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 In bridge inspection using wireless technology, the sensor node carries very limited energy. 
In this paper, data compression technology to reduce the amount of communication data by 
sacrificing data accuracy is introduced. The lossless data compression algorithm was chosen as 
the algorithm of the bridge inspection system, and the algorithm was further improved. In 
addition, we compared the compression rates and execution times of the Huffman, Lempel–Ziv–
Storer–Szymanski (LZSS), and improved Lempel–Ziv–Welch (LZW) algorithms. The results 
showed that the improved LZW algorithm is highly adaptable, accommodates any type of input 
data, and can make full use of the repeatability of data. Therefore, this lossless data compression 
algorithm is suitable for application in the wireless sensor networks of bridge inspection systems.

1. Introduction

 In recent years, the health status monitoring of bridges has attracted increasing attention, 
because the safety and reliability of bridges are crucial to ensure the smooth progress of 
transportation. Wireless sensor networks (WSNs) are widely used in bridge health monitoring 
systems, and a large number of sensor nodes are deployed to collect the structural information of 
bridges in real time.(1) However, owing to the resource constraints of sensor nodes, such as 
computing power, storage capacity, and energy supply, the data compression of sensor nodes 
becomes particularly important and necessary.
 The lossless data compression algorithm is an effective data compression method that can 
reduce the amount of data storage and transmission by deleting or retaining redundant 
information without losing the original data information.(2) In the bridge inspection system, 
sensor nodes usually collect a large amount of data, such as vibration, temperature, and 
displacement, which contain the key information of the running state and health status of the 
bridge structure. Therefore, it is very important to find a balance between maintaining data 
integrity and reducing the amount of data transferred.
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 The purpose of this work is to study the application of the lossless data compression algorithm 
in WSNs to bridge inspection systems.(3) First, we will analyze the data compression algorithms 
commonly used today and evaluate their applicability to bridge inspection systems. Then, we 
will propose a bridge inspection system architecture based on the lossless data compression 
algorithm and describe its implementation and key technologies in detail. Next, we will devise a 
series of experiments to validate the performance and efficacy of this algorithm, and contrast its 
results with those of alternative compression algorithms. Finally, on the basis of experimental 
results, we will discuss the advantages and limitations of the lossless data compression algorithm 
in bridge inspection systems and put forward the improvement direction and future research 
prospects.(4)

 The objective of this research is to reduce the data transmission of sensor nodes using the 
lossless data compression algorithm, so as to extend the energy life of sensor nodes and improve 
the reliability and stability of the system.(5) In addition, the lossless data compression algorithm 
can reduce the data storage capacity and data transmission delay and improve the real-time 
performance of the system. Through the real-time monitoring and analysis of the bridge 
structure, we can find the potential structural problems in time and take the corresponding 
measures to ensure the safe operation of the bridge.
 The results of this study are of great significance to the development of bridge engineering 
and WSN technology. By applying the lossless data compression algorithm to the bridge 
inspection system, we can improve the energy utilization efficiency of sensor nodes, reduce the 
maintenance cost of the system, and promote the application of WSN technology in the field of 
bridge health monitoring.(6) In addition, this research can also provide reference for other fields 
of data compression and transmission problems and has a wide range of application prospects.
 Therefore, the purposes of this study are to explore an efficient and reliable bridge health 
monitoring method through the study of the lossless data compression algorithm on bridge 
inspection systems and to provide theoretical and empirical support for research and practice in 
related fields. Through this research, we hope to improve the safety and reliability of bridges and 
contribute to social transportation construction and economic development.

2. Research Status of Lossless Data Compression Algorithms at Home and 
Abroad

 WSNs play an important role in bridge inspection systems, which can monitor and collect the 
data of bridge structure in real time to provide efficient detection and early warning. The 
research of lossless data compression algorithms in this field is aimed at reducing the storage 
and transmission overhead of data while maintaining the accuracy and integrity of data. The 
following is a brief overview of the research status of the lossless data compression algorithm in 
bridge inspection systems at home and abroad.(7)

2.1 Domestic research status

(1)  Compression algorithm based on wavelet transform: Wavelet transform is used to analyze 
and compress bridge data in the frequency domain to reduce data redundancy. For example, 
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algorithms using wavelet transform and adaptive threshold selection can achieve efficient 
compression and recovery.(8)

(2)  Adaptive dictionary learning algorithm: This algorithm can learn and generate dictionaries 
suitable for data representation in accordance with the characteristics of bridge data to reduce 
the representation error of data. By optimizing the dictionary learning process, better data 
compression results can be achieved.(9)

(3)  Sparse representation algorithm: The sparse representation algorithm is based on the 
assumption that bridge data can be represented by fewer underlying signals. Through sparse 
representation, data can be compressed and recovered efficiently.(10)

2.2 Foreign research status

(1)  Compressed sensing algorithm: Compressed sensing is an emerging signal processing 
technology that can restore the original signal through a small amount of sampling. In bridge 
inspection systems, the compressed sensing algorithm can effectively reduce the data storage 
and transmission overhead.(11)

(2)  Non-negative matrix decomposition algorithm: The non-negative matrix decomposition 
algorithm can decompose and compress the bridge data and maintain the non-negative data. 
This algorithm achieves good compression results in the damage detection and diagnosis of 
bridge structures.(12)

(3)  Adaptive compression algorithm: This algorithm adaptively selects compression methods and 
parameters in accordance with the characteristics of bridge data and adjusts the compression 
ratio in real time. By dynamically adjusting the compression ratio, efficient compression can 
be achieved while ensuring data accuracy.(13)

 In general, the research of the lossless data compression algorithm in bridge inspection 
systems has advanced considerably. Various algorithms and methods have been proposed by 
researchers at home and abroad, and some positive results have been obtained. However, there is 
still room for further research and improvement to improve the effectiveness and performance of 
the compression algorithm and make it better applicable to bridge inspection systems.

3.	 Classification	of	Data	Compression	Technology

 There are many ways to classify data compression. According to some statistics, it can reach 
20 to 40 kinds, which have not yet been unified. Most scholars agree that data compression is 
divided into lossless compression and lossy compression.
 Data compression can be classified on the basis of different classification criteria. The 
following are common data compression categories:
(1)  Lossy Compression: Lossy compression is a compression method that compresses data while 

losing some of the details and precision of the original data. This compression method is 
suitable for situations where data accuracy is relatively low, such as audio compression and 
video compression.(14)

(2)  Lossless Compression: Lossless compression is a compression method that can completely 
retain the accuracy and integrity of the original data during compression and decompression. 
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This compression method is suitable for situations where data accuracy is required, such as 
text and image compression.(15)

(3)  Dictionary-based Compression: Dictionary-based compression is a lossless compression 
method that compresses data by creating and using dictionaries. Common dictionary 
compression algorithms include the Lempel–Ziv–Welch (LZW) algorithm and Huffman 
coding.(16)

(4)  Predictive Coding: Predictive coding is a lossless compression method that utilizes the 
statistical properties of data and predictive models to achieve data compression. Common 
predictive coding algorithms include differential coding and arithmetic coding.

(5)  Transform Coding: Transform coding is a lossless compression method that reduces the 
redundancy of data by transforming the data. The most common conversion coding 
algorithms are JPEG image compression based on discrete cosine transform (DCT) and 
JPEG2000 image compression based on discrete wavelet transform (DWT).(17)

(6)  Entropy Coding: Entropy coding is a lossless compression method that uses the concept of 
information entropy to represent the probability of symbol occurrence. The symbols that 
appear with high frequency are represented by short code words, and the symbols that appear 
with low frequency are represented by long code words, so as to achieve data compression. 
Common entropy coding algorithms include Huffman coding and arithmetic coding.(18)

3.1 Several common traditional lossless compression algorithms

 The above classifications are not mutually exclusive, and some compression algorithms can 
use different compression techniques simultaneously. The choice of the appropriate compression 
method depends on the characteristics of the data, the application requirements, and the 
performance requirements of compression and decompression.
 There are many traditional lossless compression algorithms, and the following are some 
common ones.
(1)  Huffman Coding: Huffman coding is an entropy coding method that uses variable-length 

code words to represent the occurrence probability of different symbols. Symbols that appear 
with high frequency are represented by short code words, and symbols that appear with low 
frequency are represented by long code words. This encoding method is often used in text 
compression and image compression.

(2)  Arithmetic Coding: Arithmetic coding is also an entropy coding method that maps the entire 
message sequence into an interval and scales the interval size in accordance with the 
probability distribution of the message. Arisso coding can represent the probability of the 
occurrence of symbols more precisely, so it can achieve a higher compression efficiency than 
Hoffmann coding.

(3)  LZ77 and LZ78 algorithms: LZ77 and LZ78 algorithms are a class of dictionary-based 
compression algorithms. The LZ77 algorithm finds the longest matching string by using a 
sliding window and represents it with a pointer and length. The LZ78 algorithm uses a 
dictionary to store the strings that have been encountered and represents them with pointers 
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and new letters. These algorithms have achieved good compression effects in practical 
application.

(4)  Run-length Encoding (RLE): RLE is a simple compression method that compresses data by 
counting the number of consecutive occurrences of the same symbol. Repeated symbols need 
only be stored once and then represented by degrees. This encoding method is very effective 
when dealing with continuously recurring symbols, such as white space in an image. These 
traditional lossless compression algorithms have been widely used in many applications and 
have achieved good compression results. However, with the increase in data volume and the 
change of application requirements, new compression algorithms are also emerging to better 
meet the compression needs of different types of data.

3.2. Comparison of several lossless compression algorithms

 There are several key factors to consider when comparing different lossless compression 
algorithms.
(1)  Compression rate: The compression rate is an important indicator used to measure the 

compression effect of the algorithm and represents the ratio of the compressed data size to the 
original data size. The ideal algorithm should be able to provide a higher compression rate, 
i.e., a smaller compressed file size.

(2)  Compression speed: Compression speed refers to the time taken by the compression 
algorithm to perform the compression operation. For large data sets or scenarios that require 
real-time compression, high compression speeds are an important consideration.

(3)  Decompression speed: The decompression speed refers to the time taken by the compression 
algorithm to perform the decompression operation. High decompression speeds are important 
in scenarios where data need to be decompressed frequently.

(4)  Compression quality: Compression quality indicates the degree of difference between the 
compressed data and the original data. A higher compression quality means that the 
compressed data can be closer to the original data without losing key information.

(5)  Applicable data types: Different compression algorithms have different effects on different 
types of data. For example, some algorithms perform well when working with text data and 
may be less effective when working with images or audio data. Therefore, it is necessary to 
consider the data type and application scenario to choose the appropriate compression 
algorithm.

 In general, there is no single algorithm that is the best at everything. Choosing the right 
compression algorithm depends on your specific needs and limitations. In practical applications, 
factors such as compression rate, compression speed, and decompression speed are usually 
weighed to choose the most suitable algorithm. At the same time, you can also consider using a 
combination of multiple algorithms or using adaptive algorithms to obtain the best compression 
effect for different data types and scenarios.
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4. Research and Implementation of LZW Improvement Algorithm

4.1 Principle of LZW algorithm

 The LZW algorithm works as follows.
(1)  Initialize the dictionary: Create an initial dictionary that contains all possible single 

characters as keys, corresponding to their index in the dictionary.
(2)  Read input: Read a character from the input data as the current input character.
(3)  Check the dictionary: Concatenate the current input character and the previously read 

character sequence together to form a new string. Check whether the string exists in the 
dictionary.

a.  If it exists, continue reading the next input character, concatenating the current string with 
the previously read character sequence.

b.  If it does not exist, output the encoding of the previously read character sequence, add the 
current string to the dictionary, and assign it a new encoding.

(4)  Output encoding: Output the encoding of the previously read character sequence.
(5)  Update the dictionary: Add the current string to the dictionary and assign it a new encoding.
(6)  Repeat Step 2 until the data input is complete.
 The core idea of the LZW algorithm is to realize compression by building the dictionary step 
by step. It uses the repeated occurrence of a string to reduce the redundancy of data, and the 
repeated string is represented by the index value, so as to achieve the compression effect of data. 
When decompressing, the original data can be recovered by remapping the encoding of the 
output to a string in the dictionary.
 Note that the LZW algorithm is a dynamic dictionary compression algorithm, which will 
continuously increase the size of the dictionary during compression. This makes the LZW 
algorithm very effective when dealing with data with a large number of repeating strings, such 
as text data. The LZW algorithm is an improvement on the LZ78 algorithm similar to the LZSS 
improvement on the LZ77 algorithm, that is, the LZW compressor does not encode a single 
character. The compression principle is that by analyzing the input data stream, a string table is 
generated adaptively while encoding, and all the strings that have appeared before are not 
repeated. The compression process is as follows. By comparing the current input data stream 
with the strings in the string table, the output value is determined. Simultaneously, the string 
table is updated. This is illustrated in Fig. 1.
 In addition, to improve the storage space overhead caused by reserving 256 descendants for 
each node in LZ78, the improved LZW algorithm uses a hash function to identify and find the 
child nodes of a given node. The specific method is to use parent_code and child_code to obtain 
the offset of a child node. When you find the corresponding child node on the basis of this offset, 
check whether this node is used by other nodes to ensure that no conflict occurs. A typical 
compressed reality, like that in Table 1, has an input data stream of /WED/WE/WEE/WEB/
WET.
 The algorithm preloads a single symbol into the dictionary’s data structure. In this way, even 
if the symbol appears in the input data stream for the first time, there is no phenomenon that 
cannot be encoded immediately. During the implementation of the algorithm, LZW tries to 
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output code for symbols in the data stream, and when there is a new code output, the 
corresponding new phrase is added to the dictionary. As shown in Fig. 2, the improved LZW 
algorithm uses the hash function to determine and find the children of a given node. The specific 
method is to use the parent and child nodes to obtain the offset of a descendant node. When the 
corresponding descendant node is found using this offset, it should be checked whether this node 
is used by other nodes to ensure that there is no conflict (see Table 2).

Fig. 1. LZW algorithm compression process.

Table 1
LZW algorithm compression instance.
Input string = /WED/WE/WEE/WEB/WET
0.9991
0.9562
0.9840
Character input Code output New code value New string
/W / 256 /W
E W 257 WE
D E 258 ED
/ D 259 D/
WE 256 260 /WE
/ E 261 E/
WEE 260 262 /WEE
/W 261 263 E/W
EB 257 264 WEB
/ B 265 B/
WET 260 266 /WET
EOF T
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 The maintenance of the dictionary is relatively simple during the decompression of the 
improved LZW algorithm. Instead of searching down the tree, the code is read directly from the 
encoded stream and then searched up the tree. As long as the parent node is correctly defined in 

Table 2
Improved LZW algorithm compression.
Input Codes: / W E D 256 E 260 261 257 B 260 T
Input/
NEW_CODE OLD_CODE STRING/

Output CHARACTER New table entry

/ / /
W / W W 256 = /W
E W E E 257 = WE
D E D D 258 = ED
256 D /W / 259 = D/
E 256 E E 260 = /WE
260 E /WE / 261 = E/
261 260 E/ E 262 = /WEE
257 261 WE W 263 = E/W
B 257 B B 264 = WEB
260 B /WE / 265 = B/
T 260 T T 266 = /WET

Fig. 2. Improved LZW algorithm flow chart.
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the dictionary, it can be correctly decoded. Therefore, the tree built in the decompression 
algorithm does not need to use a hash function and does not need to find an index.
 One problem with the search up tree is that the decoded characters are in reverse order, so 
they have to be pushed onto the stack, ejected in reverse order, and written to the output file.
 The improved LZW decompression algorithm is as follows.

read OLD _ CODE
output OLD _ CODE
 WHILE there are still input characters DO
  Read NEW _ CODE
  STRING=get translation of NEW _ CODE
  output STRING
	 CHARACTER	=	first	character	in	STRING
 Add OLD _ CODE+CHARACTER to the translation table
 OLD _ CODE=NEW _ CODE
 END of WHILE

 The improved LZW algorithm has no transmission overhead and is simple to calculate. Both 
the sender and the receiver contain initializing dictionaries to create new dictionary entries on 
the basis of existing dictionary entries. As soon as the data is received, the receiver can recreate 
the dictionary. Its biggest features are simple logic, easy to implement, and high speed.

4.2 Improved LZW algorithm implementation

 The C program of the improved LZW algorithm is introduced below.
(1) Symbol definition
BITS: dictionary address space (0–2BITS-l), BITS={12,13,14};
HASHING_SHIFT: indicates the offset of the child node. HASHING_SHIFT=BITS-8;
Code-value []: indicates the actual code value of the node, and the output code value after the 
string is encoded in the compression program;
Prefix-code []: indicates the prefix node code. Each string in the dictionary has a prefix node 
shorter than its own.
append_character[]: current node code;
decode_stack[]: decoder stack;
(2) Subfunction definition
(a) encoding input function lzw_input_code(unsigned char*&input)
 The function is employed within the LZW decompression algorithm, primarily to accomplish 
the transformation of encoded data formats, specifically converting 8-bit input data into BITS 
format output. The implementation is to first read 8 bits of data into the 32-bit length of the FIFO 
buffer; if the hash table address space is BITS, then output the high bits of data. The whole 
implementation process is like a 32-bit-long sliding window, each time taking the highest BITS 
of data in the window as output.
Input parameters: input is a pointer to input data, input in bytes; Returned value: BITS of data
(b) output coding function lzw_output_code(unsigned char*&output, unsigned int code)
Function Description: Used in the LZW compression program, the encoded data is output in 
8-bit format, which is a function often used in the data compression program. Define a 32-bit 
FIFO buffer where the program runs once and outputs data in bytes until the data in the buffer is 
less than one byte long.
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Input parameter: code indicates the current code. Returned value: output is the output data 
pointer
(c)  Hash function dictionary address index lzw_find_match(int hash_prefix, unsigned int Hash_

character)
 Function description: According to the set hash (hash) function H(key) and the method of 
handling conflicts, the keyword is mapped to a finite continuous address set (interval), and the 
“image” of the keyword in the address set is taken as a storage location in the table, which is a 
hash table. This mapping process is called the hash table or hash, and the resulting storage 
location is called the hash address. The hash function applied to this algorithm is index = (hash_
character<<HASHING_SHIFT) and yyyy hash_prefix; index is the address index obtained 
using the prefix and current nodes. If the address index value does not exist (code_value[index] 
is empty) or the string corresponding to code_value[index] and the prefix node hash_prefix are 
the same as the string composed of the current node hash_character, the value is returned. If the 
index exists but the string corresponding to code_value[index] and the prefix node hash_prefix 
are not exactly the same as the string composed of the current node hash_character, subtract an 
offset value from the index value and check until the index value does not exist.
hash_prefix indicates the prefix code. hash_character indicates the current character. Return 
value: address index.
d, decode string function *lzw_decode_string(unsigned char*buffer, unsigned int code)
Function Description: Reverse addressing is a technique that is utilized to create a stack for 
storing strings. The particular program that uses this method is implemented in the 
decompression process. If the input code is an encoded value, press the corresponding current 
character append_character[code] into the stack, and then look for its prefix string encoded 
prefix_code[code] until
Prefix_code[code] is a single character (ASCⅡ value less than 255).
Input parameters: buffer Stack Buffer address, code is the current code; Return value: stack 
bottom address
(3) LZW data compression function
 Define the prefix character as string_code and the input character as character. The LZW 
data compression algorithm flows as follows.
Step 1: Initialize the dictionary, code_value[i]=UNUSED;
Step 2: Enter the character string_code;
Step 3: Enter character;
Step 4:  Check if the current position is at the end of the file. If it is, proceed to step 8. If not, 

proceed to step 5.
Step 5:   Use the lzw_find_match() subfunction to determine the current string dictionary index;
Step 6:  If the current string does not exist in a certain context (presumably a dictionary or some 

other storage mechanism), output the current code string_code. Then, add the current 
string to the dictionary and set string_code equal to a character. After that, return to Step 
3. If the current string exists, go to Step 7.

Step 7: Set string_code = code_value[index] and skip back to Step 3.
Step 8: Output the last code, string_code, and mark the end of the file.
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(4) LZW data decompression function
 Set the old encoding to old_code, the new encoding to new_code, the top character of the 
stack to character, and the data output pointer to destoutPtr. The LZW decompression algorithm 
flow is as follows.
Step 1: Initialize;
Step 2: Use the lzw_input_code() function to read the code value old_code, character=old_code;
Step 3:  Assign the old_code value to the data pointer destoutPtr. The pointer points to the next 

address.
Step 4:  Use the lzw_input_code() function to read the code value new_code, if new_code is the 

end of the file, exit; otherwise, enter step 5;
Step 5:  If new_code is not in the dictionary, press character: to the bottom of the stack, use lzw_

code_string(*buffer, old_code) to reverse construct the string, and point the data pointer 
destoutPtr to the string to achieve data output; Otherwise, lzw_decode_string(*buffer, 
new_code) is used to reversely construct the string, and the data pointer destoutPtr points 
to the string to achieve data output.

Step 6:  If the dictionary is not full, add the string old_code+character: to the dictionary;
Step 7:  Assign the new_code value to old_code and go to Step 4.
 The above is an implementation of the LZW modified algorithm for fixed-length dictionaries, 
where the size of the dictionary is variable, and a larger dictionary means that more and longer 
phrases can be stored, resulting in higher compression. The LZW improvement algorithm 
usually uses the 15-bit length code to have a 32K capacity phrase dictionary, but increasing the 
size of the dictionary brings about new problems. If the compressed file is small, using more bits 
of code slows down compression. For small files, the number of phrases generated in the 
compression may not be enough to fill the entire large-capacity dictionary, and it is more 
advantageous to determine the output code bits adaptively in accordance with the size of the 
dictionary. In response to this problem, it has been proposed that during the compression, the 
output of the program is a variable-length code, starting with 9 bits, until the dictionary has 
grown to 256 new phrases, starting with the 10- bit code, and so on until the 15-bit code is used.

4.3 Comparison of lossless data algorithms

 For Huffman coding—Theoretical basis: It is based on the frequency of symbols, creating 
variable-length codes. Improvements: Adaptive Huffman coding adjusts the code lengths as 
more data are encountered, optimizing compression efficiency.
 Regarding LZSS (Lempel–Ziv–Storer–Szymanski)—Theory: it uses a sliding window for 
finding repeated sequences and encoding them with pointers. Enhancements: Various 
modifications for optimizing the size of the search buffer and dictionary management for higher 
performance.
For LZW (Lempel–Ziv–Welch)—Principle: It constructs a prefix code as it encounters new 
patterns in the data stream. Advancements: Modified versions, like LZ78 and GIF’s variant of 
LZW, improve compression speed or adapt the method for specific data types. To delve deeper, 
actual implementation tests could involve compressing and decompressing diverse datasets to 
quantify these differences under real-world conditions. These tests would help illustrate where 
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each algorithm shines and where it might fall short, given different data characteristics and use-
case requirements.
 In this section, in accordance with the above algorithm principle, the actual data collected by 
the sensor network are compressed by the above algorithm for further analysis.

 Compressibilitydefinition : 100%Output file sizeafter compression
Enter file sizebeforecompression

η = ∗  (1)

 The algorithm compression rates and execution times are shown in Table 3.
 The Huffman algorithm incorporates a rapid coding mechanism. LZSSI, on the other hand, is 
a cyclic queue LZSS compression algorithm that operates on the basis of a sliding window 
principle. Further evolution in LZSS methodology led to LZSS2, which utilizes a binary-search-
tree structure for its compression process. Its configuration includes a search buffer sized at 
4096 bytes, a forward buffer extent of 17 bytes for optimization. In the case of the improved 

Table 3
Algorithm compression rates and execution times.

Filename File size
(Byte)

LZW LZSS1 LZSS2 Huffman
Algorithm

compression
ratio (%)

Execution
time (ms)

Algorithm 
compression

ratio (%)

Execution
time (ms)

Algorithm 
compression

ratio (%)

Execution
time (ms)

Algorithm 
compression

ratio (%)

Execution
time (ms)

sensor012
#20071103
#093022

117789 45.0 3 24.3 168 24.5 169 32.7 7

sensor012
#20071103
#094618

600048 45.6 15 23.6 850 24.6 886 33.3 37

sensor012
#20071103
#095945

605876 45.7 15 24.3 872 24.2 869 32.9 38

sensor012
#20071103
#101623

1150048 45.5 29 23.6 1616 24.8 1698 33.1 71

sensor012
#20071103
#103228

53012 45.2 1 24.3 76 24.3 76 32.8 3

sensor012
#20071103
#104219

1198048 45.5 31 24.3 1690 24.7 1718 32.6 75

sensor012
#20071103
#105649

1200128 45.5 31 23.8 1707 24.5 1757 33.0 74

sensor012
#20071103
#111038

1205876 45.3 31 23.8 1743 24.1 1765 33.0 75

sensor012
#20081103
#112654

1390976 45.8 35 23.6 1986 24.4 2054 32.7 87

sensor012
#20071103
#113936

607768 45.7 16 23.6 853 24.8 897 33.3 37
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LZW algorithm, the dictionary space has been expanded to accommodate 4096 entries to 
enhance compression efficiency. The following conclusions can be drawn from Table 3.
(a)  The LZSS1 algorithm has the best overall compression effect, but it takes the longest time, so 

it is not an ideal choice for real-time transmission systems.
(b)  The compression rate of the LZSS1 algorithm is similar to that of LZSS2, but the execution 

time of the LZSS2 algorithm is much shorter.
(c)  The improved LZW algorithm has a poor compression effect compared with LZSS. This 

statement involves the comparison of the execution time of the improved LZW algorithm 
with that of the Huffman algorithm. It indicates that the execution time of the improved LZW 
algorithm is on the same scale as that of the Huffman algorithm. Additionally, it implies that 
the improved LZW algorithm has some advantages over the Huffman algorithm in terms of 
execution time.

(d)  The improved LZW algorithm has a poor compression effect, but its execution time is shorter 
than that of LZSS1.

5. Conclusions

 The goal of data compression technology is to reduce the volume or size of data by reducing 
redundant information and taking advantage of statistical properties in the data while 
maintaining the important content and integrity of the data. Data compression can not only help 
save storage space and reduce storage costs, but also improves the speed and efficiency of data 
transmission and reduces network traffic and transmission latency. By sacrificing data accuracy 
and introducing data compression technology, we can reduce the amount of communication 
data. The lossless data compression algorithm is chosen as the algorithm of the bridge inspection 
system and is further improved. In addition, through the comparison of the algorithm 
compression rates and execution times of the Huffman, LZSS, and improved LZW algorithms, 
we found that the improved LZW algorithm has strong adaptability, can meet any input data, and 
can fully use the repeatability of data, so it is very suitable for WSNs.
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