) healthy and (b) worn spur gears.

(a) (b)
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were used but reached 96% when 80 and 100 epochs were used. The high accuracy attainable 
with 30 epochs indicates that the number of epochs does not directly influence accuracy.

5.	 Conclusions

	 In this study, we proposed a deep-learning-based system for detecting gear defects. CNN and 
DNN models were separately trained using SDP and DWT data. The accuracy levels of the CNN 
and DNN models for gear monitoring and detection were analyzed. On the basis of the results of 
the comprehensive analysis, the following conclusions were drawn.
1.	� We used accelerometers to collect gear transmission data. The collected data were 

transformed into SDP and DWT data. Subsequently, separate CNN and DNN deep learning 
models were built using the SDP and DWT data, respectively. Through analysis of the 
prediction results of both methods, the patterns indicative of gear wear during transmission 
were identified. The results indicate that a highly accurate and multicriteria detection system 
has been established.

2.	� The CNN model results revealed that the SDP technique achieved a detection accuracy of up 
to 99% for detecting wear in spur gears, indicating that the SDP technique is suitable for 
identifying defects in spur gears.

3.	� The DNN model results revealed that the DWT technique achieved a detection accuracy of 
up to 96% for detecting wear in spur gears, indicating that the DWT technique is suitable for 
identifying defects in such gears. Furthermore, the number of training epochs did not exhibit 
a positive correlation with accuracy.

4.	� In future research, we can continue to investigate the application of the SDP and DWT 
techniques, and additional cases involving helical and bevel gears can be incorporated to 
enhance the gear monitoring system proposed in this study.

Fig. 8.	 Epochs and accuracy of DWT deep learning model.
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