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	 Short-term traffic flow prediction plays an important role in intelligent transportation 
systems (ITSs). Sequential data assimilation (SDA) is very effective in the short-term traffic 
flow prediction of expressways because of its real-time reflections of local fluctuations of fast-
changing traffic flow values in the time and space domains. Assimilation models in a traditional 
SDA (T-SDA) system are usually constructed using historical measurements. However, 
historical data are always disturbed by local noises, greatly affecting the accuracy of constructed 
assimilation models and predicted results. To deal with the problem, we propose to adopt the 
extreme-point symmetric mode decomposition (ESMD) method to conduct historical data 
denoising for improving the assimilation model performance in the SDA system. First, the 
original historical measurement signals are decomposed into a series of simple signals called 
intrinsic mode functions (IMFs) by ESMD to further analyze and seek useful information and 
local stochastic noises. Second, the denoised historical traffic data are used to construct an 
assimilation model, and the denoised SDA (D-SDA) system for short-term traffic flow prediction 
is established. Third, the applications of the D-SDA system for short-term traffic flow prediction 
are presented and compared with those of the T-SDA system. Experimental results showed that 
compared with the T-SDA system, the D-SDA system can successfully reduce the effects of 
noises in historical measurements on assimilation model construction and improve the accuracy 
of short-term traffic flow prediction results.

1.	 Introduction

	 With rapid economic development, the convenience of transportation has become a key factor 
restricting the development of urbanization. Intelligent transportation systems (ITSs) can 
alleviate traffic congestion by strengthening traffic flow guidance.(1,2) Short-term traffic flow 
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prediction can provide effective data support for traffic flow control and guidance in ITSs 
through real-time reflections of local fluctuations of fast-changing traffic flow values in the 
time and space domains.(3,4) Thus, how to acquire accurate short-term traffic flow prediction 
information is important to ensure effective traffic operation. It attracted much attention to take 
the advantages of various measurements and models to make the predictions.(5) Among them, 
sequential data assimilation (SDA) techniques based on Bayesian theory, as one of the 
implementation classes of data assimilation (DA), have been effectively used in short-term 
traffic predictions.(6,7) The statement parameters can be estimated a posteriori on the basis of 
status updating by referring to the weights of the model and measurement errors when 
measurements are available.(8) By considering the traffic state data distribution in both time and 
space, SDA can estimate the following traffic state vectors by integrating physical model 
information and measurements. In addition, the errors of historical and current measurements, 
together with the model background field errors, are calculated in each step to correct the short-
term traffic prediction model. Three key components are necessary in the SDA system, namely, 
assimilation models (dynamic state model and observation model), measurements (historical and 
current), and assimilation methods.(9) For short-term traffic flow prediction, the expression of 
the SDA system can be shown mathematically as 
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where i denotes the discrete time index. Most studies show that data used in short-term traffic 
flow predictions are commonly aggregated from 1 to 30 min intervals.(10–12) In this study, traffic 
flow data are collected at 15 min intervals. The equation , 1 1 , 1 1i i i i i i i

state stateX D X C ε− − − −= +  
describes the dynamic state model, which expresses the evolution of the traffic state parameters. 
Di,i−1 is the dynamic state model recording the change of state parameter Xstate from time index 
i − 1 to i. i i i i

meas statey M X δ= +  is the dynamic observation model, which operates as the real-
time connection between state parameter Xstate and measurements ymeas at time index i through 
the time-dependent measurement operator M. ε and δ are assumed to be zero-mean Gaussian 
random noises with covariance matrices Q and R, respectively. C is a coefficient matrix.
	 As stated above, the SDA system for short-term traffic flow prediction mainly contains two 
steps, that is, statement parameter evolution based on the previous analyzed and statement 
parameter for next time interval updated under Bayes’ formula.(13) Equation (1) is the conceptual 
assimilation model. Then, it should be considered how to build the dynamic state and observation 
models in detail. As variation patterns in historical measurements are similar on the same day of 
consecutive weeks or months, they are always used to construct forecast models such as the 
vector autoregressive (VAR) model.(9) The VAR model considers the effect of downstream and 
upstream location information on the specific location traffic flow. Also, because the Kalman 
filter (KF) method can update variable states using real-time measurements and adapt to 
changes in traffic flow, it becomes the basic algorithm in SDA systems. With the advantages of 
low computational cost and low storage requirements, KF has excellent performance in many 
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traffic flow prediction applications.(14,15) Thus, the VAR model will be referred to as the 
assimilation model and the KF method will be selected as the assimilation method in order to 
construct the traditional SDA (T-SDA) system for short-term traffic flow prediction. However, 
unavoidable random variation noises in historical traffic flow measurements always make it 
difficult to accurately extract the patterns of changes in traffic flow, which are indispensable for 
assimilation model construction, that is, the VAR model. Obviously, if the assimilation model is 
inaccurate, the final short-term traffic flow prediction accuracy will also be affected. Therefore, 
it is necessary to deal with the noises existing in historical traffic before the assimilation process. 
	 The commonly used denoising methods can be divided into noise reduction in the time, 
frequency, and time–frequency domains. The denoising methods in the time domain, such as the 
KF and Chebyshev filter methods, are mainly based on mathematical operations to process 
discrete signal point data and then filter out the noise information.(16) However, these methods 
do not consider the statistical characteristics of the measured data during processing. They are 
mostly applicable to linear, stationary, and regular signals. Thus, they may be not suitable for 
processing nonlinear, nonstationary, and irregular time series historical traffic flow data. The 
denoising methods in the frequency domain convert the sampled signal to the frequency domain 
for analysis and processing. From the spectrum difference between the effective signal and the 
noise signal, the truncated frequency threshold can be obtained, then the noise spectrum can be 
removed, and noise reduction can be achieved. Fourier transform series methods are more 
commonly used because of their  advantages of simple operation, flexible frequency selection, 
effective avoidance of time shift, and good noise reduction effect.(17,18) However, the selection of 
the threshold of truncation frequency to distinguish effective signals and noise is mostly based 
on manual experience in Fourier transform method applications. Moreover, the elimination of 
noise information of different frequency scales is difficult using only one single truncation 
frequency threshold. The denoising methods in the time–frequency domain can process and 
analyze nonlinear nonstationary signals in the two-dimensional time–frequency domain. 
Among them, empirical mode decomposition (EMD) series algorithms are commonly used, such 
as the EMD method,(19) ensemble EMD (EEMD) method,(20) and extreme-point symmetric 
mode decomposition (ESMD) method.(21) The EMD method can adaptively decompose a 
complex signal into a series of intrinsic mode functions (IMFs) with different frequencies, which 
contain different time-scale characteristics of the source signal. The method can break through 
the time-domain limitations of the frequency domain noise reduction method and realize random 
noise reduction by eliminating the low-order IMF component with high frequency. However, the 
mode aliasing and end effects arise. Also, the trend function of EMD is relatively rough, which 
severely limits the effect of signal noise reduction. After studying the statistical characteristics 
of EMD and white Gaussian noise signals, the EEMD method is proposed; it can alleviate the 
influence of the mode aliasing effect on the signal noise reduction accuracy. However, the 
EEMD method is susceptible to the influence of additional noise amplitude and the number of 
integrated experiments. It is also difficult to reduce the influence of instantaneous noise. 
Considering the limitations of the EMD and EEMD methods, in the ESMD method, the internal 
extreme symmetric difference is used to form a signal envelope. In addition, the least squares 
method is used to optimize the final residual mode to obtain the highest adaptive global mean 
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(AGM), which can effectively reduce the difficulty of determining the mode decomposition 
screening times and the effect of mode aliasing. In the noise reduction of nonstationary and 
nonlinear monitoring signals, the ESMD method can reduce the noise effect by eliminating a 
certain number of high-frequency and low-order IMFs. 
	 Therefore, to solve the poor reliability problem of the assimilation model in T-SDA systems 
caused by unavoidable random variation noises in historical traffic flow measurements, an 
innovative denoised SDA (D-SDA) system is constructed and applied to short-term traffic flow 
prediction. The following three critical issues are investigated: (i) the original historical 
measurement signals are decomposed into a series of simple signals, IMFs, by ESMD to further 
analyze and seek the useful information and local stochastic noises, (ii) the denoised historical 
traffic data acquired are used to construct an assimilation model, and (iii) the D-SDA system for 
short-term traffic flow prediction is established, combining the denoised assimilation model, 
measurements, and standard KF method. The remainder of the paper is organized as follows. 
The T-SDA system for short-term traffic flow prediction is introduced in Sect. 2. The denoising 
processing of historical measurement signals and the construction of the D-SDA system are 
described in Sect. 3. In Sect. 4, the applications of the D-SDA system for short-term traffic flow 
prediction are presented and compared with those of the T-SDA system. Finally, conclusions are 
given in Sect. 5.

2.	 T-SDA System for Short-term Traffic Flow Prediction

	 As described earlier, there are three necessary components of the T-SDA system: assimilation 
models (dynamic state model and observation model), measurements (historical and current), 
and assimilation methods. The VAR model is the assimilation model and the KF method is 
selected as the assimilation method. The measurements are of traffic flow values. The standard 
KF method is used as the assimilation method in the T-SDA system. The VAR model can be 
expressed as
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where [ 0
ipa , 1

ipa , …, i
npa ] are unknown state parameters in the dynamic state model. 1i

sflow +  is 
the traffic flow value on a specific path and needs to be predicted using the T-SDA system. 

i
sflow  denotes the average of a specific path and can be acquired from historical traffic flow 

measurements in the time interval [iT, (i + 1)T]. T represents the sample interval of 15 min. As 
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variation patterns in historical measurements are similar on the same day of consecutive weeks 
or months, they are always used to construct forecast models. The historical measurements 
mentioned here are traffic flow data from the same day in previous weeks. To be specific, if 
predicted traffic flow values on Monday need to be acquired and analyzed, traffic flow data sets 
of the former seven consecutive Mondays are selected and used for model construction in the 
T-SDA system. i

sflow  is the historical traffic flow value of the specific path in the time interval 
[(i − 1)T, iT] and i

sflow  is the corresponding average. 
j

i
Aflow  denotes the traffic flow value of the 

downstream and upstream paths, which are also the paths adjacent to the predicted path in the 
time interval [(i − 1)T, iT]. j is the number of adjacent paths. 

j
i
Aflow  is the corresponding 

historical average.
	 Then, the T-SDA system for short-term traffic flow prediction can be built by combining Eq. 
(1) with Eqs. (2) and (3). Information in Eq. (1) can be expressed in detail by setting
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	 As mentioned above, the assimilation method is the key component in the T-SDA system, 
which connects assimilation models and measurements. The standard KF method is used as the 
assimilation method in this study as it is effective under both stationary and nonstationary 
conditions. The KF method is a well-known technique to track state values over time. Its 
efficient calculations and small storage requirements make it more appropriate for short-term 
traffic flow forecasting.(7,14) The standard KF method used as the assimilation method in the 
T-SDA system can be expressed as the forecast part shown by Eq. (5) and the update part shown 
by Eq. (6).
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Here, _i
stateP f  denotes the error covariance matrix of the state vector prediction values, and 

_i
stateP a is the error covariance matrix of the estimated state vector values. As stated above, Ri 

denotes the error covariance matrix of the Gaussian random noise series of the observation 
equation, as shown in Eq. (1). Ki is the Kalman gain matrix, which is crucial for balancing the 
weight between state estimates and new measurements. 

3.	 D-SDA System Construction

	 It can be seen from Eq. (4) that the measurement operator Mi is acquired from historical 
measurements. The measurement operator Mi will also play an important role in Kalman gain 
matrix calculation in the KF method, as shown in Eq. (6). Therefore, to improve the accuracy of 
measurement operator construction and assimilation calculation, a denoising process for 
historical measurements is essential before short-term traffic flow prediction using the SDA 
system. The ESMD method can decompose the complex historical traffic signal into a collection 
of band-limited IMFs by determining an optimal global mean curve in an adaptive way.(22,23) 
Different IMFs represent different physical meanings with inherent natural frequencies from 
high to low frequency.(23) For a given historical traffic signal flowh(i), the main steps of ESMD 
decomposition are shown as follows.
(1)	�Obtain all local minima and maxima value points of historical traffic signal flowh(i), 

represented as extrec with c = 1, 2, ..., 1,2,c ω=  . List the midpoints of the adjacent extreme points as 
midc with c = 1, 2, ..., 1,2,c ω=   − 1. Considering that extreme points cannot exist at both ends of 
historical traffic signal flowh(i), a waveform feature matching method is used to extend the 
historical traffic signal flowh(i) and suppress the end effect.

(2)	�Apply the second-order odd–even curve interpolation and third-order B-spline curve 
interpolation to fit the midpoints of adjacent extreme points. The midpoint curve interpolation 
model is determined using the residual standard deviation of fitted data. The calculation 
model of the weighted midpoint curve L is established using the number of midpoints 
involved in the calculation.

(3)	�Introduce the optimal sifting times term 0Ψ  and permitted error ε  to guarantee the optimal 
IMF decomposition and ensure the quality of decomposition (too few modal decomposition 
times may reduce the symmetry of the decomposed IMF, while too many modal 
decomposition times may destroy the inherent amplitude change of the signal and result in a 
decomposed IMF without physical meaning). The historical traffic signal flowh(i) can be 
decomposed into q IMFs and one adaptive average curve r as

	 ( ) ( ) ( )
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,	  (7)

	� where l means the lth historical measurement signal of measurement group g, which is 
needed to be decomposed. 
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(4)	�Identify the IMF dominated by high-frequency noise and the IMF dominated by useful 
information by the Spearman correlation coefficient method. Then, remove the IMF 
component dominated by high-frequency noise. The signal after high-frequency noise 
reduction can be obtained by reconstructing the remaining IMF components and adaptive 
average curve r. Thus, the denoised historical traffic signal Dflowh(i) can be acquired as

	 ( ) ( ) ( )
1

+ 1,2,
th

q
l l l
h k

k k
Dflow i IMF i r i l g

= +
= =∑ 

,	 (8)

	� where kth is the turning point between the IMF dominated by high-frequency noise and the 
IMF dominated by useful information. 

(5)	�The instantaneous noise and most of the high-frequency noise in the historical traffic 
measurement values can be eliminated. Replace i

sflow  with i
sDflow  in Eqs. (2)–(4). Then, the 

DA model in the D-SDA system can be constructed as
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	 As stated above, the D-SDA system for short-term traffic flow prediction can be established, 
and the entire technological schematic framework is shown in Fig. 1.

4.	 Experiments and Discussion

4.1	 Effectiveness analysis of noise reduction using ESMD

	 As the ESMD method is selected to process the random variation noises in historical traffic 
flow measurements because of its good performance, the simulation experiment is firstly 
conducted to verify the effectiveness of ESMD denoising in this study. The simulation signal s(i)
consists of useful signals s1(i) and s2(i) and a random noisy part κ(i) with an SNR of 20 dB built 
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to reflect the change characteristics of historical traffic flow measurement. The data sampling 
frequency is 200 Hz and the number of sampling points is 600. The specific information of each 
signal is given as Eq. (11) and the corresponding waveforms are shown in Fig. 2.

	
( ) ( ) ( ) ( )
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	 To prove the noise reduction accuracy of ESMD, the EMD and EEMD methods are selected 
to process the simulated data above. Also, the root mean square error (RMSE) and mean absolute 
percent error (MAPE)(9,21) are employed to evaluate the denoising performance of each method. 
Figure 3 shows the denoised results acquired using the EMD, EEMD, and ESMD methods. Table 
1 lists RMSE and MAPE values of the denoised results acquired using the three methods. It can 
be seen from Fig. 3 that the denoised line obtained by ESMD is much closer to the original one 
without noise. The EMD denoised line still has some unexpected fluctuations, which may be a 
result of mode aliasing or the end node effect. Also, a different good performance is produced in 
terms of RMSE and MAPE values. For example, RMSE and MAPE are 0.0538 and 0.2574 for 
ESMD noise reduction, respectively. They are reduced by 22.92 and 32.93%, respectively, 
compared with those for EMD. They are also smaller than those of EEMD. The simulated results 
show that the ESMD method is not only feasible and effective in random noise reduction, but 
also has a higher denoising effect than either the EMD or EEMD denoising method.

Fig. 1.	 (Color online) Schematic of D-SDA system for short-term traffic flow prediction.
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4.2	 Effectiveness analysis of D-SDA system on short-term traffic prediction

4.2.1	 Practical area and material description

	 To further detect the effectiveness of the proposed D-SDA system for short-term traffic flow 
prediction, a practical experiment is conducted. The study area is a subarea of the highway 
between Liverpool and Manchester, UK, as shown in Fig. 4(a). The traffic flow measurements 

Fig. 2.	 (Color online) (a), (b) Signal components s1(i) and s2(i), respectively. (c), (d) Simulation signals with and 
without noise, respectively.

Fig. 3.	 (Color online) Noise reduction results acquired by (a) EMD, (b) EEMD, and (c) ESMD methods.

Table 1 
Noise reduction results of three methods.

EMD EEMD  ESMD 
RMSE 0.0698 0.0590 0.0538
MAPE 0.3838 0.3151 0.2574
*The smaller the RMSE and MAPE index values, the higher the noise reduction effect.
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are downloadable from the website of Highways England (highwaysengland.co.uk). The time 
interval for the datasets is 15 min. Several adjacent paths, as shown in Fig. 4(b), are selected as 
representatives to verify the validity of the proposed method. They are path 3339 (LM91), path 
6200 (LM844A), path 3339 (LM93), path 3338 (LM89), and path 6296 (LM87). Traffic flow 
prediction results of each path are acquired and analyzed from Monday to Sunday. The traffic 
flow data of each path contains eight days from consecutive weeks. Datasets of the first seven 
days are used for the construction of assimilation models in the SDA system, and the datasets 
from the eighth day are employed to test the effectiveness of the proposed D-SDA system. 

4.2.2	 Impacts of denoised historical traffic data on prediction results

	 We take the short-term traffic flow prediction for path 3339 (LM91) as a detailed example to 
illustrate the impacts of denoised historical traffic data on the improvement of the accuracies of 
the assimilation model and forecasting results. There are four paths: path 3338 (LM89), path 
3339 (LM93), path 6200 (LM844A), and path 6296 (LM87).  All are adjacent to path 3339 
(LM91), as shown in Fig. 4(b). Obviously, m = 4 in Eq. (10). n is set to be 2 in Eq. (9). First, the 
original traffic flow data of path 3339 (LM91) on three consecutive Mondays, which have 
similar variations but are affected by observation noises, are shown in Fig. 5(a). These original 
data series are decomposed into purer and noisy series using the ESMD method, as shown in 
Figs. 5(b) and 5(c), respectively. Similarly, original traffic flow data of path 3339(LM91) on three 
consecutive Saturdays with purer and noisy series obtained by the ESMD method are shown in 
Figs. 5(d)–5(f). It can be seen from Fig. 5 that images of the purer series are smoother than those 
of the original series but still retain their variation trends. They can be treated as denoised data 
for further multiscale model building. Then, to verify the impacts of denoised historical traffic 
data on prediction results, traffic flow prediction results of path 3339 (LM91) obtained on the 
workday Monday and the non-workday Saturday are analyzed in detail without loss of generality. 
For the comparative analysis of experimental results, prediction results are obtained from the 
T-SDA system using the raw data without the noise reduction. Besides, as the traffic flows early 

Fig. 4.	 (Color online) (a) Study area and (b) part of the paths.
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in the morning and late at night are small and of little concern to traffic management, only 
traffic flow prediction results from 6:00 a.m. to 9:00 p.m. are acquired and analyzed. Figures 
6(a) and 6(b) show the traffic flow prediction results of path 3339 (LM91) on the workday 
Monday and on the non-workday Saturday, respectively. The prediction results from the T-SDA 
system are taken as a reference to verify the effectiveness of assimilation prediction results 
obtained from the D-SDA system. Meanwhile, the true traffic flow values are also added. Table 
2 shows the corresponding RMSE and MAPE values of the short-term traffic flow prediction 
results from the T-SDA and D-SDA systems on Monday and Saturday, respectively.
	 It can be seen from the results shown in Fig. 6 and Table 2 that the prediction results acquired 
from the D-SDA system using historical measurements with noise reduction are superior to 
those obtained from the T-SDA system. The lower RMSE and MAPE values of D-SDA are 
shown in Table 2, and the distributions displayed in Fig. 6 are better than those from T-SDA. For 
example, the RMSE and MAPE of the prediction results are respectively 37.43 and 7.88% in the 
case of the D-SDA system on Monday. They were reduced by 6.57% (from 44.00 to 37.43) and 
1.61% (from 9.49 to 7.88%) compared with the results from T-SDA. Similar prediction results 
were obtained using the data collected on Saturday. It can be drawn that random noises in 
historical traffic f low measurements indeed affect the precision of assimilation model 
construction and assimilation prediction results. The D-SDA system proposed in this study is 
effective in improving the short-term traffic flow prediction accuracy.

4.2.3	 D-SDA system performance for short-term traffic flow prediction

	 To further verify the effectiveness of the proposed D-SDA system, the short-term traffic flow 
prediction of all the paths shown in Fig. 4(a) is conducted from Monday to Sunday. As an 
example of a detailed analysis, the prediction performance characteristics of the five paths 
shown in Fig. 4(b) are listed first. The RMSE and MAPE values of the prediction results acquired 

Fig. 5.	 (Color online) (a)–(c) Original traffic data, purer series, and noise on three consecutive Mondays. (d)–(f) 
Original traffic data, purer series, and noise on three consecutive Saturdays.
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from the T-SDA and proposed D-SDA systems from Monday to Sunday are given in Fig. 7, and 
the average RMSE and MAPE values of the five paths are shown in Tables 3 and 4, respectively. 
	 As shown in Tables 3 and 4, compared with the prediction results obtained from the T-SDA 
system, the average RMSE and MAPE were improved by various degrees when using the 
proposed D-SDA system. Taking path 3339 (LM93) as an example, the average RMSE and 
MAPE acquired from the T-SDA system were 29.96 and 10.53%, respectively. A higher 
prediction performance is acquired from the D-SDA system where the average RMSE was 
reduced by 7.41 (from 29.96 to 22.55) and the relative accuracy was improved by 24.73%. The 
corresponding average MAPE was reduced by 2.43% (from 10.53 to 8.10%) and the relative 
accuracy was improved by 23.08%. Similar results were also obtained for the other four paths. 
The results of the test indicate that the assimilation models built using historical measurements 
with noise reduction can achieve a higher prediction accuracy.
	 For further verification, the T-SDA and proposed D-SDA systems are applied for the short-
term traffic flow prediction of all the paths shown in Fig. 4(a). The corresponding average RMSE 
and MAPE values from Monday to Sunday are given in Tables 5 and 6, respectively. Results 
showed that the average RMSE and MAPE values from the D-SDA system are all smaller than 
those from the T-SDA system. Taking the workday Monday and non-workday Sunday as 
examples, the average RMSE and MAPE from the T-SDA system on Monday are 79.69 and 
9.50%, respectively. The corresponding values are 70.06 and 8.01% from the D-SDA system, 
respectively. On the non-workday Sunday, the RMSE and MAPE values from the T-SDA system 
were 47.25 and 9.76%, and the corresponding values were 36.97 and 7.82% from the D-SDA 
system, respectively. 
	 Overall, the results in Fig. 7 and Tables 3–6 suggest that the performance of the D-SDA 
system is higher than that of the T-SDA system on improving the accuracy of assimilation model 
construction and short-term traffic flow predictions. The proposed D-SDA system is proved to 
be effective and valid in short-term traffic flow prediction.

Fig. 6.	 (Color online) Different traffic flow prediction performance characteristics of path 3339 (LM91) from the 
(a) T-SDA system and (b) D-SDA system on Monday and Saturday.

Table 2
RMSE and MAPE of prediction results from T-SDA and D-SDA on Monday and Saturday.

Monday Saturday
RMSE MAPE (%) RMSE MAPE (%)

T-SDA system 44.00 9.49 35.89 10.10
D-SDA system 37.43* 7.88* 26.86* 8.74*
*Highest performance
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5.	 Conclusions

	 In this study, aiming to reduce the effect of random noise in historical traffic flow 
measurements on assimilation model construction and prediction results, we adopted the ESMD 
method to conduct the denoising process to improve the accuracy of assimilation model 
construction and built a D-SDA system for short-term traffic flow prediction. The results 
demonstrated that the proposed D-SDA system has the ability to perform well in short-term 

Fig. 7.	 (Color online) (a) RMSE and (b) MAPE values of five paths from Monday to Sunday.

Table 3
Average RMSE values of five paths under T-SDA and D-SDA systems.
Path 3338 (LM89) 3339 (LM91) 3339 (LM93) 6200 (LM844A) 6296 (LM87)
T-SDA 15.43 43.32 29.96 95.36 43.03
D-SDA 11.81* 35.01* 22.55* 82.48* 35.41*
*Highest performance

Table 4
Average MAPE values of five paths for five models.
 Path 3338 (LM89) 3339 (LM91) 3339 (LM93) 6200 (LM844A) 6296 (LM87)
T-SDA 15.35 10.04 10.53 7.81 9.82
D-SDA 11.40* 8.56* 8.10* 6.84* 8.22*
*Highest performance

Table 5
Average RMSE values of all paths for five models.

Mon. Tues. Wed. Thur. Fri. Sat. Sun.
T-SDA 79.69 83.04 83.89 83.12 84.47 50.84 47.25
D-SDA 70.06* 73.56* 73.92* 72.35* 72.89* 39.74* 36.97*
*Highest performance

Table 6
Average MAPE values of all paths for five models.

Mon. Tues. Wed. Thur. Fri. Sat. Sun.
T-SDA 9.50 9.63 10.17 9.35 9.40 9.32 9.76
D-SDA 8.01* 8.24* 8.62* 7.83* 7.87* 7.63* 7.82*
*Highest performance
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traffic flow prediction applications. Specifically, the results presented in this paper clearly 
highlighted the following:
(1)	�Noise can be successfully separated and dealt with from historical measurements using the 

ESMD method. Compared with denoised results from EMD or EEMD, the noise reduction 
effect of ESMD is the highest. 

(2)	�The built D-SDA system can be successfully applied to short-term traffic flow prediction. 
The prediction results acquired from the D-SDA system outperformed those from the T-SDA 
system. For the traffic flow prediction of path 3339 (LM93), the accuracy can be increased by 
24.73%. For all paths, the prediction accuracy can be increased by up to 21.83%.  

	 In this study, the time interval was set as 15 min for highway short-term traffic flow 
prediction. In future work, the proposed method can be tested and applied to traffic flow 
prediction in urban areas with more complex traffic conditions. Thus, the optimization and 
improvement of the current D-SDA system are necessary for shorter-term traffic flow prediction.
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