
5233Sensors and Materials, Vol. 36, No. 12 (2024) 5233–5246
MYU Tokyo

S & M 3864

*Corresponding author: e-mail: caishuri@126.com
https://doi.org/10.18494/SAM5120

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Lossless Data Compression of Wireless Sensor
in Bridge Inspection System

Zhengsong Ni,1 Shuri Cai,2* and Cairong Ni2

1College of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, No. 1 Campus New Village,
Longjiang Street, Fuqing, Fuzhou, Fujian 350300, China

2Institute of Highway Science, Ministry of Transport, Beijing University of Posts and Telecommunications,
8 Xitucheng Road, Haidian District, Beijing 100086, China

(Received April 30, 2024; accepted November 29, 2024)

Keywords: lossless data compression algorithm, wireless sensor network, bridge inspection, Huffman
compression algorithm, dictionary model

 In bridge inspection using wireless technology, the sensor node carries very limited energy.
In this paper, data compression technology to reduce the amount of communication data by
sacrificing data accuracy is introduced. The lossless data compression algorithm was chosen as
the algorithm of the bridge inspection system, and the algorithm was further improved. In
addition, we compared the compression rates and execution times of the Huffman, Lempel–Ziv–
Storer–Szymanski (LZSS), and improved Lempel–Ziv–Welch (LZW) algorithms. The results
showed that the improved LZW algorithm is highly adaptable, accommodates any type of input
data, and can make full use of the repeatability of data. Therefore, this lossless data compression
algorithm is suitable for application in the wireless sensor networks of bridge inspection systems.

1. Introduction

 In recent years, the health status monitoring of bridges has attracted increasing attention,
because the safety and reliability of bridges are crucial to ensure the smooth progress of
transportation. Wireless sensor networks (WSNs) are widely used in bridge health monitoring
systems, and a large number of sensor nodes are deployed to collect the structural information of
bridges in real time.(1) However, owing to the resource constraints of sensor nodes, such as
computing power, storage capacity, and energy supply, the data compression of sensor nodes
becomes particularly important and necessary.
 The lossless data compression algorithm is an effective data compression method that can
reduce the amount of data storage and transmission by deleting or retaining redundant
information without losing the original data information.(2) In the bridge inspection system,
sensor nodes usually collect a large amount of data, such as vibration, temperature, and
displacement, which contain the key information of the running state and health status of the
bridge structure. Therefore, it is very important to find a balance between maintaining data
integrity and reducing the amount of data transferred.

mailto:caishuri@126.com
https://doi.org/10.18494/SAM5120
https://myukk.org/

5234 Sensors and Materials, Vol. 36, No. 12 (2024)

 The purpose of this work is to study the application of the lossless data compression algorithm
in WSNs to bridge inspection systems.(3) First, we will analyze the data compression algorithms
commonly used today and evaluate their applicability to bridge inspection systems. Then, we
will propose a bridge inspection system architecture based on the lossless data compression
algorithm and describe its implementation and key technologies in detail. Next, we will devise a
series of experiments to validate the performance and efficacy of this algorithm, and contrast its
results with those of alternative compression algorithms. Finally, on the basis of experimental
results, we will discuss the advantages and limitations of the lossless data compression algorithm
in bridge inspection systems and put forward the improvement direction and future research
prospects.(4)

 The objective of this research is to reduce the data transmission of sensor nodes using the
lossless data compression algorithm, so as to extend the energy life of sensor nodes and improve
the reliability and stability of the system.(5) In addition, the lossless data compression algorithm
can reduce the data storage capacity and data transmission delay and improve the real-time
performance of the system. Through the real-time monitoring and analysis of the bridge
structure, we can find the potential structural problems in time and take the corresponding
measures to ensure the safe operation of the bridge.
 The results of this study are of great significance to the development of bridge engineering
and WSN technology. By applying the lossless data compression algorithm to the bridge
inspection system, we can improve the energy utilization efficiency of sensor nodes, reduce the
maintenance cost of the system, and promote the application of WSN technology in the field of
bridge health monitoring.(6) In addition, this research can also provide reference for other fields
of data compression and transmission problems and has a wide range of application prospects.
 Therefore, the purposes of this study are to explore an efficient and reliable bridge health
monitoring method through the study of the lossless data compression algorithm on bridge
inspection systems and to provide theoretical and empirical support for research and practice in
related fields. Through this research, we hope to improve the safety and reliability of bridges and
contribute to social transportation construction and economic development.

2. Research Status of Lossless Data Compression Algorithms at Home and
Abroad

 WSNs play an important role in bridge inspection systems, which can monitor and collect the
data of bridge structure in real time to provide efficient detection and early warning. The
research of lossless data compression algorithms in this field is aimed at reducing the storage
and transmission overhead of data while maintaining the accuracy and integrity of data. The
following is a brief overview of the research status of the lossless data compression algorithm in
bridge inspection systems at home and abroad.(7)

2.1 Domestic research status

(1) Compression algorithm based on wavelet transform: Wavelet transform is used to analyze
and compress bridge data in the frequency domain to reduce data redundancy. For example,

Sensors and Materials, Vol. 36, No. 12 (2024) 5235

algorithms using wavelet transform and adaptive threshold selection can achieve efficient
compression and recovery.(8)

(2) Adaptive dictionary learning algorithm: This algorithm can learn and generate dictionaries
suitable for data representation in accordance with the characteristics of bridge data to reduce
the representation error of data. By optimizing the dictionary learning process, better data
compression results can be achieved.(9)

(3) Sparse representation algorithm: The sparse representation algorithm is based on the
assumption that bridge data can be represented by fewer underlying signals. Through sparse
representation, data can be compressed and recovered efficiently.(10)

2.2 Foreign research status

(1) Compressed sensing algorithm: Compressed sensing is an emerging signal processing
technology that can restore the original signal through a small amount of sampling. In bridge
inspection systems, the compressed sensing algorithm can effectively reduce the data storage
and transmission overhead.(11)

(2) Non-negative matrix decomposition algorithm: The non-negative matrix decomposition
algorithm can decompose and compress the bridge data and maintain the non-negative data.
This algorithm achieves good compression results in the damage detection and diagnosis of
bridge structures.(12)

(3) Adaptive compression algorithm: This algorithm adaptively selects compression methods and
parameters in accordance with the characteristics of bridge data and adjusts the compression
ratio in real time. By dynamically adjusting the compression ratio, efficient compression can
be achieved while ensuring data accuracy.(13)

 In general, the research of the lossless data compression algorithm in bridge inspection
systems has advanced considerably. Various algorithms and methods have been proposed by
researchers at home and abroad, and some positive results have been obtained. However, there is
still room for further research and improvement to improve the effectiveness and performance of
the compression algorithm and make it better applicable to bridge inspection systems.

3.	 Classification	of	Data	Compression	Technology

 There are many ways to classify data compression. According to some statistics, it can reach
20 to 40 kinds, which have not yet been unified. Most scholars agree that data compression is
divided into lossless compression and lossy compression.
 Data compression can be classified on the basis of different classification criteria. The
following are common data compression categories:
(1) Lossy Compression: Lossy compression is a compression method that compresses data while

losing some of the details and precision of the original data. This compression method is
suitable for situations where data accuracy is relatively low, such as audio compression and
video compression.(14)

(2) Lossless Compression: Lossless compression is a compression method that can completely
retain the accuracy and integrity of the original data during compression and decompression.

5236 Sensors and Materials, Vol. 36, No. 12 (2024)

This compression method is suitable for situations where data accuracy is required, such as
text and image compression.(15)

(3) Dictionary-based Compression: Dictionary-based compression is a lossless compression
method that compresses data by creating and using dictionaries. Common dictionary
compression algorithms include the Lempel–Ziv–Welch (LZW) algorithm and Huffman
coding.(16)

(4) Predictive Coding: Predictive coding is a lossless compression method that utilizes the
statistical properties of data and predictive models to achieve data compression. Common
predictive coding algorithms include differential coding and arithmetic coding.

(5) Transform Coding: Transform coding is a lossless compression method that reduces the
redundancy of data by transforming the data. The most common conversion coding
algorithms are JPEG image compression based on discrete cosine transform (DCT) and
JPEG2000 image compression based on discrete wavelet transform (DWT).(17)

(6) Entropy Coding: Entropy coding is a lossless compression method that uses the concept of
information entropy to represent the probability of symbol occurrence. The symbols that
appear with high frequency are represented by short code words, and the symbols that appear
with low frequency are represented by long code words, so as to achieve data compression.
Common entropy coding algorithms include Huffman coding and arithmetic coding.(18)

3.1 Several common traditional lossless compression algorithms

 The above classifications are not mutually exclusive, and some compression algorithms can
use different compression techniques simultaneously. The choice of the appropriate compression
method depends on the characteristics of the data, the application requirements, and the
performance requirements of compression and decompression.
 There are many traditional lossless compression algorithms, and the following are some
common ones.
(1) Huffman Coding: Huffman coding is an entropy coding method that uses variable-length

code words to represent the occurrence probability of different symbols. Symbols that appear
with high frequency are represented by short code words, and symbols that appear with low
frequency are represented by long code words. This encoding method is often used in text
compression and image compression.

(2) Arithmetic Coding: Arithmetic coding is also an entropy coding method that maps the entire
message sequence into an interval and scales the interval size in accordance with the
probability distribution of the message. Arisso coding can represent the probability of the
occurrence of symbols more precisely, so it can achieve a higher compression efficiency than
Hoffmann coding.

(3) LZ77 and LZ78 algorithms: LZ77 and LZ78 algorithms are a class of dictionary-based
compression algorithms. The LZ77 algorithm finds the longest matching string by using a
sliding window and represents it with a pointer and length. The LZ78 algorithm uses a
dictionary to store the strings that have been encountered and represents them with pointers

Sensors and Materials, Vol. 36, No. 12 (2024) 5237

and new letters. These algorithms have achieved good compression effects in practical
application.

(4) Run-length Encoding (RLE): RLE is a simple compression method that compresses data by
counting the number of consecutive occurrences of the same symbol. Repeated symbols need
only be stored once and then represented by degrees. This encoding method is very effective
when dealing with continuously recurring symbols, such as white space in an image. These
traditional lossless compression algorithms have been widely used in many applications and
have achieved good compression results. However, with the increase in data volume and the
change of application requirements, new compression algorithms are also emerging to better
meet the compression needs of different types of data.

3.2. Comparison of several lossless compression algorithms

 There are several key factors to consider when comparing different lossless compression
algorithms.
(1) Compression rate: The compression rate is an important indicator used to measure the

compression effect of the algorithm and represents the ratio of the compressed data size to the
original data size. The ideal algorithm should be able to provide a higher compression rate,
i.e., a smaller compressed file size.

(2) Compression speed: Compression speed refers to the time taken by the compression
algorithm to perform the compression operation. For large data sets or scenarios that require
real-time compression, high compression speeds are an important consideration.

(3) Decompression speed: The decompression speed refers to the time taken by the compression
algorithm to perform the decompression operation. High decompression speeds are important
in scenarios where data need to be decompressed frequently.

(4) Compression quality: Compression quality indicates the degree of difference between the
compressed data and the original data. A higher compression quality means that the
compressed data can be closer to the original data without losing key information.

(5) Applicable data types: Different compression algorithms have different effects on different
types of data. For example, some algorithms perform well when working with text data and
may be less effective when working with images or audio data. Therefore, it is necessary to
consider the data type and application scenario to choose the appropriate compression
algorithm.

 In general, there is no single algorithm that is the best at everything. Choosing the right
compression algorithm depends on your specific needs and limitations. In practical applications,
factors such as compression rate, compression speed, and decompression speed are usually
weighed to choose the most suitable algorithm. At the same time, you can also consider using a
combination of multiple algorithms or using adaptive algorithms to obtain the best compression
effect for different data types and scenarios.

5238 Sensors and Materials, Vol. 36, No. 12 (2024)

4. Research and Implementation of LZW Improvement Algorithm

4.1 Principle of LZW algorithm

 The LZW algorithm works as follows.
(1) Initialize the dictionary: Create an initial dictionary that contains all possible single

characters as keys, corresponding to their index in the dictionary.
(2) Read input: Read a character from the input data as the current input character.
(3) Check the dictionary: Concatenate the current input character and the previously read

character sequence together to form a new string. Check whether the string exists in the
dictionary.

a. If it exists, continue reading the next input character, concatenating the current string with
the previously read character sequence.

b. If it does not exist, output the encoding of the previously read character sequence, add the
current string to the dictionary, and assign it a new encoding.

(4) Output encoding: Output the encoding of the previously read character sequence.
(5) Update the dictionary: Add the current string to the dictionary and assign it a new encoding.
(6) Repeat Step 2 until the data input is complete.
 The core idea of the LZW algorithm is to realize compression by building the dictionary step
by step. It uses the repeated occurrence of a string to reduce the redundancy of data, and the
repeated string is represented by the index value, so as to achieve the compression effect of data.
When decompressing, the original data can be recovered by remapping the encoding of the
output to a string in the dictionary.
 Note that the LZW algorithm is a dynamic dictionary compression algorithm, which will
continuously increase the size of the dictionary during compression. This makes the LZW
algorithm very effective when dealing with data with a large number of repeating strings, such
as text data. The LZW algorithm is an improvement on the LZ78 algorithm similar to the LZSS
improvement on the LZ77 algorithm, that is, the LZW compressor does not encode a single
character. The compression principle is that by analyzing the input data stream, a string table is
generated adaptively while encoding, and all the strings that have appeared before are not
repeated. The compression process is as follows. By comparing the current input data stream
with the strings in the string table, the output value is determined. Simultaneously, the string
table is updated. This is illustrated in Fig. 1.
 In addition, to improve the storage space overhead caused by reserving 256 descendants for
each node in LZ78, the improved LZW algorithm uses a hash function to identify and find the
child nodes of a given node. The specific method is to use parent_code and child_code to obtain
the offset of a child node. When you find the corresponding child node on the basis of this offset,
check whether this node is used by other nodes to ensure that no conflict occurs. A typical
compressed reality, like that in Table 1, has an input data stream of /WED/WE/WEE/WEB/
WET.
 The algorithm preloads a single symbol into the dictionary’s data structure. In this way, even
if the symbol appears in the input data stream for the first time, there is no phenomenon that
cannot be encoded immediately. During the implementation of the algorithm, LZW tries to

Sensors and Materials, Vol. 36, No. 12 (2024) 5239

output code for symbols in the data stream, and when there is a new code output, the
corresponding new phrase is added to the dictionary. As shown in Fig. 2, the improved LZW
algorithm uses the hash function to determine and find the children of a given node. The specific
method is to use the parent and child nodes to obtain the offset of a descendant node. When the
corresponding descendant node is found using this offset, it should be checked whether this node
is used by other nodes to ensure that there is no conflict (see Table 2).

Fig. 1. LZW algorithm compression process.

Table 1
LZW algorithm compression instance.
Input string = /WED/WE/WEE/WEB/WET
0.9991
0.9562
0.9840
Character input Code output New code value New string
/W / 256 /W
E W 257 WE
D E 258 ED
/ D 259 D/
WE 256 260 /WE
/ E 261 E/
WEE 260 262 /WEE
/W 261 263 E/W
EB 257 264 WEB
/ B 265 B/
WET 260 266 /WET
EOF T

5240 Sensors and Materials, Vol. 36, No. 12 (2024)

 The maintenance of the dictionary is relatively simple during the decompression of the
improved LZW algorithm. Instead of searching down the tree, the code is read directly from the
encoded stream and then searched up the tree. As long as the parent node is correctly defined in

Table 2
Improved LZW algorithm compression.
Input Codes: / W E D 256 E 260 261 257 B 260 T
Input/
NEW_CODE OLD_CODE STRING/

Output CHARACTER New table entry

/ / /
W / W W 256 = /W
E W E E 257 = WE
D E D D 258 = ED
256 D /W / 259 = D/
E 256 E E 260 = /WE
260 E /WE / 261 = E/
261 260 E/ E 262 = /WEE
257 261 WE W 263 = E/W
B 257 B B 264 = WEB
260 B /WE / 265 = B/
T 260 T T 266 = /WET

Fig. 2. Improved LZW algorithm flow chart.

Sensors and Materials, Vol. 36, No. 12 (2024) 5241

the dictionary, it can be correctly decoded. Therefore, the tree built in the decompression
algorithm does not need to use a hash function and does not need to find an index.
 One problem with the search up tree is that the decoded characters are in reverse order, so
they have to be pushed onto the stack, ejected in reverse order, and written to the output file.
 The improved LZW decompression algorithm is as follows.

read OLD _ CODE
output OLD _ CODE
 WHILE there are still input characters DO
 Read NEW _ CODE
 STRING=get translation of NEW _ CODE
 output STRING
	 CHARACTER	=	first	character	in	STRING
 Add OLD _ CODE+CHARACTER to the translation table
 OLD _ CODE=NEW _ CODE
 END of WHILE

 The improved LZW algorithm has no transmission overhead and is simple to calculate. Both
the sender and the receiver contain initializing dictionaries to create new dictionary entries on
the basis of existing dictionary entries. As soon as the data is received, the receiver can recreate
the dictionary. Its biggest features are simple logic, easy to implement, and high speed.

4.2 Improved LZW algorithm implementation

 The C program of the improved LZW algorithm is introduced below.
(1) Symbol definition
BITS: dictionary address space (0–2BITS-l), BITS={12,13,14};
HASHING_SHIFT: indicates the offset of the child node. HASHING_SHIFT=BITS-8;
Code-value []: indicates the actual code value of the node, and the output code value after the
string is encoded in the compression program;
Prefix-code []: indicates the prefix node code. Each string in the dictionary has a prefix node
shorter than its own.
append_character[]: current node code;
decode_stack[]: decoder stack;
(2) Subfunction definition
(a) encoding input function lzw_input_code(unsigned char*&input)
 The function is employed within the LZW decompression algorithm, primarily to accomplish
the transformation of encoded data formats, specifically converting 8-bit input data into BITS
format output. The implementation is to first read 8 bits of data into the 32-bit length of the FIFO
buffer; if the hash table address space is BITS, then output the high bits of data. The whole
implementation process is like a 32-bit-long sliding window, each time taking the highest BITS
of data in the window as output.
Input parameters: input is a pointer to input data, input in bytes; Returned value: BITS of data
(b) output coding function lzw_output_code(unsigned char*&output, unsigned int code)
Function Description: Used in the LZW compression program, the encoded data is output in
8-bit format, which is a function often used in the data compression program. Define a 32-bit
FIFO buffer where the program runs once and outputs data in bytes until the data in the buffer is
less than one byte long.

5242 Sensors and Materials, Vol. 36, No. 12 (2024)

Input parameter: code indicates the current code. Returned value: output is the output data
pointer
(c) Hash function dictionary address index lzw_find_match(int hash_prefix, unsigned int Hash_

character)
 Function description: According to the set hash (hash) function H(key) and the method of
handling conflicts, the keyword is mapped to a finite continuous address set (interval), and the
“image” of the keyword in the address set is taken as a storage location in the table, which is a
hash table. This mapping process is called the hash table or hash, and the resulting storage
location is called the hash address. The hash function applied to this algorithm is index = (hash_
character<<HASHING_SHIFT) and yyyy hash_prefix; index is the address index obtained
using the prefix and current nodes. If the address index value does not exist (code_value[index]
is empty) or the string corresponding to code_value[index] and the prefix node hash_prefix are
the same as the string composed of the current node hash_character, the value is returned. If the
index exists but the string corresponding to code_value[index] and the prefix node hash_prefix
are not exactly the same as the string composed of the current node hash_character, subtract an
offset value from the index value and check until the index value does not exist.
hash_prefix indicates the prefix code. hash_character indicates the current character. Return
value: address index.
d, decode string function *lzw_decode_string(unsigned char*buffer, unsigned int code)
Function Description: Reverse addressing is a technique that is utilized to create a stack for
storing strings. The particular program that uses this method is implemented in the
decompression process. If the input code is an encoded value, press the corresponding current
character append_character[code] into the stack, and then look for its prefix string encoded
prefix_code[code] until
Prefix_code[code] is a single character (ASCⅡ value less than 255).
Input parameters: buffer Stack Buffer address, code is the current code; Return value: stack
bottom address
(3) LZW data compression function
 Define the prefix character as string_code and the input character as character. The LZW
data compression algorithm flows as follows.
Step 1: Initialize the dictionary, code_value[i]=UNUSED;
Step 2: Enter the character string_code;
Step 3: Enter character;
Step 4: Check if the current position is at the end of the file. If it is, proceed to step 8. If not,

proceed to step 5.
Step 5: Use the lzw_find_match() subfunction to determine the current string dictionary index;
Step 6: If the current string does not exist in a certain context (presumably a dictionary or some

other storage mechanism), output the current code string_code. Then, add the current
string to the dictionary and set string_code equal to a character. After that, return to Step
3. If the current string exists, go to Step 7.

Step 7: Set string_code = code_value[index] and skip back to Step 3.
Step 8: Output the last code, string_code, and mark the end of the file.

Sensors and Materials, Vol. 36, No. 12 (2024) 5243

(4) LZW data decompression function
 Set the old encoding to old_code, the new encoding to new_code, the top character of the
stack to character, and the data output pointer to destoutPtr. The LZW decompression algorithm
flow is as follows.
Step 1: Initialize;
Step 2: Use the lzw_input_code() function to read the code value old_code, character=old_code;
Step 3: Assign the old_code value to the data pointer destoutPtr. The pointer points to the next

address.
Step 4: Use the lzw_input_code() function to read the code value new_code, if new_code is the

end of the file, exit; otherwise, enter step 5;
Step 5: If new_code is not in the dictionary, press character: to the bottom of the stack, use lzw_

code_string(*buffer, old_code) to reverse construct the string, and point the data pointer
destoutPtr to the string to achieve data output; Otherwise, lzw_decode_string(*buffer,
new_code) is used to reversely construct the string, and the data pointer destoutPtr points
to the string to achieve data output.

Step 6: If the dictionary is not full, add the string old_code+character: to the dictionary;
Step 7: Assign the new_code value to old_code and go to Step 4.
 The above is an implementation of the LZW modified algorithm for fixed-length dictionaries,
where the size of the dictionary is variable, and a larger dictionary means that more and longer
phrases can be stored, resulting in higher compression. The LZW improvement algorithm
usually uses the 15-bit length code to have a 32K capacity phrase dictionary, but increasing the
size of the dictionary brings about new problems. If the compressed file is small, using more bits
of code slows down compression. For small files, the number of phrases generated in the
compression may not be enough to fill the entire large-capacity dictionary, and it is more
advantageous to determine the output code bits adaptively in accordance with the size of the
dictionary. In response to this problem, it has been proposed that during the compression, the
output of the program is a variable-length code, starting with 9 bits, until the dictionary has
grown to 256 new phrases, starting with the 10- bit code, and so on until the 15-bit code is used.

4.3 Comparison of lossless data algorithms

 For Huffman coding—Theoretical basis: It is based on the frequency of symbols, creating
variable-length codes. Improvements: Adaptive Huffman coding adjusts the code lengths as
more data are encountered, optimizing compression efficiency.
 Regarding LZSS (Lempel–Ziv–Storer–Szymanski)—Theory: it uses a sliding window for
finding repeated sequences and encoding them with pointers. Enhancements: Various
modifications for optimizing the size of the search buffer and dictionary management for higher
performance.
For LZW (Lempel–Ziv–Welch)—Principle: It constructs a prefix code as it encounters new
patterns in the data stream. Advancements: Modified versions, like LZ78 and GIF’s variant of
LZW, improve compression speed or adapt the method for specific data types. To delve deeper,
actual implementation tests could involve compressing and decompressing diverse datasets to
quantify these differences under real-world conditions. These tests would help illustrate where

5244 Sensors and Materials, Vol. 36, No. 12 (2024)

each algorithm shines and where it might fall short, given different data characteristics and use-
case requirements.
 In this section, in accordance with the above algorithm principle, the actual data collected by
the sensor network are compressed by the above algorithm for further analysis.

 Compressibilitydefinition : 100%Output file sizeafter compression
Enter file sizebeforecompression

η = ∗ (1)

 The algorithm compression rates and execution times are shown in Table 3.
 The Huffman algorithm incorporates a rapid coding mechanism. LZSSI, on the other hand, is
a cyclic queue LZSS compression algorithm that operates on the basis of a sliding window
principle. Further evolution in LZSS methodology led to LZSS2, which utilizes a binary-search-
tree structure for its compression process. Its configuration includes a search buffer sized at
4096 bytes, a forward buffer extent of 17 bytes for optimization. In the case of the improved

Table 3
Algorithm compression rates and execution times.

Filename File size
(Byte)

LZW LZSS1 LZSS2 Huffman
Algorithm

compression
ratio (%)

Execution
time (ms)

Algorithm
compression

ratio (%)

Execution
time (ms)

Algorithm
compression

ratio (%)

Execution
time (ms)

Algorithm
compression

ratio (%)

Execution
time (ms)

sensor012
#20071103
#093022

117789 45.0 3 24.3 168 24.5 169 32.7 7

sensor012
#20071103
#094618

600048 45.6 15 23.6 850 24.6 886 33.3 37

sensor012
#20071103
#095945

605876 45.7 15 24.3 872 24.2 869 32.9 38

sensor012
#20071103
#101623

1150048 45.5 29 23.6 1616 24.8 1698 33.1 71

sensor012
#20071103
#103228

53012 45.2 1 24.3 76 24.3 76 32.8 3

sensor012
#20071103
#104219

1198048 45.5 31 24.3 1690 24.7 1718 32.6 75

sensor012
#20071103
#105649

1200128 45.5 31 23.8 1707 24.5 1757 33.0 74

sensor012
#20071103
#111038

1205876 45.3 31 23.8 1743 24.1 1765 33.0 75

sensor012
#20081103
#112654

1390976 45.8 35 23.6 1986 24.4 2054 32.7 87

sensor012
#20071103
#113936

607768 45.7 16 23.6 853 24.8 897 33.3 37

Sensors and Materials, Vol. 36, No. 12 (2024) 5245

LZW algorithm, the dictionary space has been expanded to accommodate 4096 entries to
enhance compression efficiency. The following conclusions can be drawn from Table 3.
(a) The LZSS1 algorithm has the best overall compression effect, but it takes the longest time, so

it is not an ideal choice for real-time transmission systems.
(b) The compression rate of the LZSS1 algorithm is similar to that of LZSS2, but the execution

time of the LZSS2 algorithm is much shorter.
(c) The improved LZW algorithm has a poor compression effect compared with LZSS. This

statement involves the comparison of the execution time of the improved LZW algorithm
with that of the Huffman algorithm. It indicates that the execution time of the improved LZW
algorithm is on the same scale as that of the Huffman algorithm. Additionally, it implies that
the improved LZW algorithm has some advantages over the Huffman algorithm in terms of
execution time.

(d) The improved LZW algorithm has a poor compression effect, but its execution time is shorter
than that of LZSS1.

5. Conclusions

 The goal of data compression technology is to reduce the volume or size of data by reducing
redundant information and taking advantage of statistical properties in the data while
maintaining the important content and integrity of the data. Data compression can not only help
save storage space and reduce storage costs, but also improves the speed and efficiency of data
transmission and reduces network traffic and transmission latency. By sacrificing data accuracy
and introducing data compression technology, we can reduce the amount of communication
data. The lossless data compression algorithm is chosen as the algorithm of the bridge inspection
system and is further improved. In addition, through the comparison of the algorithm
compression rates and execution times of the Huffman, LZSS, and improved LZW algorithms,
we found that the improved LZW algorithm has strong adaptability, can meet any input data, and
can fully use the repeatability of data, so it is very suitable for WSNs.

Acknowledgments

 This work was supported by the National Natural Science Foundation of China (No.
61473329), the Fujian Provincial Natural Science Foundation of China (No. 2021J011235), and
the phased research result of the provincial major project of the research project on education and
teaching reform of undergraduate colleges and universities in Fujian Province [Project name:
Research on the innovation education project of Internet of Things Engineering (Project No.
fbjg202101018)].

References

 1 S. Lykov, Y. Asakura, and S. Hanaoka: Tran. Res. Pro. 21 (2017) 56. https://doi.org/10.1016/j.trpro.2017.03.077
 2 H. Tonny, Z. M. Hafiz, and P. A. N. Che: Multimedia Tools Appl. 82 (2022) 1. https://doi.org/10.1007/S11042-

022-14130-1
 3 X. Liu, Wang, B. Xu, K. Zheng, and X. Yao: Wireless Commun. Mobile Comput. 2022 (2022) 5. https://doi.

org/10.1155/2022/2532905

https://doi.org/10.1016/j.trpro.2017.03.077
https://doi.org/10.1007/S11042-022-14130-1
https://doi.org/10.1007/S11042-022-14130-1
https://doi.org/10.1155/2022/2532905
https://doi.org/10.1155/2022/2532905

5246 Sensors and Materials, Vol. 36, No. 12 (2024)

 4 B. Wang, H. Zhang, Z. Liu, and H. Xiao: WTC 2021 (2021) 1. https://doi.org/10.26914/c.cnkihy.2021.010444
 5 D. Ning, W. Hao, G. Xu, J. Wan, and I. Muhammad: Ent. Inf. Sys. 2019 (2019) 1. https://doi.org/10.1080/175175

75.2019.1633689
 6 K. Xia, J. Liu, W. Li, P. Jiao, Z. He, Y. Wei, F. Qu, Z. Xu, L. Wang, X. Ren, B. Wu, and Y. Hong: Nano Energy

105 (2023) 1. https://doi.org/10.1016/J.NANOEN.2022.107974
 7 P. Delgosha, and V. Anantharam: IEEE Trans. Information Theory 99 (2020) 1. https://doi.org/10.1109/

tit.2020.2991384
 8 Y. Song, Z. Zhu, W. Zhang, L. Guo, X. Yang, and H. Yu: Nonlinear Dyn. 95 (2019) 2235. https://doi.org/10.1007/

s11071-018-4689-9
 9 L. Wang, S. Li , S. Wang, D. Kong, and B. Yin: IEEE Trans. Mulimedia 23 (2021) 2857.https://doi.org/10.1109/

TMM.2020.3017916
 10 S. Justin and B. J. Pablo: IEEE Signal Process Lett. 24 (2017) 279. https://doi.org/10.1109/lsp.2017.2657381
 11 W. Dong, G. Shi, X. Li,M. Yi, and F. Huang: IEEE Signal Proc. Soc. 23 (2014) 3618. https://doi.org/10.1109/

TIP.2014.2329449
 12 W. Qin, H. Wang, F. Zhang, J. Wang, X. Luo, and T. Huang: IEEE Trans. Image Process. 31 (2022) 2433.

https://doi.org/10.1109/TIP.2022.3155949
 13 D. Wang, G. Zhao, H. Chen, Z. Liu, L. Deng, and G. Li: Neural Networks 144 (2021) 320. https://doi.

org/10.1016/J.NEUNET.2021.08.028
 14 C. Wang, D. Xiao, H. Peng, and R. Zhang: J. Visual Commun. Image Represent. 51 (2018) 122. https://doi.

org/10.1016/j.jvcir.2018.01.007J
 15 Lee, S. Yoon, and E. Hwang: Sensors 21 (2021) 1521. https://doi.org/10.3390/S21041521
 16 W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan, and J. Wen: ACM Trans. Inf. Syst. 33 (2015) 1.

https://doi.org/10.1145/2735629
 17 R. Tom, and K. Shrinivas: IEEE Commun. Mag. 56 (2018) 28. https://doi.org/10.1109/mcom.2018.1700839
 18 K. N. Shamimi, K. Amirrudin, P. L. Yee, and R. Hameedur: IEEE Access 6 (2018) 8011. https://doi.org/10.1109/

access.2018.2796585

About the Authors

 Zhengsong Ni received his bachelor's degree from Fuzhou University in 1995,
his master's degree from Beijing Information Science and Technology
University in 2007, and his doctorate degree from Beijing University of Posts
and Telecommunications in 2010. From 2010 to 2012, he was a lecturer at
Tianjin Polytechnic University, from 2012 to 2014, he was an assistant
professor at Tsinghua University, and since 2014, he has been an associate
professor at Fujian Normal University of Technology. His research interests
include MEMS, big data, and sensors. (460532802@qq.com)

 Shuri Cai received his bachelor's degree from Fujian Normal University in
1997 and his master's and doctoral degrees from Beijing University of Posts
and Telecommunications in China in 2004 and 2008, respectively. Since 2007,
he has worked as an associate researcher at the Institute of Highway Science
under the Ministry of Transport. His research interests include MEMS, big
data, and sensors. (caishuri@126.com)

 Cairong Ni received her bachelor's degree from Sunshine College in 2022.
She has been working as a teaching assistant at Fujian Normal University of
Technology since 2022. Her research interests include MEMS, big data, and
sensors. (3247146792@qq.com)

https://doi.org/10.26914/c.cnkihy.2021.010444
https://doi.org/10.1080/17517575.2019.1633689
https://doi.org/10.1080/17517575.2019.1633689
https://doi.org/10.1016/J.NANOEN.2022.107974
https://doi.org/10.1109/tit.2020.2991384
https://doi.org/10.1109/tit.2020.2991384
https://doi.org/10.1007/s11071-018-4689-9
https://doi.org/10.1007/s11071-018-4689-9
https://doi.org/10.1109/TMM.2020.3017916
https://doi.org/10.1109/TMM.2020.3017916
https://doi.org/10.1109/lsp.2017.2657381
https://doi.org/10.1109/TIP.2014.2329449
https://doi.org/10.1109/TIP.2014.2329449
https://doi.org/10.1109/TIP.2022.3155949
https://doi.org/10.1016/J.NEUNET.2021.08.028
https://doi.org/10.1016/J.NEUNET.2021.08.028
https://doi.org/10.1016/j.jvcir.2018.01.007J
https://doi.org/10.1016/j.jvcir.2018.01.007J
https://doi.org/10.3390/S21041521
https://doi.org/10.1145/2735629
https://doi.org/10.1109/mcom.2018.1700839
https://doi.org/10.1109/access.2018.2796585
https://doi.org/10.1109/access.2018.2796585
mailto:460532802@qq.com
mailto:caishuri@126.com
mailto:3247146792@qq.com

