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	 In this study, we developed a low-cost, portable, and electrode-free intelligent device for the 
nondestructive evaluation of the muscle cross section of rehabilitation patients or elderly 
individuals. Currently, muscle quality is mostly explored by personal feelings. There is no 
convenient instrument that can quantify daily training progress on the local muscle level. Such a 
device can significantly encourage and motivate the elderly and rehabilitation patients to 
participate in a training program. Our sound injection resonant myophonogram can overcome 
the many challenges of existing muscle measurement devices. We actively injected a sound wave 
spectrum into the deep layers of the muscle to form a wavefront field. The reflected sound 
spectrum was then formed through the interaction of minute shear elasticity generated by the 
muscle tissue on the resonant point between the expansion and contraction of tissues. We 
employed an optimization algorithm on the generative adversarial network to learn the 
parameters of the muscle model and translated the responses into a performance index. To 
achieve such real-time predictive feedback, we implemented a sound excitation device and a 
cloud computing service to develop the algorithm with high performance at a low cost. Our 
device has been proven accurate and can perform measurements in real time. The device’s 
assessment achieved an accuracy of more than 90% in 0.5 s.
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1.	 Introduction

	 Although national sports teams use precision instruments during their training, the personal 
training of ordinary people may not do so. Because an average person may not have the 
instrument to observe tissue and cellular changes during training, the training program involving 
load increase should be conservative to avoid injury. However, the extent of conservativeness 
would vary from person to person, time to time, and place to place. Additionally, the consequence 
of overloaded shock cannot be easily observed. The interaction between recovery compensation 
and psychological hormones could have inflicted damage before the trainer noticed it. Therefore, 
it is often too late and irreparable when a symptom emerges. Existing approaches, such as 
electromyography (EMG), myophonogram, or ultrasound, are expensive and impractical for 
daily training use. 
	 In this study, we aimed to implement a sound-based device that is cheap and portable. After 
absorption and conduction, reflection sounds traverse to the deep layers of the muscle and are 
affected by muscle elasticity. Therefore, the received sounds contain rich muscle information 
and can be expressed as an easy-to-use muscle strength index by an artificial intelligence 
method. In this way, a lab-grade training program can be achieved with a low-cost personal 
device, and the asymptotic intensity of overload resistance training can be tailor-made according 
to the marginal situation of the muscle, and, therefore, the training objectives can be precisely 
achieved without injury. 
	 Previous muscle measurement devices have disadvantages. Mechanomyography (MMG) or 
surface EMG is not easy for ordinary people to perform, and ultrasonic devices are even 
expensive and professional. The analysis methods hamper classical approaches; therefore, 
convenient sensing methods are desired to make the analysis easy. Our sound injection resonance 
myophonogram (SIRM) needs only a pair of ordinary audio devices to measure the deep 
properties of the muscle. The response of sound injection is analyzed to isolate the interference 
from multiple reflection paths. Our sparse ensemble assimilation (SEA) technology can recover 
the interference without overfitting. 
	 Although the principle of sound field analysis is well developed, it is still limited by 
computation methods and cross-discipline capabilities, so it has not been paid sufficient attention 
in the health community. This study is timely in reopening this aspect of the study based on the 
development of artificial intelligence, leading to the study of an effective muscle measurement 
device. This study’s real-time predictive muscle index can be used to achieve high-performance 
training using a low-cost device.
	 Despite many related studies on automatic muscle assessment, most focus on EMG, 
myosphonogram, or ultrasound, which may not be suitable for home use. Our innovative sound 
method focuses on audible sounds, which is different from existing methods. 
	 Ultrasound imaging is probably the most popular and de facto evaluation method for 
determining muscle atrophy.(1–3) However, the relatively expensive cost and the requirement of 
human expert assistance hinder its application to personal usage for assessment in daily 
activities. EMG can also detect muscle atrophy in a clinical environment.(4) The complex form of 
neuromuscular signals also prevents the accuracy of automatic diagnosis. MMG sensors have 
been discussed extensively, but few of them can be used for long-term monitoring.(5) 
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	 The acoustical assessment of muscle function in long-term and daily monitoring is reported 
with good reproducibility.(6) Acoustic emission has been associated with muscular tissue 
deformation.(7) The mechanical properties of the muscle are complex and show rich anisotropy(8) 
and, therefore, cannot be directly derived from the simple pitches and amplitudes of reflection 
sound.(9,10) In both human and animal experiments, the representative patterns of sound 
reflection through a particular part of the muscle are recorded.(10,11) The shear modulus of the 
human muscle can be measured by ultrasound shear wave elastography,(12) which has been 
proven effective in assessing the muscle-tendon unit through mechanical responses.(13) 
Ultrasound shear wave elastography can also be used to evaluate muscle fatigue on the basis of 
static shear modulus.(3,14) 

	 Conventionally, trainers and coaches can only rely on a few muscle grading systems to 
categorize the levels of recovery conditions. Manual muscle tests by the Medical Research 
Council (MRC) are commonly adopted for instrument-free assessment.(15) A modified scale was 
also proposed to test muscle strength for radial palsy patients.(16) The Oxford grading scale was 
used for pelvic floor strength for nulliparous sports students.(17) Portable sensor devices have 
also been developed for dysphagia.(18,19) A commercially initiated system, ESTi® score 
[efficiency/coordination (E-score), spatial summation (S-score), and temporal summation 
(T-score)], is used for muscle strength assessment.(9) 
	 Sonomyography usually emits ultrasound and estimates the tissue composition by measuring 
the sound traverse time. Acoustic myography (AMG) usually estimates the characteristics of the 
tissue by analyzing the received sound spectrum. Some AMGs passively take the sounds 
produced by muscle contraction, whereas others receive the reflected sounds from an active 
sound source.(5) The passive AMG can only sense the insignificant and low-frequency (< 25Hz) 
sounds caused by muscle friction; therefore, applying the technology outside the laboratory 
needs trained personnel. AMG has been reported to be superior to surface EMG for estimating 
the ESTi® score.(10) AMG is reported to be effective for measuring prestress under the effects of 
anisotropy and acoustoelastography.(20) 
	 Different from measuring the mechanical properties of muscular fibers using ultrasound, 
popular technologies measure or evaluate the functionality of a group of muscles through the 
vibration of muscle or electricity, for example, MMG, phonomyography, acceleromyography 
(VMG),(21), and EMG.(22–26) VMG estimates the muscle condition on the basis of attached 
points’ balance, motion, and bending. EMG measures the electric pulse leaked to the surface of 
the skin. Because EMG signals have low intensity and are mixed with other bioactivities, 
experiments often need to be conducted in a well-shielded laboratory to reject environmental 
electronic noise; therefore, clinical applications are limited.(10) MMG’s extremely low frequency 
vibration makes it difficult to measure moving objects, and the MMG device is generally applied 
to isometric muscle contraction.(27–29) 
	 Deep generative modeling has been prevalently used recently. Generative adversarial 
networks (GANs) consist of two competing models in the training process, a min-max two-
player game.(30) Various extensions of GANs have reported excellent results in a wide range of 
applications.(31–33) The boosting and bagging algorithm has been reported to have excellent 
capability in resisting noisy and imbalanced data.(34,35) This algorithm can effectively separate 
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good samples from bad ones when a sufficient set of features is applied.(36) Ensemble empirical 
mode decomposition and correlation dimension have also been reported to enhance the 
classification performance.(37,38) Ensemble learning, which takes advantage of various machine 
learning models, is also reported to be adequate for difficult modeling situations.(38–40) 

2.	 Materials and Methods

2.1	 Problem definition

	 The SIRM device produces synthetic audible sounds and injects them into the inspecting 
muscle through an impedance coupler. The sounds traverse through the medium and are then 
received by the contact microphone at the other end of the muscle. The injected sounds change 
the composition of the spectrum as the muscle contracts, and then the internal shear modulus is 
estimated. 
	 The proposed SIRM is built on the basis of the characteristics of a modified myophonogram. 
AMG and MMG are combined to emit sound waves into tissues, which are then analyzed 
through the other end of the tissues. The critical part of the approach involves data generation 
and model learning. Previous approaches are insufficient in recognizing the difference in sound 
response between different muscle contents. 
	 In Fig. 1, the proposed intelligence model works in two phases: model training and model 
usage. At the model usage phase, with the resulting three digital twins (DTs), we take the sound 
response from a muscle (in vivo) and predict the performance index (PI) of such a muscle. The 
sound samples are standardized to a single response/excitation (RE) signal through a pair of 
input/output spectra. The model DTm maps the RE = {REi}i=1,2,3 to a set of physical parameters 
(P = {Pi}i=1,2,3), whereas the model DTt maps the signals to a set of transformed features 
(T = {Ti}i=1,2,3). Finally, the model DTf maps the extracted vectors into a muscle PI. 
	 Before the model can be used, a training phase must be taken offline. To train the DT models, 
we must collect the data representing the complete relation of input and output. Unfortunately, 
some input data may not be easily obtained. For example, one of the muscle’s intrinsic 
parameters, such as Young’s modulus, may not be measured easily. We set the data tuples 
X1 = (T1, P1), X2 = (T2, P2), X3 = (T3, P3). An artificially made phantom can solve part of the 
problem; therefore, we can collect a primary set of input/output data pairs (RE1, X1). However, 
the phantom may not cover all the properties of an actual muscle. We need to resort to other 
ways to generate the data. 
	 In this study, we used the partial differential-equation-based simulation to generate sound 
responses (in vitro) according to a list of permutations from all possible parameter combinations. 
Note that this generation type is not equivalent to the simulation concept. The simulation is 
performed by fixing a predetermined set of parameters. Our in vitro generation enumerates all 
possible combinations of parameter pairs (RE2, X2) and thus covers a large variety of phantoms. 
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	 On the other hand, we may not consider all situations in the phantoms. We also generated a 
large set of random data by altering the data in the latent space. The input/output data pair 
(RE3, X3) was generated in an in silico step through the cycle-GAN model.(41) 

	 As shown in the bottom block of Fig. 1, once the data sets (RE = {REi}i=1,2,3, X = {Xi}i=1,2,3) 
and (X = {Xi}i=1,2,3, Y = {Yi}i=1,2,3) are prepared, DTt, DTm, and DTf can be trained through our 
inverse mapping algorithms. 

Fig. 1.	 (Color online) Before SIRM can be used, three DTs must be trained on the basis of the collected data. The 
model usage is in vivo. Given a living muscle, we inject a pattern of sounds and receive a sound response. We 
standardize the input/output spectrum pair to a single RE signal. The model DTm maps the RE to a set of physical 
parameters (P), while the model DTt maps the signals to a set of transformed features (T). Finally, the model DTf 
maps the extracted vectors into a muscle PI. DTt is pre-designed in a set of transformations, such as the entropy value 
of the Fourier transform. Therefore, DTt does not need to be trained from data. To train DTm, we need to collect a pair 
of input (RE) and output (P) data. Because the muscle properties are mostly unmeasurable, the data generation 
processes are performed in situ, in vitro, and in silico. In the in situ case, we take actual samples to measure the 
sound response. In the in vitro case, the sound responses are generated by mathematical models. In the in silico case, 
the sound responses are generated by the cycle-GAN model. 
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2.2	 Muscle data preparation for DTm using shear modulus and stiffness

	 Propagating sounds in a medium (soft tissue) can be modeled scientifically. The governing 
equations in the conservation equations and pressure–density relation for the nonlinear 
propagation of acoustic waves have been extensively studied.(42) The equations in a 
heterogeneous and moving turbulent fluid can be modeled.(43) Let u be the acoustic particle 
velocity, p the acoustic pressure, ρ the acoustic density, 0ρ  the ambient (or equilibrium) density, 
and c0 the isentropic sound speed. First, we look at a base model in the propagating medium that 
is quiescent (no net flow and time-invariant ambient parameters), isotropic, and inviscid (no 
viscosity). 
	 For the quiescent, isotropic, and inviscid heterogeneous medium, the nonlinear propagation 
of compressible acoustic waves can be expressed as

	 ( )2
0

1
2

p uρ ρ+∇ = − − ∇u u  ,	 (1)

	 ( ) ( )0ρ ρ ρ+∇ ⋅ = −∇ ⋅u u ,	 (2)

	 2
0p c ρ= ,	 (3)

where u2 = u ∙ u. 
	 Sound absorption follows a power law in the spectrum distribution, which assumes an 
anisotropic perfectly matched layer in the absorption of acoustic waves. When the acoustic 
waves exceed a certain amplitude, the wave propagation becomes nonlinear, and, therefore, 
tissues should be assumed heterogeneous. The heterogeneous Westervelt equation in Lagrangian 
coordinates is considered.(44) The absorption mechanisms in soft tissues, such as vibrational, 
structural, and chemical relaxations, can be complex, and, therefore, the observed attenuation 

0
yα α ω=  can be modeled to an absorption coefficient, 1, where 0α , y, and ω are the power law 

prefactor, exponent, and wave frequency, respectively, in the range of 1–1.5.(45,46) 

	 In soft tissues, a shear wave induces particle movement perpendicular to the direction of the 
wave propagation with shear speed (cs), typically ranging between 1 and 10 m/s.(47) Unlike 
longitudinal waves, the propagation of the shear wave does not change the local density of the 
medium. For a purely elastic and isotropic medium, cs is directly related to the shear modulus. In 
incompressible media or biological tissues, we also know that µ is approximately one-third of 
Young’s modulus, which is the ratio of the longitudinal stress to the longitudinal strain, and 
represents the tendency of the medium to deform axially when forces opposite and parallel to 
this axis are applied.(48) 

	 Most GAN applications use neural networks entirely for classification and regression 
applications. In our application, we hybridize a statistical generator and a neural network 
discriminator to maximize the use of prior model information for the stochastic process. Our 
generator has the advantage given that it takes environmental conditions as covariates in the 
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random process and is robust to an anti-symmetric station distribution. A standard GAN consists 
of a generator G and a discriminator D.(30) The G and D models can be neural networks or any 
mathematical functions, as long as Eq. (4) has a solution. For any observed data pairs (x, y) and 
latent vector s,

	 ( ) ( )
1

* ,GAN l
G D

G arg minmax L G D L Gλ= + ,	 (4)

where λ is the perturbation coefficient and the loss functions LGAN(G, D) = Ex,y[logD(x, y)] + 
Ex,s[log(1 − D(x, G(x, s)))] and 

1lL (G) = Ex,y,s[|y − G(x,s)|1] with expectation E in l1. 
	 The discriminator is directly formed by the model’s regular residual neural network. The 
network adds some jump connections that skip internal layers to avoid the vanishing gradient 
and accuracy saturation problems.(49) The network construction repeats a fixed pattern several 
times in which the strided convolution downsampler jumps, bypassing every two convolutions.

2.3 DTt development in acoustic feature space

	 We developed DTt in acoustic feature space through a set of transformations. The properties 
of muscles and each tissue medium are different, and the related properties, such as the vibration 
attenuation coefficients, are different for individual frequencies. The transfer function of the 
tissue medium can be obtained by injecting a theoretical impulse or homogeneous Gaussian 
white noise. When a Gaussian white noise is fed, a sound wave spectrum related to density and 
elasticity can be obtained at the other end. 
	 However, because a muscle is not a complete fluid, the absorption attenuation superimposed 
by different amplitudes is nonlinear. Therefore, the amplitude is strengthened by the injected 
sound wave spectrum and also by the frequency bands with high attenuation. On the other hand, 
when muscles are undergoing isoaxial contraction, changes in density and elasticity also change 
the decay coefficient at each frequency band. 
	 Theoretically, a particular spectrum for estimating the transfer function may be generated. 
However, because the energy injected by the sound generator is limited, the received spectrum 
may change nonlinearly. We use machine learning to solve this problem. 
	 To extract useful features of the acoustic response signals for effective processing, many 
estimation methods have been developed, from traditional ones, such as the power spectrum 
from Fourier transforms, to advanced ones, such as the instantaneous frequency (IF) for 
nonstationary quasi-periodic signals. The IF can be obtained by performing wavelet ridge 
analysis such that IF = 

,a t
maxR{ln |Wφ(a, t)|} and on the a-axis and 

t
max

t
∂
∂
I{ln |Wφ(a, t)|} = φω /a 

for the wavelet transform Wφ(a, t) of a time series.

2.4	 Training of DTm and DTf 

	 In the training of DTf, we delegated the muscle PI to the absolute maximum muscle strength 
(kgw) when the quadriceps performs maximum voluntary contraction. We propose a training 



5348	 Sensors and Materials, Vol. 36, No. 12 (2024)

algorithm, SEA, to associate the feature and parameter spaces [X = (T, P)] to the PI (Y = PI). The 
algorithm takes the functionals and l1 space optimization by avoiding interference without 
overfitting. The challenge for individual learners in DTf encountered in the mapping problem is 
to avoid overfitting. The learning task is a process of optimization, i.e., evaluating solutions in 
the l1 norm space for DTf, and thus, overfitting can be reduced. 
	 Although the elastic modulus of muscle fibers is already a physical feature, it is still not the 
whole dimension compared with comprehensive muscle performance, and for an average 
individual, it cannot correspond to the training intensity and effect. 

3.	 Results and Discussion

	 In the human body’s muscle tests, the intrinsic parameters of muscles were estimated through 
our nondestructive muscle measurements, as shown in Fig. 2. Using the injected sound waves, 
we measured the physical characteristics of muscles nondestructively. 
	 The sound spectrum and recording experiments were conducted under known conditions to 
capture the relationship between the injection spectrum and tissue absorption in motion 
accurately. We first conducted laboratory experiments on normal muscle tissues. A sample plan 
was also carried out to test the density of the triceps muscles on the core of the upper arm. We 
recruited five subjects with various body shapes, and the experiments consisted of resting (#2, 
#4, and #6) and motion sampling (#8, #10), measuring the muscles at the same locations for 
different directions, intensities, and fatigue states, and obtaining several muscle evaluation 

Fig. 2.	 (Color online) Our SIRM prototype transmits the raw recordings back to the computer hosting DTs through 
a Bluetooth edge unit.
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indexes by experts and instruments. The muscle assessment of the PI is made in five levels of the 
ordinal scale, which can be converted to the quantity scale easily for our mapping algorithm. 
	 Like MMG, contact microphones are sensitive to friction sound on the skin’s surface during 
the test. However, our tolerance to friction is high because our generated sound can produce 
high-signal-to-noise ratio (SNR) signals in a short time. The recording experiments for each 
muscle sample are conducted over three months, and each sampling is repeated at least 10 times 
for a 30 s duration. 
	 As shown in Fig. 3, we injected a wide range of sound waves into the muscle to counteract the 
nonlinear distortion caused by the soft tissue. After conduction, the resulting absorption 
spectrum was based on the mathematical model, and then the tissue structure of the target 
muscle was inferred in reverse order. Sound waves in Fig. 3 are designed to penetrate fat or 
water and produce versatile response results after traversing the muscle fibers, which can be 
used to analyze the distribution of muscle and fat in the body. A total of 50 audio samples, each 
12 s in length, were obtained. After segmenting to 1 s frames, we obtained a total of 550 

Fig. 3.	 (Color online) Three samples of injected sounds: (a) burst, (b) trumpet, and (c) drum chirps.

(a)

(b)

(c)
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analyzable frames. We randomly chose 80% as the training set and 20% as the testing set. 
Therefore, 440 and 110 frames were used in the training and testing sets, respectively. 
	 By the proposed method, we trained the cycle-GAN model to fine-tune the correct value of 
the muscle parameters. As a basis for data assimilation in muscle identification, we demonstrated 
our ability to estimate parameters. Our estimation can restore the internal parameters on the 
basis of the highest Bayesian probability.(50) The simulation data is twofold. Although limited 
observation data is available in muscle samples, we can synthesize them through the cycle-GAN 
model in a tissue medium. The collected sound converges with the data assimilation technique to 
estimate the internal modulus coefficient of the medium. The model and parameters were 
calibrated to match the simulation and measurement. 
	 With training data, features were generated using DTm and DTt. DTf was used for prediction 
based on the transformed feature. Because our scale of muscle PI is ordinal, the mapping result 
can be ordered in a category to count the hit rate. We also obtained the hit rate by comparing the 
training and testing samples. 
	 Through the assimilation process in SIRM, DT only takes 0.5 s, and the testing accuracies 
are as shown in the confusion matrix in Table 1. Although the outputs of the final DTf are 
continuous numbers, we arranged them into categories for easy representation of the confusion 
matrix. We obtained a comparative result of 92.7%. 

4.	 Conclusions

	 Our SIRM is a low-cost, portable, and nondestructive muscle cross-section measurement 
device with no attached electrodes. Using the SEA technology, we used the injected and received 
sound waves to develop the muscle strength index. The results of this study are expected to 
contribute significantly to academic research, industry, national development, and other 
applications. This research can help the elderly or muscle-deficient patients carry out specific 
training and balance the cell destruction due to training overload and tissue reconstruction 
during body repair. 
	 For an individual patient, knowing overtraining or undertraining is essential. A low-cost and 
convenient device can be placed on the body anytime without affecting the movement. To 
prevent overtraining, the device can advise whether the training can proceed or be stopped. 
Therefore, the probability of injury can be significantly reduced under the premise of the 
training device. By recording the training journey for muscle development, a patient can 

Table 1 
Hit counts and confusion matrix for the testing set.

Level-1 Level-2 Level-3 Level-4 Level-5
Level-1 13  0  2  0  0
Level-2  1 23  0  0  0
Level-3  1  0 22  0  0
Level-4  0  0  0 19  4
Level-5  0  0  0  0 25
Accuracy = 92.72%
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understand their muscle condition ahead of time. For the physician, through the SIRM, the entire 
training process can be adequately moderated and can help accumulate experience for future 
planning. We can make the training programs effective by relying on real-time feedback 
information. 
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