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With the profound changes in transportation and energy, the integration of new energy
electric vehicles into the power grid will generate a large amount of data. Sensors are deployed
in the coupling environment of a transportation network and a power grid to transmit accurate
monitoring data. Aiming at sensors that generate faults under the coupling interaction between a
distribution network and a transportation network, in this paper, we propose a fault sensor node
judgment method based on the spatial-temporal correlation fusion algorithm (FA). First, the
cubic exponential smoothing (CES) algorithm of the time attribute and the piecewise least
squares (PLSE) algorithm of the spatial properties are used to predict the temperature, humidity
and voltage data monitored by the sensors. Then, according to the error size, the adaptive weight
adjustment method is used to find the optimal weight value, and the FA model is obtained, so as
to gain more accurate detection results. Finally, by comparing the predicted value with the set
confidence interval, the identification of the fault sensor node is demonstrated. The results
showed that the detection model proposed in this study has excellent fault sensor node detection
performance. For the prediction results of the temperature data of the sensor, the fit accuracies of
FA are 45.1 and 77.4% higher than those of ES and PLSE, respectively, which has certain
practical significance.

1. Introduction

The increasing adoption of electric vehicles has deepened the integration between
transportation networks and the power grid, fostering mutual influence between energy
dynamics and transportation systems. Deploying sensors in relevant environments enables the
real-time monitoring of traffic flow, power consumption, and equipment operation.() Wireless
sensor networks, renowned for their scalability, self-organization, and reliability, have found
diverse applications, including military operations,® environmental surveillance,® and
healthcare.®) However, the sensors manufactured today generally have the characteristics of low
cost and intelligence, and are usually deployed in harsh environments, and the probability of
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sensor failure is considerably raised by the effects of environment conditions. In the scenario of
extensive and complex traffic network and power grid coupling, the deployed sensor monitors a
large number of parameters, and the data transmission and storage are prone to errors, resulting
in the misjudgment of the fault node. It is very important to monitor the state of the electric
vehicle by deploying the sensor to achieve a reasonable scheduling of power resources and
balance of the power demand. Therefore, the fault detection method of sensor network nodes has
become a hot research topic in this field.®) Fusion algorithms can be suitable for applications in
various fields by combining the advantages of different algorithms to enhance the robustness,
reliability and adaptability of the system.®) In this study, we employed a spatial-temporal
correlation fusion algorithm (FA) to integrate sensor data from diverse dimensions, thereby
augmenting the precision of numerical predictions for sensor nodes.(”-®)

Fault detection in wireless sensor networks involves monitoring and identifying the abnormal
or faulty states of sensor nodes, a critical process for ensuring network reliability and
effectiveness. Current research primarily focuses on the soft faults of sensor nodes, emphasizing
fault node detection. Methods of sensor node fault detection include the use of distributed and
centralized fault diagnosis algorithms, packet loss analysis, transmission time comparison, and
others.®~12 While these methods enhance detection accuracy compared with traditional
approaches, they often demand high system hardware complexity and stability, leading to the
significant consumption of computing and network resources.

In this study, we focus on detecting sensor fault nodes by identifying abnormal data. Initially,
analysis reveals nonlinear time series characteristics of collected sensor data. The cubic
exponential smoothing (CES) algorithm model can quickly capture the trend and seasonal
changes in the data, especially for the analysis of time series data with clear trends and seasonal
laws, and improve the accuracy of prediction.13:14) Additionally, the piecewise least squares
(PLSE) method is employed to fit sensor data. However, in dealing with nonlinear relationships,
the single least squares method struggles to approximate the data accurately. Segmentation
improves model robustness by adapting to changing data trends and enhancing resilience to
outliers.(1>16)

Finally, to solve the problem that the fault sensor nodes are difficult to detect in the actual
scene of the electric vehicle incorporated into the power grid, in this study, we combined the
above two sensor fault node detection methods based on the time and space attribute
characteristics of the data collected by the sensor nodes. A FA model based on spatial-temporal
correlation is introduced. Through the two-way detection using the CES algorithm with the time
attribute and the PLSE method with the spatial properties, a better detection and recovery effect
is achieved.

2. Spatial-temporal FAs
2.1 CES algorithm of time characteristic

The CES model assigns weights to historical data on the basis of their proximity to the
current moment, giving higher weight to data closer to the present and lower weight to data
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further away. This weighting scheme ensures the rationality of prediction results. The formula is
expressed as

Y =aF? +(1-a)FY). (1)

Here, Ft(3) is the smooth value obtained at time ¢, Ft(_31) is the smooth value obtained at time ¢ — 1,
its superscript (3) expresses a CES, a is the smoothing coefficient, and the value range is
a € (0,1).

It is concluded that the model of predicting £, of the observation data of sensor Q at a
future time by the CES algorithm is o

Ey =A+BT+ c,1 Q)

The calculation formula for each coefficient in the prediction model is
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In the above formula, 7 represents the period of the sequence.
2.2 PLSE method of spatial properties
2.2.1 Least squares estimation (LSE)

It is assumed that the following two sensor data sequences Q=(Q,,0,,...,0y) and
Z =(Z,,Z,,...,Zy) with spatial correlation are obtained. They are the temperature data sequence
of sensor Q and the humidity data sequence of sensor Z, respectively. The calculation formula is

Lo =i+ 7 4
o) =Mt (2 ), @

where L o) is the predicted value of the temperature of sensor O based on the humidity data set
of sensor Z, my, is the mean value of the temperature data of sensor Q, m, is the mean value of
the humidity data of sensor Z, 1, is the variance of the humidity data value of sensor Z, and 4,
is the covariance of the data between the temperature of sensor Q and the humidity of sensor Z.

The calculation formula is
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2.2.2 PLSE

First, the regression equation function is selected as y = a + bx, where a is the intercept and b
is the slope. For N sets of data (X, V) (( = 1, 2, ..., N) in the dataset, we define the error term as

N N
0=3(Y,-Y)’ = X(Y;—a—bX,)" ©)

i=1 i=l1

Then, the data sequence is divided into k groups:

Ny :(Xll’yil)’(XIZ’YIZ)""’(lel’Ylml )s
Nz:(leaYzl)a(XzzaYzz)a---a(szz»Yzmz)v (7)

Ny = (X1, Y0, (Xg2s Yo ) (K, Yim, -

The fit error is related to the & groups and the value of the segmentation point
(my,m,,...,m;_;), and then the piecewise fit of the data sequence is realized in accordance with
the principle of minimum overall fit error.

The overall fit error is

m N
0 =3V —a-b X))+t Y (Yi—ap—b X)) (8)

i=1 i=my_;+1

We choose the best segmentation point as (1, m,,...,m;_;) when O takes the minimum value of

k
Q min*
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23 FA

By combining Egs. (2) and (4), the equation of the FA can be obtained as

o~

Qt=#'EA[ +V'LQ, ©)

where the predicted value of the improved FA for sensor Q at time ¢ is Qt, L represents the weight
coefficient given by the time attribute detection algorithm in the prediction, v represents the
weight coefficient given by the spatial properties detection algorithm in the prediction, and
1 €(0,1], v e(0,1]. In the calculation, the predicted value of the Q sensor calculated using the
CES algorithm at time ¢ is EA[ and LQ is the predicted value of the sensor data sequence
calculated by the PLSE method at time .

The overall flow chart of the FA is shown in Fig. 1.

3. Parameter Selection

It can be seen from the calculation formula [Eq. (9)] of the FA that the selection of the
smoothing coefficient, segmentation interval, and weight coefficient determines the accuracy of
the judgment of abnormal data.

3.1 Smoothing coefficient in CES algorithm

The smoothing coefficient (@) directly affects the responsiveness of the CES model to data
changes. As a increases, a higher proportion of data contributes to the predicted value. If a
smaller a value is obtained, the historical data has a greater weight value in the predictive model.
In this study, we performed experiments with a values of 0.1, 0.5, and 0.9 and found that o = 0.5
yielded the best fit to the original data. The prediction effect diagrams are shown in Fig. 2.

| Enter the data to be tested |

Determine whether it is time-related data

Algorithm comparison of fusion algorithm and
sub-algorithm

Determine

]

whether the predicted value exceeds the s¢
threshold.
Y]
N

The cubic exponential The piecewise least squares v
smoothing algorithm is method is called for The sensor is in The sensor is in
called for prediction. prediction. normal condition fault condition

| The two algorithms are fused for prediction | | Output sensor state judgment results |4—

The adaptive technology adjusts the weight of the
two algorithms to obtain the predicted value.

Fig. 1. (Color online) Implementation of spatial-temporal correlation FA.
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Fig. 2. (Color online) Prediction effects of different smoothing coefficients.

The analysis of the prediction effect of the smoothing coefficient across different values in
Fig. 2 reveals that a coefficient of 0.5 yields superior fit results for the entire sensor time series
data, effectively capturing data trends. Conversely, a coefficient of 0.9 leads to notable prediction
fluctuations around turning points, resulting in significant errors compared with real data. A
coefficient of 0.1 exhibits substantial deviations between the fit curve and real data, particularly
in predicting mutation points, where the effect is less pronounced.

In summary, selecting 0.5 as the smoothing coefficient by the trial-and-error method can
provide a more balanced weight distribution for the data, that is, it provides a balance between
the biases of past and latest observations.

3.2 Piecewise points in PLSE method

In time series data, there exists a statistical correlation between consecutive data points, and
it changes gradually over time. The direct segmentation of data in chronological order is feasible
without the need to identify distinct change points. Given the absence of precise tools or methods
to identify points of sharp characteristic changes in statistical data, employing a fixed interval
method to track the data’s statistical characteristics has proven practical. Hence, in this study, we
selected a sliding time window of 100 data points to segment the time series data. Simultaneously,
100 data points serve as segmentation points for the fixed window length, minimizing the
overall fit error between predicted and actual data, consistent with the principle of minimum
overall fit error. Consequently, the sliding window length of 100 data points can be deemed as
the fixed window interval for determining the optimal segmentation point.

3.3 Weight coefficient in FA

In determining the weight coefficient, we employed an adaptive weight adjustment method
based on the error between the predicted and original data. This approach dynamically adjusts
the weight of each submodel in accordance with recent performance, enhancing the overall
prediction accuracy. Adjusting the weights in accordance with the latest performance can assign
more appropriate weights to different models at different time points.
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The calculation of a single weight is

_ € +62

W =12, (10)
€

w,=4"% (11)
€

With Egs. (10) and (11), we can calculate the weight values of the CES model and the segmented
least squares model in the FA, respectively. e; and e, are the prediction errors of the CES and
PLSE models, respectively, for temperature, humidity, and voltage. The threshold of the
prediction error is set in accordance with the performance. If the prediction error of the model
for the data is less than the set threshold, then its weight will be larger.

Then, the relative weight is calculated as

m
u= .
Wi+ W,

(12)

Equation (12) represents the relative proportion of the two weights, indicating the significance of
the CES model compared with the PLSE model. If W, > W,, the value of A will approach 1,
signifying higher reliability in the prediction results of the CES model. Here, W, and W,
represent the weights calculated using the model based on prediction errors.

The actual weighting coefficient is

u' =u,_-pu+u,(1—p) (13)

where u, | is the weighted average of the past, u, is the current weighted average, and x is the
forgetting factor. By dynamically adjusting the weight and calculating the weighted average, the
reasonable consideration of past and new information in the data fusion process can be achieved.

4. Simulation Results and Analysis
4.1 Simulation settings

The simulation hardware environment is 11th Gen Intel® CPU, the operating system is
Microsoft® Windows 11 64-bit, and the software environment is Matlab2022b.

For this study, open-source data from agrometeorological station sensors available on the
GitHub platform were selected. Although the dataset originates from meteorological monitoring,
it fundamentally represents time-series data captured by sensors, which exhibit characteristics
that align with the requirements of the spatial-temporal correlation FA employed in this research.
The spatial-temporal correlation present in the temperature, humidity, and voltage data supports



5316 Sensors and Materials, Vol. 36, No. 12 (2024)

the validation of the algorithm’s accuracy and robustness. Furthermore, the dataset is open,
transparent, and reliable, ensuring high-quality data and the reproducibility of the experimental
results. Therefore, it is highly suitable for the simulation and algorithm testing conducted in this
study. Table 1 shows a subset of the real-time response data from this dataset, recorded on 22
June 2022.

In the simulation, the order of CES prediction is selected as N =3 , the prediction step size of
the prediction time point is selected as p = 1, and the fixed window length in the PLSE method is
100 data points. The simulation results showed the data from the 1000th time point to the last
time point. Because the data fluctuation of the sensor nodes monitored in front of the data set is
unclear, the simulation experiment is carried out directly from the data of the 472th time point.
The missing values in the collected data set are few and negligible. The simulation results
showed the data from the 1000th time point to the last time point.

4.2 Display of results

In the simulation, the temperature, humidity, and voltage monitoring data of the collected
sensors are fitted by the CES algorithm, least squares method, and PLSE method, respectively.
The fit results are shown in Fig. 3.

Figure 3 shows that the trend of actual sensor data correlates with cyclical and seasonal
environmental activities. The CES algorithm adeptly adjusts to data changes by applying
unequal weight processing to data at different time nodes, automatically identifying pattern
changes and adjusting the prediction model. In the left column of Fig. 3, it is evident that the
CES algorithm struggles to track data trend changes at mutation points. Conversely, in the
middle and right columns, it is observed that the single least squares method fails to handle
numerous nonlinearly changing data points effectively. The PLSE method yields superior fit
effects compared with the single least squares method, thereby enhancing the agreement
between the model and the data.

Adjacent sensors are typically deployed under comparable environmental conditions. Hence,
when employing the PLSE method, environmental data from one sensor can predict that of
another sensor. Data distribution indicates a robust spatial correlation between temperature and
humidity data among different sensors, whereas the correlation between voltage and
temperature/humidity data is weaker.

Table 1

Some data enumeration of the dataset.

Time Temperature (°C) Humidity (%) Voltage (V)
7:07:10 28 85 5.790837
7:07:20 28 85 5.791682
7:07:30 29 84 5.792004
7:07:40 29 83 5.792239
7:07:50 29 82 5.792425
7:08:00 29 82 5.79259

7:08:10 29 81 5.792736
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Fig. 3. (Color online) Fitting of different algorithms on sensor data.

4.3 Comparison of FA and subalgorithm

In this study, the CES algorithm, which captures time correlation, and the enhanced PLSE
method, representing spatial correlation, are integrated to complement each other’s deficiencies.
By leveraging their respective strengths, this combined approach aims to achieve superior model
performance and enhance the credibility of prediction results.

The exponential smoothing algorithm struggles with nonlinear trends, whereas the PLSE
PLSE algorithm excels in capturing them through segmentation. Combining the instantaneous
responsiveness of the CES algorithm with the flexible adaptability of the PLSE algorithm
maintains sensitivity to recent data while accommodating diverse trends across different time
periods, enhancing the adaptability to complex data changes. The comparative diagrams are
shown in Fig. 4.

Figure 4 reveals the enhanced FA’s clear superiority in predicting actual data, showcasing a
high degree of agreement between the model and data points. Nearly all observations closely
align with the prediction curve, accurately reflecting the genuine trend and pattern of the data.
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Fig. 4. (Color online) Fittings of FA and subalgorithm.

Table 2
MMSE evaluation of each algorithm.

Temperature Humidity Voltage
CES algorithm 0.4660 1.0116 0.0025
Least squares method 1.2997 4.1554 0.1186
Sub-least squares method 1.1312 2.7798 0.0281
FA 0.2556 0.9366 0.0020
LSTM 1.4986 2.1037 4.0218

Finally, in this study, we use the minimum mean square error (MMSE) algorithm to evaluate
the superiority of each algorithm. The specific indicators are shown in Table 2.

The results in Table 1 show that the prediction accuracy of the PLSE estimation algorithm for
the actual data is improved compared with that of the single LSE algorithm. From the MMSE
value, it can be seen that the PLSE algorithm increases the values of temperature, humidity, and
voltage by 13.0, 33.1, and 8.9%, respectively. Then, the MMSE value of the FA is lower than
those of the single CES algorithm and PLSE method. For the prediction of temperature data, by
calculating the obtained MMSE values, it is known that the FA predictions are 45.1 and 77.4%
more accurate than those of the CES and segmented least squares algorithms, respectively.

At the end, the LSTM algorithm is introduced for the prediction of sensor data. By comparing
the MMSE values of the FA model with those of the LSTM prediction model, the MMSE value
of the FA is found to be 82.9% lower than that of the LSTM for the fit of temperature data. This
shows that the FA model has high accuracy and robustness for the prediction of abnormal sensor
data.

4.4 Sensor fault detection

The mean absolute error (MMSE value) is used as the threshold, and then the value predicted
using the FA is added and subtracted from the MMSE value to obtain the confidence interval, as
shown in Fig. 5.

Figure 5 shows that because the fit of the FA is good, the confidence interval based on the
results of the FA model and the obtained error value has a certain degree of credibility. When the
original data exceeds the set confidence interval, it can be judged that the data is abnormal, that
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Fig. 5. (Color online) Predicted value and confidence interval.

temperature

Fig. 6. (Color online) Predictions and confidence intervals for LSTM.

is, the current wireless sensor node is in a fault state. Because the error of the voltage data is
small, the confidence interval in the figure is unclear, but the fault node of the wireless sensor
can be judged by observing the temperature and humidity data.

First, 80% of the data in the dataset is used as the training data. The feature vector of the data
is set to 300, the number of LSTM units is 200, and the learning rate is set to 0.001. The time
series model is established by LSTM to predict the temperature, humidity, and voltage in real
time. Then, the upper limit is set for each predicted value, that is, 0.5 times the standard
deviation of all data before the predicted value is added or subtracted, and the confidence
interval is obtained. Figure 6 shows that owing to the low degree of fit of LSTM predictions to
the actual data, there is a certain gap between the obtained confidence interval range and the
original data, which is inconvenient for detecting the fault sensor.

5. Conclusions

In this study, we addressed the challenge of detecting abnormal data in wireless sensor
networks by proposing a novel prediction method based on a spatial-temporal FA. Simulation
results demonstrated that the enhanced FA yields superior prediction performance. Specifically,
for temperature data, the FA achieved real data fit accuracies that are 45.1 and 77.4% higher than
those of the CES and PLSE algorithms, respectively. At the same time, the prediction accuracy
of the FA is 82.9% higher than that of the LSTM model, which proves that the FA has higher
accuracy for detecting fault sensors in sensor networks.
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In terms of sensor fault data detection, although the improved segmented least squares fit
improves the overall fault detection capability, there exists a large amount of nonlinear data in
the actual monitoring environment, which may cause sufficient accuracy for the prediction of
fault data. The focus of subsequent research will be to further improve the fit accuracy of the FA
in terms of spatial correlation, so as to achieve more accurate sensor node fault detection and
support the effective deployment and application of wireless sensor networks in different
application scenarios.
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