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 Taiwan, being an island, possesses abundant offshore resources, making it highly suitable for 
the development of offshore wind power. Welding plays a crucial role in the generation of 
offshore wind power because it enables the construction of steel structures that support offshore 
wind turbines. However, relevant personnel often fail to calculate the CO2 emissions generated 
from welding because of the complexity of such calculation. Therefore, in this study, we 
designed a CO2 detection module based on welding. CO2 detection devices were placed at the air 
intake site of welding spaces to measure the CO2 concentration during and after welding. The 
measured data were recorded, analyzed, and used for deep learning training with a deep neural 
network. Multiple detectors were required because of the substantial number of recorded data. 
Ensuring the reliable operation of fixed-point CO2 detectors is crucial to measuring emissions 
before large-scale monitoring efforts. Additionally, we verified that the system consistently 
produces reliable results in multiple CO2 measurement scenarios.

1. Introduction

 The escalating severity of global warming has resulted in a considerable increase in focus on 
environmental conservation. Taiwan, being an island, possesses abundant offshore resources, 
and therefore, it is highly suitable for the development of offshore wind power, in which the 
energy of sea winds is harnessed to rotate turbine blades and eventually generate electricity. 
Wind power generation offers advantages such as zero carbon dioxide (CO2) emissions, no fuel 
consumption, and minimal air pollution.
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 Welding is integral to the establishment of offshore wind power plants because it enables the 
construction of steel structures that support entire offshore wind turbines. Kristiansen et al.(1) 
conducted welding on offshore turbines and discovered that their method satisfied good welding 
standards for both curved and flat sections. Jung et al.(2) used welding to analyze the toughness 
of offshore wind power support frames and proposed an algorithm for identifying optimal 
welding parameters. Farhan et al.(3) used decision theory to assist with the maintenance of 
welded structures on offshore wind turbines and identified the optimal inspection plan. 
Xu et al.(4) employed nondispersive infrared spectroscopy (NDIR) to detect carbon monoxide, 
CO2, and propane and established an interference model involving these three gases. Zhou et 
al.(5) developed a CO2 detection module using NDIR and a temperature and humidity 
compensation algorithm, and the model achieved an accuracy of ±0.9%. Xu et al.(6) also used 
NDIR to design a CO2 detection module for harsh environments, and the model achieved an 
accuracy of ±0.1%. Sun et al.(7) proposed a multigas interference-free measurement method 
using two spectral light sources and NDIR, which resulted in a simple model structure and high 
accuracy. Rafique(8) detected the instantaneous density of CO2 by using NDIR and achieved 
extremely high accuracy. Li et al.(9) employed deep neural networks (DNNs) to determine CO2 
concentrations with higher accuracy than traditional methods. Oh et al.(10) utilized DNNs to 
predict CO2 capture, and the model led to lower costs and improved accuracy.
 Offshore wind turbines are extremely large structures. When carbon emissions for such 
turbines are being calculated, the CO2 generated from welding is often overlooked. Therefore, in 
this study, we measured and analyzed the CO2 emissions from welding offshore wind turbines.
1. We proposed a new CO2 detection system and expanded its range of applications.
2. We developed a CO2 monitoring system specifically for welding applications.
3. We found that approximately 99% of the emissions from the welding process consist of CO2.
4. We provided a baseline detection system for documenting CO2 generated from welding.

2. System Architecture

2.1 CO2 measurement principle

 NDIR is a method used to measure gas concentrations by utilizing the absorption properties 
of infrared radiation. In this technique, an infrared beam is passed through the gas, and CO2 
molecules absorb specific wavelengths of this infrared light. A detector is placed on the other 
side of the infrared source that measures the remaining infrared radiation after it has passed 
through the gas. The concentration of the target gas can be estimated by comparing the intensity 
of the infrared radiation before and after it passes through the gas. The results are finally 
transmitted to a display. Vafaei and Amini(11) have used NDIR to analyze variations in CO2 
concentrations in environments with fluctuating temperatures and humidities, and they achieved 
a 99% accuracy rate. Akram et al.(12) devised an NDIR-based CO2 detection system that was 
small, portable, and inexpensive. A schematic of the working principle of NDIR is illustrated in 
Fig. 1.
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2.2 DNNs 

 DNN are a type of neural network composed of input layers, hidden layers, and output layers. 
The input layer receives raw data, the hidden layers process these data through weighted 
connections and activation functions, extracting and learning features in the process, and the 
output layer produces a final output on the basis of the processed data. DNNs are trained using 
backpropagation, wherein the training results are compared with real data to compute the error 
between the actual and predicted values. This error is then used to adjust the DNN parameters to 
minimize the error. A schematic of the DNN used in this study is shown in Fig. 2. 
Tsaniyah et al.(13) utilized a DNN to predict CO2 saturation levels with excellent accuracy. 
Zhang et al.(14) used a DNN to analyze CO2 adsorption and corresponding materials, and they 
demonstrated that the model had effective prediction capabilities.

3. Experimental Setup

 In this study, we designed a CO2 detection module based on welding and conducted deep 
learning training using a DNN. The CO2 detection device used in this experiment was a TFA 
Dostmann 31.5008.02 AIRCO2NTROL 5000 CO2 meter with a data logger. This device was 
placed at the air intake site of the welding space to measure the  CO2 concentration during and 
after welding. A schematic of the experimental setup is shown in Fig. 3. The collected data on 
CO2 emissions from welding are presented in Table 1.

4. Results and Discussion

 We focused on measuring CO2 emissions generated from welding. The measured values were 
subjected to deep learning using a DNN. Subsequently, 40, 60, 80, and 100% of the data were 
extracted separately, and deep learning training was conducted with epochs ranging from 10 to 

Fig. 1. (Color online) Schematic of working principle of NDIR.
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Fig. 2. (Color online) Schematic of DNN architecture.

Table 1 
Training and testing data.

Quantity
100% Training database 2117
100% Testing database 530
80% Training database 1694
80% Testing database 424
60% Training database 1270
60% Testing database 318
40% Training database 847
40% Testing database 212

Fig. 3. Schematic of experimental setup for detecting CO2.
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100. The CO2 emissions from welding were then statistically analyzed to facilitate the 
subsequent optimization of the processing workflow.
 When 40% of the data were used for training (Fig. 4), the accuracy fluctuated; the 82% 
accuracy rate at epoch 10 dropped to 75% by epoch 30, rebounded to 82% by epoch 40, gradually 
improved between epochs 50 and 80 to reach a peak of 90%, slightly decreased to 89% at epoch 
90, and finally increased to 95% at epoch 100.
 When 60% of the data were used for training (Fig. 5), the accuracy fluctuated; the 85% 
accuracy rate at epoch 10 increased to 92% by epoch 20, slightly dropped to 87% by epoch 30, 
rebounded to 93% by epoch 40, steadily improved from 93 to 95% between epochs 50 and 70, 
slightly decreased to 91% by epoch 80, and finally climbed to 97% at epochs 90 and 100.
 When 80% of the data were used for training (Fig. 6), the accuracy fluctuated; the 93% 
accuracy rate at epoch 10 steadily increased from 94 to 96% between epochs 20 and 50, 
decreased to 87% by epoch 60, improved from 96 to 98% between epochs 70 and 80, slightly 
declined to 97% by epoch 90, and finally returned to 98% at epoch 100.
 When 100% of the data were used for training (Fig. 7), the accuracy fluctuated; the 87% 
accuracy rate at epoch 10 steadily increased from 95 to 98% between epochs 20 and 60, slightly 
declined to 96% by epoch 70, and improved from 97 to 99% between epochs 80 and 100.

Fig. 4. (Color online) Accuracy when 40% of data 
were used.

Fig. 5. (Color online) Accuracy when 60% of data 
were used.

Fig. 6. (Color online) Accuracy when 80% of data 
were used.

Fig. 7. (Color online) Accuracy when 100% of data 
were used.
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5. Conclusion

 In this study, we proposed a welding CO2 emission detection system that utilizes DNN deep 
learning to monitor CO2 concentrations during and after welding. Furthermore, we analyzed the 
accuracy of CO2 monitoring at different data percentages. The conclusions drawn from the 
results of our comprehensive analysis are as follows:
1 We conducted DNN deep learning on collected data for prediction. The data were divided 

into groups of 40%, 60%, 80%, and 100% of the data. Deep learning training was conducted 
from epochs 10 to 100. The accuracy of training with different data percentages and epochs 
was used to develop a method for monitoring CO2 emissions from welding.

2 The measured values of CO2 emissions during and after welding were subjected to deep 
learning to enable the optimization of the processing procedure.

3 Such a model may enable the automatic detection of slight variations in CO2 emissions during 
onsite welding and provide a recording and uploading system for the measured results.
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