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	 With the development of sensor technology in the autonomous and electric vehicle industry, 
more vehicles are expected to be electric and have autonomous driving capability. It is believed 
that electric vehicles allow for the simpler integration of advanced sensor application 
technologies required for the cleaner and safer operation of autonomous vehicles. Although 
electric autonomous vehicles have many advantages over their gasoline-powered counterparts, 
not all autonomous vehicles are manufactured as electric vehicles. Therefore, it is expected that 
they will be operated in a mixed environment. Even though autonomous vehicles operate without 
human inputs, electric and internal-combustion-engine autonomous vehicles would operate 
differently owing to their respective characteristics including acceleration profiles. Their 
different acceleration profiles would lead to differences in traffic operation characteristics. From 
the data acquired from sensors, in this study, we investigate the traffic operational characteristics 
of electric and internal-combustion-engine autonomous vehicles in a fully autonomous driving 
environment. Acceleration potential curves for electric and internal-combustion-engine 
autonomous vehicles are modeled in a simple traffic network in a microscopic traffic simulation 
model. It is demonstrated that more vehicles can pass a signalized intersection when there are 
electric autonomous vehicles than when there are internal-combustion-engine autonomous 
vehicles. Also, the impacts of different speed limits and market penetration rates are investigated.
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1.	 Introduction

	 Sensors and communication technologies have been developed and widely utilized as 
indispensable components to improve efficiency and safety in transportation applications.(1–7) 
Sensors collect traffic data on highways and vehicle operational data from vehicles. Integrating 
these onboard and roadside sensor data has potential applications in monitoring traffic 
operations and increasing traffic operational efficiency.(1–5) As a result, this integration will help 
us understand traffic operations and mitigate traffic congestion and associated problems in our 
society.(8–10) With the recent development of autonomous and electric vehicle technologies, more 
vehicles are expected to be electric and have autonomous driving capability, and sensor 
applications are providing crucial information used to analyze system efficiency in the areas of 
tranffic operation. 
	 In this paper, the operational efficiency of different types of autonomous vehicle technologies 
is investigated for the integration of the advanced sensor application technologies required for 
the operation of autonomous vehicles.

2.	 Related Works

	 In 2019, the Korean government announced the ‘Future Vehicle Industry Development 
Strategy 2030’.(11) Its goal is to commercialize Level 4 autonomous vehicles on major roads 
nationwide by 2027 and to make 33% of domestic new car sales be electric and hydrogen 
vehicles by 2030. While the market for electric vehicles and autonomous vehicles is expected to 
grow rapidly, not all autonomous vehicles are manufactured as electric vehicles. Therefore, it is 
expected that electric and internal-combustion-engine autonomous vehicles will be operated in a 
mixed environment. Currently, internal-combustion-engine and electric autonomous vehicles 
are in operation in autonomous vehicle pilot areas in the Republic of Korea. As of 2022, among 
the 30 autonomous vehicles operated in five autonomous vehicle pilot areas in the Republic of 
Korea, eleven were internal-combustion-engine autonomous vehicles and 11 were electric 
autonomous vehicles. 
	 Even though autonomous vehicles operate without human inputs, electric and internal-
combustion-engine autonomous vehicles would follow their respective characteristics including 
acceleration profiles.(12–14) Their different acceleration profiles would lead to differences in 
traffic operation characteristics at signal intersections.(15) Because internal-combustion-engine 
vehicles (ICEVs) use an engine as a power source, they must exceed a certain speed to reach the 
maximum torque. However, electric vehicles (EVs) use an electric motor as a power source, and 
the maximum torque develops from the start of driving, enabling rapid acceleration (Fig. 1).(16,17) 
Additionally, since ICEVs have multiple gears, there are moments when power transmission is 
interrupted during the gear-shifting process. However, since EVs are usually composed of only 
one gear, there is no gear-shifting process; thus, power can be maintained continuously.(18–20) As 
such, ICEVs and EVs exhibit different acceleration characteristics.(21,22) Owing to differences in 
acceleration characteristics between ICEVs and EVs, it is expected that differences in traffic 
operation characteristics will occur at signalized intersections. 
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	 However, studies that quantitatively analyze the effect of these acceleration characteristics on 
traffic operation are limited. In this study, we aim to analyze the traffic operation characteristics 
according to the acceleration characteristics of ICEVs and EVs at a signalized intersection in a 
fully autonomous driving environment. The flow of this study is shown in Fig. 2.
	 The literature regarding the acceleration profiles of ICEVs and EVs and the driving behavior 
of autonomous vehicles was reviewed. The literature shows that the ‘acceleration potential 
curve’ represents the acceleration profile that a vehicle can achieve at a specific speed.
	 Makridis et al. proposed a microsimulation free-flow acceleration (MFC) model that models 
the dynamic characteristics of ICEVs. The model represents an acceleration potential curve 
demonstrating the acceleration of an ICEV at a specific speed.(23) The MFC model was verified 
and calculated using chassis dynamometer and real-driving data. The data suggest that the 
ICEV’s following behavior in a microscopic traffic simulation can be more precisely simulated 
using the MFC model. The MFC model of an ICEV presents an acceleration potential curve 
according to the driver’s gear-shifting behavior and driving behavior (Aggressive, Normal, 
Timid). Figure 3 shows the acceleration potential curve of an ICEV. It can be seen that the 
maximum acceleration varies depending on the driver’s driving behavior and acceleration drops 
significantly during gear shifting.
	 He et al. proposed an MFC model that reflects the dynamic characteristics of EVs including 
an acceleration potential curve.(24) The MFC model of an EV presents an acceleration potential 
curve according to the driver’s driving behavior (Aggressive, Normal, Timid). Figure 4 shows 
the acceleration potential curve of an EV. The maximum acceleration varies depending on the 
driver’s driving behavior. Unlike the acceleration potential curve of an ICEV, acceleration does 
not drop since there is no gear-shifting process. Additionally, it can be seen that an EV reaches 
the maximum acceleration from the start.
	 CoEXist(25,26) was a European project conducted from May 2017 to April 2020 aimed at 
preparing the transition phase during which automated and conventional vehicles will co-exist 
on city roads. CoEXist presents a framework for traffic simulation to analyze the impact of the 
introduction of autonomous vehicles on traffic flow. CoEXist defines the concept for each 
autonomous driving level and provides parameter values accordingly. It presents four categories 
according to the level of autonomous driving: Rail-safe, Cautious, Normal, and All-knowing. 
Figure 5 shows the autonomous driving levels and explanations presented by CoEXist. 

Fig. 1.	 (Color online) Examples of power and torque curves.



5356	 Sensors and Materials, Vol. 36, No. 12 (2024)

Fig. 2.	 (Color online) Research flow.

Fig. 3.	 (Color online) ICEV acceleration potential curve.

Fig. 4.	 (Color online) EV acceleration potential curve.
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Additionally, CoEXist presents parameter values for the Car-following, Lane-change, Lateral, 
and Signal-control models depending on the autonomous driving level.

3.	 Sensor Data and Methods

	 Acceleration potential curves for electric and internal-combustion-engine autonomous 
vehicles are modeled in a simple traffic network with an intersection in Vissim, a microscopic 
traffic simulation model. First, the autonomous vehicle driving parameters suggested by 
CoEXist were applied to reflect the autonomous driving behavior.(27) In addition, on the basis of 
the acceleration potential curves, the acceleration profiles of ICEVs and EVs in an autonomous 
driving environment were modeled. 
	 Out of the total simulation time of 7200 s, the number of passing vehicles for 3600 s was 
calculated after 3600 s of the initialization time. The simulation was replicated 10 times with 
different random seed numbers. A total of 15 scenarios were performed at different market 
penetration rates of EVs and ICEVs (0, 25, 50, 75, and 100%) and speed limits (70, 50, and 
30 km/h). 
	 To implement an autonomous driving environment in Vissim, the parameters presented by 
CoEXist were applied, and the variable values are as shown in Tables 1–3.(28) In Vissim, 
Wiedemann 74 is suitable for urban traffic and merging areas, whereas Wiedemann 99 is 
recommended for freeway traffic with no merging areas. Since a signalized intersection is 
modeled in this study, Wiedemann 74 is recommended.(29) However, CoEXist states that “it is 
recommended to use Wiedemann 99 to simulate automated vehicles because of more options to 
control the behavior through the driving parameters.” (30) Therefore, Wiedemann 99 was utilized 
in this study.(31–33) Unlike human drivers who behave stochastically, autonomous vehicles act 
deterministically, so it was assumed that there would be no speed or acceleration deviation. In 
addition, in this study, we applied the ‘Aggressive’ acceleration potential curve, where there is a 
clear difference in acceleration behavior between ICEVs and EVs. Since this acceleration 
behavior is similar to the behavior of the highest autonomous driving level in CoEXist, ‘All-
knowing’ was applied in this study.(27,32) Tables 1–3 show autonomous driving parameters of 
Vissim Default and All-knowing.

Fig. 5.	 (Color online) CoEXist’s autonomous driving level.(15,16)
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3.1	 Acceleration profile

	 The acceleration and deceleration profiles of a vehicle can be implemented with the desired 
acceleration, maximum acceleration, desired deceleration, and maximum deceleration functions 
in Vissim. The desired acceleration function defines the target acceleration for each speed, and 
the maximum acceleration function sets the maximum acceleration physically possible. In this 
study, the acceleration potential curve of an aggressive driver was applied representing the ‘All-
knowing’ aggressive autonomous driving behavior. 

Table 3
Signal-control model parameters.
Element Vissim default All-knowing
Behavior at amber signal Continuous check One decision
Behavior at red/amber signal Go Stop
Reaction time distribution — —
Reduced safety distance factor 0.6 1
Reduced safety start upstream of stop line (m) 100 100
Reduced safety end upstream of stop line (m) 100 100

Table 1
Car-following model parameters.
Parameters Description Vissim default All-knowing
CC0 Standstill distance 1.5 m 1.0 m
CC1 Gap time distribution 0.9 s 0.6 s
CC2 ‘Following’ distance oscillation 4 m 0 m
CC3 Threshold for entering ‘Following’ −8.0 −6.0
CC4 Negative speed difference −0.35 −0.1
CC5 Positive speed difference 0.35 0.1
CC6 Distance dependence of oscillation 11.44 0
CC7 Oscillation acceleration 0.25 m/s2 0.1 m/s2

CC8 Acceleration from standstill 3.5 m/s2 4.0 m/s2

CC9 Acceleration at 80 km/h 1.5 m/s2 2.0 m/s2

Table 2
Lane-change model parameters.

Element Description
Vissim default All-knowing

Own Trailing 
vehicle Own Trailing 

vehicle

Parameter for necessary 
lane change

Maximum deceleration (m/s2) −4 −3 −4 −4
−1 m/s2 per distance (m) 100 100 100 100

Accepted deceleration (m/s2) −1 −1 −1 −1.5

Behavior functionality

Advanced merging On On
Cooperative lane change Off On
Safety distance reduction 

factor 0.6 0.5

Min. headway (front/rear) (m) 0.5 0.5
Max. deceleration for 

cooperative braking (m/s2) −3 −6
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3.2	 Network

	 A simple one-lane four-way signalized intersection with 100% through traffic flow was 
modeled in this study. To eliminate other influencing factors, only passenger vehicles are 
considered in this study. A Data Collection Point was set up at the stop line location following 
the definition of saturation flow rate presented in the Korea Road Capacity Manual, which is 
‘the maximum traffic volume that allows a vehicle stopped at a signalized intersection to pass 
the stop line.’ The cycle length was 120 s with 55 s green time, 3 s yellow time, and 62 s red time. 
Of the total simulation time of 7200 s, the number of vehicles passing was counted for the latter 
3600 s excluding the initial warm-up time of 3600 s. A total of 10 iterations were performed by 
changing the random seed, and the average number of passing vehicles was analyzed.
	 To investigate the impacts of different speed limits and market penetration rates of electric 
and internal-combustion-engine autonomous vehicles, scenarios with different speed limits and 
market penetration rates were designed. The numbers of vehicles passing the intersection with 
different market penetration rates of EVs/ICEVs, which were 0% EVs (100% ICEVs), 25% EVs 
(75% ICEVs), 50% EVs (50% ICEVs), 75% EVs (25% ICEVs), and 100% EVs (0% ICEVs) at a 
signalized intersection in a fully autonomous driving environment, were analyzed. 

4.	 Results

	 In this study, traffic operational characteristics were investigated on the basis of different 
acceleration profiles of electric and internal-combustion-engine autonomous vehicles at a 
signalized intersection in a fully autonomous driving environment. Nonparametric statistical 
analysis was performed to quantitatively confirm the difference in results by market penetration 
rates.(34–37)

	 Figure 6 shows the numbers of vehicles passing the intersection over 3600 s at speed limits of 
70 and 30 km/h. On average, 1704 vehicles passed when the EVs were 0%, 1701 when they were 
25%, 1735 when they were 50%, 1769 when they were 75%, and 1800 when they were 100%. As 
can be seen in Fig. 7, as the market penetration rate of EVs increases, the number of vehicles 

Fig. 6.	 (Color online) Numbers of passing vehicles.
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passing the intersection tends to increase. The number of vehicles passing the intersection 
increases by 31 vehicles when the EVs increase from 75 to 100%. As seen in the case of a 70 
km/h speed limit, the number of passing vehicles increases with EV market penetration rate. 
However, the increase is not as significant as in the case of the 70 km/h speed limit.
	 The total number of vehicles passing the intersection was compared at different market 
penetration rates of EVs/ICEVs and speed limits. When the market penetration rates of EVs/
ICEVs changed from 0%/100% to 100%/0% at the 30 km/h speed limit, the number of vehicles 
passing the intersection increased by 0.9% from 1303 to 1315 vehicles. However, the increase 
went up to 5.6% when the speed limit was 70 km/h. Also, they are expected outcomes since 
differences in acceleration profiles between EVs and ICEVs are more significant at a higher 
speed limit.
	 When the market penetration rates of EVs/ICEVs changed from 0%/100% to 25%/75% at the 
70 km/h speed limit, the number of vehicles passing the intersection differed by 0.18% from 
1704 to 1701 vehicles. However, the difference becomes larger at higher market penetration rates 
of EVs and lower penetration rates of ICEVs. The increase is not linear as seen in Fig. 7.

5.	 Discussion

	 There are multiple ways of estimating the traffic operational characteristics based on 
different acceleration profiles. Field experiments with actual electric and internal-combustion-
engine autonomous vehicles would be ideal in the calculation. However, this method would be 
time-consuming and labor-intensive. Also, it would require significant cost and permission from 
local governments with potential safety issues if it is tested on public roads. For these reasons, 
traffic simulation was utilized to measure the differences in this study. Traffic simulation 

Fig. 7.	 (Color online) Numbers of passing vehicles at different EV/ICEV penetration rates.
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programs can regenerate traffic conditions with good precision and are considered an alternative 
method with significantly low cost and time.
	 Acceleration potential curves for electric and internal-combustion-engine autonomous 
vehicles were identified and modeled in a simple traffic network with an intersection in Vissim, 
a microscopic traffic simulation model. In this study, no human drivers were considered to 
simplify the scenarios and eliminate outside factors other than different acceleration profiles of 
electric and internal-combustion-engine autonomous vehicles. Understandably, this assumption 
is one of the limitations of this analysis. It was expected that the difference would be less 
apparent with the inclusion of human drivers in the analysis. Including human drivers in the 
analysis would also require a significant assumption of what the human driver behavior would 
be. Also, the interaction between human drivers and autonomous vehicles would create 
differences in the analysis depending on the assumption.
	 On the basis of the assumption, this study demonstrated that more vehicles could pass a 
signalized intersection when there are electric autonomous vehicles than when there are internal-
combustion-engine autonomous vehicles. Also, the impacts of different speed limits and market 
penetration rates of electric and internal-combustion-engine autonomous vehicles were 
investigated. As expected, the impacts of different acceleration profiles of electric and internal-
combustion-engine autonomous vehicles were observed at the higher speed limit since more 
gear changes are needed under these traffic conditions.
	 It is anticipated that other factors would also impact traffic capacity in autonomous vehicle 
environments. Those other factors would include human driving behavior, human drivers’ 
interaction with autonomous vehicles, the number of vehicles with other acceleration profiles 
(for example, trucks and buses) in the traffic stream, and the driving logics of autonomous 
vehicles. These factors should be investigated as future research topics.

6.	 Conclusions

	 Sensor technologies have been widely utilized as indispensable components to improve 
efficiency and safety in transportation applications. Integrating onboard and roadside sensor 
data has potential applications in monitoring traffic operations and increasing traffic operational 
efficiency. As a result, this integration will help us understand traffic operations and mitigate 
traffic congestion and associated problems in our society. In this study, the operational efficiency 
of different types of autonomous vehicle technology was investigated for the integration of 
advanced sensor application technologies required for the operation of autonomous vehicles. 
With the development of sensor technology in the autonomous and electric vehicle industry, 
more vehicles are expected to be electric and have autonomous driving capability. It is believed 
that electric vehicles allow for the simpler integration of the advanced sensor application 
technologies required for the cleaner and safer operation of autonomous vehicles. Although 
electric autonomous vehicles have many advantages over their gasoline-powered counterparts, 
not all autonomous vehicles are manufactured as electric vehicles. Therefore, it is expected that 
electric and internal-combustion-engine autonomous vehicles will be operated in a mixed 
environment. Even though autonomous vehicles operate with their operating logic without 
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human inputs, electric and internal-combustion-engine autonomous vehicles will follow their 
respective characteristics including acceleration profiles. The differences in their acceleration 
profiles would lead to differences in traffic operation characteristics where acceleration is 
involved, especially at signal intersections.
	 In this study, we investigated the traffic operational characteristics on the basis of different 
acceleration profiles of electric vehicles and ICEVs at a signalized intersection in a fully 
autonomous driving environment. Statistical analysis results demonstrated that statistically 
insignificant differences were found at lower market penetration rates of EVs and higher market 
penetration rates of ICEVs, whereas the differences were found to be significant at higher market 
penetration rates of EVs and lower market penetration rates of ICEVs. These outcomes are 
expected since a small increase in the number of ICEVs in groups with the majority of EVs will 
make a significant impact on the traffic flow, whereas even a relatively significant increase in 
the number of ICEVs in groups with the majority of ICEVs will not create significant operational 
differences. It was recognized that the number of vehicles passing the intersection increased 
with market penetration rates of EVs since EVs have acceleration profiles without gear shifting. 
Also, it was found that there was a significant difference in the number of vehicles passing the 
intersection when the market penetration rates of EVs were relatively higher. It is believed that 
the acceleration of a trailing vehicle is limited by the preceding vehicle. For example, if the 
trailing vehicle is an EV and the preceding vehicle is an ICEV, the trailing vehicle cannot 
accelerate with its own EV acceleration profile since it has to maintain the same acceleration as 
the preceding vehicle while keeping a safe distance from the preceding vehicle even though it 
has a higher initial acceleration capability. Additionally, the number of vehicles passing the 
intersection increases at a higher speed limit, since the differences in acceleration profiles 
between EVs and ICEVs are more significant at a higher speed limit. The findings in this study 
are expected to provide more insights into the operational differences between autonomous EVs 
and ICEVs.
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