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	 Image-to-image color inconsistencies present a significant challenge in image-based 3D 
reconstruction, stemming from factors such as weather conditions, temporal variations, and 
exposure settings. Existing global color consistency correction algorithms exhibit limitations in 
simultaneously achieving effective color correction and efficiency, particularly in large-scale 
scenes. To address this issue, we propose an iterative strategy-based algorithm for multiview 
image color consistency correction. The algorithm initiates feature extraction and matching 
processes to establish point correspondences across images. For each set of correspondences, a 
priori color information is computed for each image. Subsequently, quadratic splines are 
computed by quadratic convex optimization for individual images. The raw pixel values are 
updated using these splines, and this iterative process is repeated to compute a series of quadratic 
splines until convergence. Simultaneously, gradient constraints are introduced to ensure that the 
image retains contrast. By applying these computed quadratic splines to transforming the 
images, we can achieve color consistency correction. Experimental results demonstrate that the 
proposed algorithm not only achieves higher quality than existing algorithms but also 
significantly improves operational efficiency by reducing the complexity of the algorithm. The 
inherent flexibility from the use of simultaneous splines facilitates the acquisition of a series of 
splines through iterative computations, further enhancing its color correction capability. This 
methodology can find broad applications in image stitching, image-based 3D reconstruction, 
and other related fields.

1.	 Introduction

	 Image-based 3D reconstruction has emerged as a crucial technique for creating realistic 3D 
models of real-world scenes. This methodology encompasses a series of steps, including feature 
detection and matching, motion-based structure reconstruction, dense reconstruction, surface 
reconstruction, and texture mapping, to produce 3D models. However, when multiview images 
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are captured under different conditions, such as varying times, weather conditions, and exposure 
settings, significant color variations may arise among the images. If image color differences are 
used directly in the texture mapping process, they can adversely impact the visual quality. 
Hence, addressing color disparities among images and achieving color consistency in 3D models 
are critical and formidable challenges.
	 Algorithms designed to address color consistency correction among images can generally be 
categorized into local fusion and global color consistency correction. A combination of these 
two approaches is commonly employed to achieve color consistency across images. Local 
fusion(1,2) techniques focus primarily on local color transitions between images to achieve 
seamless and visually pleasing transitions. On the other hand, global color consistency correction 
involves computing a global transformation function for the images, which adjusts their overall 
color tones and ensures consistent colors throughout the scene. The algorithms for global color 
correction can generally be categorized into three main types. The first type of color consistency 
correction algorithm is color style transfer, which typically involves two images.(3–6) Color style 
transfer occurs between two images. Recent advancements in deep learning-based style transfer 
algorithms(6) have demonstrated impressive results. Reinhard et al.(3) introduced a method of 
aligning the mean and variance of the target image with those of the reference image, performing 
adjustments in the lab color space to mitigate issues stemming from correlation among the red, 
green, and blue (RGB) channels. Vallet and Lelegard(5) employed partial iterations to symmetrize 
nonparametric color correction, facilitating the simultaneous adjustment of two images instead 
of using one image as a reference. Nguyen et al.(7) initially performed white balance operations 
on both images to rectify color cast issues arising from disparate lighting conditions. 
Subsequently, each image was aligned to a shared “white balance axis,” enabling gradient-
preserving histogram matching along that axis to harmonize the tonal distribution between the 
two images. In the current landscape, machine-learning-based approaches that involve 
effectively combining algorithmic methods with prior knowledge to yield favorable outcomes 
have also emerged.(8–11) These methods apply only symmetric color correction to image pairs, 
necessitating iterative processing for managing multiview images in batch processing. The 
second type of algorithm is texture optimization, which focuses on correcting the color 
consistency of texture patches in the reconstructed model rather than directly correcting color 
inconsistencies in the input images.(12–15) Texture optimization algorithms focus on texture 
optimization, specifically emphasizing color consistency correction for texture patches within 
reconstructed models rather than directly addressing color inconsistencies in the input images. 
These methods critically rely on the accuracy of mesh vertices and the precision of image poses, 
as they directly affect the registration accuracy of the overlapping regions of texture patches. If 
significant misalignment occurs, satisfactory color consistency correction results may not be 
achieved. The third type of algorithm for color consistency correction is global color consistency 
correction. The general idea behind multiview image global color correction algorithms is to 
compute a global transformation for each image that minimizes differences between 
corresponding information across the images or the histograms of the images. Various models, 
including linear models,(16–18) gamma models,(19) matrix models,(20) and quadratic spline 
curves,(21–24) have been proposed for global transformations. These algorithms can achieve 
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robust color consistency correction results on certain datasets, especially those utilizing 
quadratic spline curves as transformation models.(21–23) Several effective algorithms have been 
proposed in the field of image stitching and 3D reconstruction, most of which involve calculating 
a transformation matrix for each image by minimizing information or histogram differences 
between images to accomplish color transformation between them.(16,21,25–28) Moulon et al.(17) 
proposed a linear model-based global multiview color consistency correction approach, 
minimizing histogram differences between images using the same name points or lines as 
correspondences. Three channels of each image are then assigned a global registration model. 
Park et al.(19) addressed color consistency correction using scale-invariant feature transform 
(SIFT) feature matching and robust low-rank matrix factorization to estimate gamma model 
parameters. However, the inflexibility of the gamma model compared with the quadratic spline 
model(21) often results in an underestimation of albedo, particularly for rigid scenes. Despite 
improving the effectiveness of the algorithm, the efficiency decreases as the transformation 
model becomes more flexible, introducing more parameters and complicating optimization. To 
address this issue, in some algorithms, hierarchical optimization strategies are used to enhance 
efficiency.(22,23)

	 Color style transfer algorithms are specifically designed for pairs of images and are not 
suitable for achieving color consistency across large-scale multiview images. On the other hand, 
texture optimization algorithms are more versatile and applicable to a wider range of scenarios, 
but they require high image pose precision and mesh vertex accuracy. Global color consistency 
correction algorithms are effective at ensuring overall color tone consistency among images. 
However, these algorithms face challenges in balancing color consistency and computational 
efficiency. To address these limitations, we propose an iterative strategy for color consistency 
correction in multiview images, reducing computational complexity and significantly improving 
computational efficiency. Moreover, the iterative strategy enables the computation of a series of 
quadratic spline transformation functions for each image, providing a greater flexibility than 
when using a single transformation function with high image quality.

2.	 Method

	 We introduce a method to compute a global transformation for each image to minimize 
disparities in corresponding information among images, ensuring both contrast preservation and 
artifact-free images. A flowchart of the algorithm proposed in this article is depicted in Fig. 1.

2.1	 Transformation function solving

	 In this article, we employ the average color value of the projected points on the visual image 
for each sparse point as the target color value. The method for calculating the projection of 
sparse points on an image follows Eq. (1):

	 ( )( )( ) 0 ,x F D O R X C x= ⋅ ∏ ⋅ − + 	 (1)
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where X represents the 3D coordinates of the sparse point, 𝑥 represents the pixel coordinates of 
the sparse point on the image, x0 is the offset, C represents the central coordinates of the image, 
R is the rotation matrix, F is the focal length, D is the image distortion function, and Π is the 
perspective projection function. However, it is important to note that the proposed algorithm can 
directly utilize matching point information for color consistency correction and does not require 
the geometric coordinates of the sparse points, as the algorithm is independent of geometric 
information.
	 There are two primary advantages of this approach: First, the optimization problem is 
decoupled, and each image can be optimized separately to greatly improve the efficiency of the 
algorithm. Second, the average value is a more representative target color value, which reduces 
the color cast problem of the image to a certain extent. Equation (2) is used to calculate the 
average color value of each sparse point.

	 0 ,i
i

cc
H
∑

= 	 (2)

where ci represents the color value of the sparse point in the i-th image and H is the number of 
images where the sparse point is projected. The average color value ci0 reduces the effect of 
individual image variations, such as lighting conditions or exposure differences, by averaging 
across all the images where the sparse point appears. This averaging helps ensure that the 
corrected color values are closer to the true, consistent color of the point across the scene.
	 To achieve consistent color results, our approach utilizes quadratic spline functions as the 
color transformation model, which provides greater flexibility in modeling color mappings. 

Fig. 1.	 (Color online) Overview of  the proposed global color correction method.
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Despite the increased number of parameters, the proposed iterative strategy ensures 
computational efficiency comparable to those of existing algorithms. Quadratic splines offer 
more adaptability than linear transformations, gamma transformations, S-curve transformations, 
and matrix transformations. The number of segments used in the spline determines its flexibility: 
higher-order polynomials allow for more adaptable transformations. To balance parameter count 
and functional flexibility, we utilize a five-segment quadratic spline curve in this study, where 
each segment is modeled as a quadratic polynomial. All color transformations are performed in 
the RGB color space, with each channel processed independently, resulting in 45 parameters per 
image. 

	 ( ) ( ) ( ) [ ] { }2 1

0
, 0,1, , 1, 0,1 , * nk

i k k k k k k k
f x a b x x c x x k n x x step k −

=
= + − + − = … − ∈ ∈ 	 (3)

The parameter k represents the kth segment function, and ak, bk, and ck are the parameters of the 
spline curve. 
	 To minimize the discrepancy in correspondence information across images, Yang et al.(22) 
employed the variance of the color projections of each sparse point on different images as the 
loss function. However, a drawback of this approach is that the entire energy function 
incorporates the color transformation parameters of all images, making the optimization process 
challenging. The algorithmic complexity is o(n2), which hampers parallel acceleration and 
contributes to the lower efficiency of the algorithm. To address this issue, we first compute the 
mean value for each sparse point. This approach establishes a correspondence between the 
sparse point mean and the color values of the projected points on each image denoted by 

{ } [ ]0, , 0, 1i iQ c c i m= ∈ − , where m represents the number of sparse points corresponding to the 
images. On the basis of Q, we can calculate a quadratic spline curve as the color transformation 
function for each image. The cost function is defined as
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Here, Cs represents a term that induces the same-name information in the images to approach 
the average value after color correction. We use the second norm between the average values and 
the original color values for the loss function in this paper. Cω is a regularization term that 
prevents the significant deviation of the color values from those in the original images after color 
correction. The parameter λ is a balancing parameter set to 0.001 in all the experiments, 
effectively balancing fidelity to the original color values and the regularization term. This choice 
yields good color correction results. Chard represents the quadratic spline constraints, which 
include two types of constraint in this paper. The first type of constraint is the intrinsic constraint 
of the quadratic spline, which ensures first- and second-order continuities at the nodes of the 
spline function. The constraint can be formulated as shown in the first and second lines of Eq. 
(5). The second type of constraint preserves the contrast of the images and prevents contrast loss. 
In this paper, the gradients of the quadratic splines are constrained to control contrast 
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preservation. The specific formulation is given in the third and fourth lines of Eq. (5). The 
parameter δmin has a significant impact on the contrast of the images and has been heavily relied 
upon in previous algorithms such as that of Yang et al. However, in this paper, since the goal is to 
adjust the images to be closer to the average image, the reliance on this parameter is reduced. To 
facilitate comparison with other algorithms, we set δmin to 1 and δmax to a relatively large value, 
such as 5.
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	 Equation (4) can be solved by using the quadratic programming tool QuadProg++1, which 
implements a quadratic programming solver,(29) to obtain the fitted quadratic splines. Finally, by 
iterating the process, we obtain a series of quadratic splines, which are used to transform the 
images and to achieve color consistency correction across the images.

2.2	 Iterative strategy

	 Although quadratic spline curves offer greater flexibility than linear or gamma curves and 
can yield satisfactory color consistency results on general datasets, we further enhance color 
consistency by employing an iterative strategy. The iterative approach enables the computation 
of a series of quadratic spline functions for each image, leading to improved color consistency 
correction across the images. 
	 The iterative process begins by calculating the average color value of sparse feature points 
projected onto each image. Utilizing this average color value and the original values of the 
projected points, we compute quadratic spline functions for each image using the proposed 
method. These spline functions are subsequently applied to transform the images, and the 
average color value is updated accordingly. The process iterates until convergence is achieved, 
ensuring color consistency correction across the images. The primary objective of the iterative 
approach is to map shared information between images to the average value. By calculating each 
image independently, we can reduce the complexity of the optimization problem, enabling the 
possibility of employing parallel acceleration algorithms and enhancing computational 
efficiency. Moreover, the iterative process generates a series of quadratic spline transformation 
functions, enabling progressive refinement and superior color consistency correction compared 
with using a single function.
	 A specific algorithm flowchart is shown in Table 1. The average value of sparse points 
corresponding to image Ii is denoted by Ci, and the color value on image Ii corresponding to Ci is 
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Si. In the k-th iteration, through quadratic convex optimization, Si and Oi are used to calculate 
the transformation function i

kf  of the image, and then i
kf  is used to update Sj. The other images 

also undergo the same operations simultaneously to obtain the updated S′j and C'j. This process 
is repeated to obtain a series of spline transformation functions i

kf  for each image until 
convergence. Finally, i

kf  is used to transform each image and complete the color consistency 
correction between the images. Because multiple transformations of images can be time-
consuming, considering that the pixel values of each image are between 0 and 255, table lookup 
can be used to accelerate the transformation process.
	 To assess the performance of the iterative approach, we conducted an experimental analysis 
on the dataset, examining the relationship between the number of iterations and the loss. Figure 
2 illustrates this relationship, demonstrating that convergence is typically achieved within 2–3 
iterations, with a relatively rapid convergence rate for the majority of the dataset. This can be 
attributed to the high flexibility of quadratic spline functions, as even a single transformation 
can yield satisfactory color consistency results.

3.	 Results and Discussion

3.1	 Datasets and settings

	 To comprehensively validate the effectiveness of our algorithm, we conducted experiments 
on various types of dataset, as shown in Table 1. The experimental setup involved a desktop 

Table 1
Detailed information on the datasets.

Small 
building SCHOOL GROUND TJH6 Navona Small 

building
HK-

0001BX01
HK-

0003FH
No. of images 36 55 50 55 92 13 188 1320
Size 4592*3058 4864*3648 4608*3456 4864*3648 4000*3000 3872*2592 5472*3648 6000*4000
Platform UAV UAV Tbox UAV Handheld Handheld UAV UAV
Sparse points 12.7K 5.4K 1.9K 89.5K 24.3K 5.3K 16.4K 459.30K
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computer equipped with a 64-bit operating system, an i9-12900KF CPU running at 3.2 GHz, 
and 32 GB of RAM.

3.2	 Efficiency analysis

	 In this subsection, we present an efficiency analysis of the proposed algorithm. The algorithm 
in this paper is based on the algorithm proposed by Yang et al.,(22) which is known for its 
efficiency compared with the algorithms of Moulon et al.(17) and Park et al.(19) A comparison is 
made with Yang et al.’s(22) algorithm only. Additionally, Yang et al. and other researchers have 
employed hierarchical optimization strategies to improve the efficiency of their algorithms on 
large-scale datasets. The goal of the algorithm in this paper is to enhance the efficiency of each 
layer of optimization rather than employing a hierarchical approach as in Yang et al.’s algorithm. 
To provide an objective analysis of algorithm complexity, we focus on analyzing the optimization 
part of the color correction algorithm and do not consider the time spent on I/O operations, as 
this is beyond our control. Table 2 presents a runtime comparison between Yang et al.’s 
algorithm and our algorithm on eight different datasets. Our algorithm takes significantly less 
time to run than Yang et al.’s algorithm, with optimization times typically in the range of a few 
seconds. The slower performance of Yang et al.’s algorithm can be attributed to optimizing all 
the color correction parameters together, requiring a substantial amount of time for energy 
function construction and solving. Overall, the complexity of their algorithm is on the order of 
o(n2), resulting in lower efficiency. On the other hand, our algorithm decouples the optimization 
process for each image, eliminating the issue of many parameters when optimizing all images 
together. Furthermore, our algorithm can be further accelerated by using parallel optimization 
strategies, contributing to its higher efficiency than Yang et al.’s algorithm.
	 The relationship between the efficiency of the proposed algorithm and the number of images 
is shown in Fig. 3. As the number of images increases, the runtime of our algorithm shows a 

Fig. 2.	 (Color online) Relationship between the number of iterations and the cost on five datasets.
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linear growth trend, whereas that of Yang et al.’s algorithm exhibits a parabolic trend. Moreover, 
the runtime of our algorithm is significantly lower than that of Yang et al.’s algorithm. From the 
curves, we observe that the complexity of our algorithm is O(n), whereas Yang et al.’s algorithm 
has a complexity of O(n2) in each group. This difference is attributed to the decoupling of joint 
optimization among images in our algorithm, allowing for the separate optimization of each 
image and greatly enhancing efficiency. Although our algorithm achieved results visually 
comparable to those of Yang et al.’s algorithm, our algorithm has a significant advantage owing 
to its iterative approach, which provides a notable improvement in efficiency. This efficiency 
advantage is a key strength, enabling significantly faster computation while maintaining color 
consistency.

3.3	 Performance on image stitching and texture mapping

	 To assess the effectiveness of the algorithm, we applied it to remote sensing image stitching 
and texture mapping. Figure 4 displays the results of orthophoto stitching. In cases where there 
is a color difference between images, significant color disparities can manifest at both ends of 
the stitching line. It is evident that remote sensing images, captured at different times and under 
varying lighting conditions, exhibit substantial color differences between stitched images, 
significantly impacting visual perception. After applying the algorithm proposed in this article 
for color correction, the color differences essentially disappear, even without using the local 

Fig. 3.	 (Color online) Comparative analysis of efficiency.

Table 2
Efficiency comparison analysis. Unit: seconds.

Small 
building SCHOOL GROUND TJH6 Navona Small 

building
HK-

0001BX01
HK-

0003FH
Yang et al. 2.773 0.577 50.818 4.106 59.341 845.000 >1 hour N/A
Ours 0.971 0.630 0.445 1.423 1.492 1.767 4.016 33.808
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color transition algorithm. The effect on the real 3D model aligns with that on the orthophoto 
image, as shown in Fig. 5. This indicates that the algorithm proposed in this paper can achieve 
color consistency correction between sequential images by minimizing the difference in 
homonymous information in the images. As a result, a sequence image with color consistency is 
produced, thereby improving the perception of orthophoto images and real 3D models.

3.4	 Comparative results

	 We conducted a comprehensive qualitative analysis of four algorithms using the SCHOOL 
and Small Building datasets to evaluate their efficacy in addressing color inconsistencies. 
Owing to space limitations, we provide additional experimental results here. To simulate 
significant color variations, we applied adjustments to the images using Photoshop. The 
SCHOOL dataset comprises images with varying exposure levels, mimicking images with 

Fig. 4.	 (Color online) Performance in image stitching. (a) and (c) are the results without color correction, whereas 
(b) and (d) are the results corresponding to (a) and (c), respectively, after color correction based on the proposed 
method.
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different exposures, whereas the Small Building dataset exhibits substantial color variations, 
representing images with inconsistent colors. Figure 6 shows the results of the four methods on 
the Small Building dataset. Upon careful examination, it is evident that Moulon et al.’s algorithm 
performed the poorest. Although it achieved satisfactory color consistency, it suffered from 
severe loss of contrast. This drawback stems from the algorithm’s utilization of linear 
transformation functions with small slopes to enhance color consistency, resulting in a 
considerable loss of contrast due to the pronounced color differences within the Small Building 
dataset. In comparison, Park et al.’s algorithm yielded better outcomes than Moulon et al.’s 
algorithm by preserving contrast without significant loss. This improvement can be attributed to 
the implementation of a more flexible gamma function. However, notable color disparities were 
still present in the first and third images compared with the remaining images, suggesting that 
the flexibility of the gamma function may be inadequate or that the algorithm may lack 
robustness in managing complex color inconsistencies. In contrast, both Yang et al.’s algorithm 
and our algorithm achieved consistent and superior results compared with the previous two 
algorithms in terms of color consistency and contrast preservation. This was due to the use of 
highly flexible quadratic spline functions in both algorithms, which can manage larger color 
variations.
	 Similarly, on the SCHOOL dataset (Fig. 6), the results of the four algorithms align with those 
on the Small Building dataset. Moulon et al.’s algorithm performed the worst, with significant 
contrast loss, followed by Park et al.’s algorithm. Yang et al.’s algorithm and our algorithm 
achieved the best results in terms of both color consistency correction and contrast preservation. 
This demonstrates that our algorithm can address complex color inconsistency issues and 

Fig. 5.	 (Color online) Performance in texture mapping. (a), (c), and (e) are the results without color correction, 
whereas (b), (d), and (f) are the results corresponding to (a), (c), and (e), respectively, after color correction based on 
the proposed method.
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achieve good results in terms of exposure and color aspects. Moreover, our algorithm 
demonstrates better efficiency and quality than Yang et al.’s algorithm, which will be discussed 
later.
	 To verify the capability of the algorithm to correct color consistency, in this study, 
experiments were conducted on five datasets(29–32) with significant color differences, and the 
results are compared with those of Yang et al.’s algorithm. The results on three internet datasets 
are shown in Fig. 7 for comparison, revealing substantial color differences due to the images 
being captured by different people at different times and using different devices. The algorithm 
results of Yang et al. and our results both exhibit good color consistency, albeit with differences 
in color tones. Figure 6 displays two sets of images captured using single-lens reflectors, and the 
results are consistent with those in Fig. 7. The good color consistency indicates the strong color 
correction capabilities of both algorithms, given their utilization of flexible spline curves as 
transformation functions. The inconsistent color tones suggest that the two algorithms adjust 
colors in different directions. Yang et al.’s algorithm, without any related constraints, selects a 
hue that minimizes cost as a result. In contrast, our algorithm employs an iterative strategy to 
make the color tones of the image tend towards an average, aligning more with human visual 
perception. Tone inconsistency is a common problem in color consistency correction algorithms, 

Fig. 6.	 (Color online) Comparison of the results for the Small Building dataset. First row: original images; second 
row: results from Moulon et al.’s algorithm; third row: results from Park et al.’s algorithm; fourth row: results from 
Yang et al.’s algorithm; fifth row: results from our algorithm.
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and addressing this issue is an important direction for improvement. These experiments 
demonstrate that our algorithm possesses color correction capability comparable to that of Yang 
et al.’s algorithm, with significantly higher efficiency. This efficiency advantage is a key 
strength of our algorithm. Furthermore, a quantitative evaluation reveals that the algorithm 
proposed in this paper exhibits greater stability in preserving image quality than Yang et al.’s 
algorithm, as detailed in the subsequent sections.
	 We also conducted a quantitative evaluation of the four algorithms using the PSNR and SSIM 
metrics on the internet dataset. PSNR represents the similarity to the original images, with 
higher values indicating better results. SSIM measures the preservation of image structure, 
where higher values indicate better preservation (with a maximum value of 1). Table 3 presents 
the experimental results. Our algorithm achieved the best results in terms of PSNR, indicating 
the superior preservation of the original image information. Although the color consistency 
results of our algorithm are visually similar to those of Yang et al.’s algorithm, our algorithm 
outperformed it in terms of PSNR and SSIM. The reason behind this lies in the fact that our 
algorithm transforms the images in such a way that the corresponding information converges to 
the average value, which is theoretically reasonable. On the other hand, Yang et al.’s algorithm 
lacks a target solution for color correction after transformation and relies on a larger search 
space to find the optimal color consistency correction solution. This may result in significant 

Fig. 7.	 (Color online) Comparison of the results for the internet dataset. First row: original images; second row: 
results from Yang et al.’s algorithm; third row: results from our study.
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deviations from the original images and potential color shifts. Although there is a regularization 
term to encourage the preservation of original image information, its capability is limited. In 
terms of SSIM values, Park et al.’s algorithm achieved good results, followed by our algorithm. 
This can be attributed to the color modeling approach used in Park et al.’s algorithm. 
Additionally, our algorithm performed well in preserving details owing to the constraint on the 
gradients of the quadratic spline curve ensuring that they are greater than 1. This approach 
outperformed the algorithms of Moulon et al. and Yang et al. once again, demonstrating that our 
algorithm achieves overall improvements in preserving image information.

4.	 Conclusion

	 Our proposed iterative-based approach presents an efficient and effective solution for color 
consistency correction in multiview images, notably enhancing the visual perception of 3D 
reconstruction models. By decoupling the joint optimization of color transformation function 
parameters and the optimization of each image’s parameters individually, we developed an 
algorithm with a notable reduction in complexity without resorting to hierarchical optimization. 
Furthermore, our algorithm demonstrates superior performance in both efficiency and color 
consistency correction compared with existing methods, leveraging multiple flexible quadratic 
spline transformation functions. While ensuring streamlined processing, our algorithm not only 
enhances color consistency but also attains optimal results in quantitative evaluations. The 
incorporation of gradient constraints ensures that the images do not suffer from contrast loss.
	 However, some limitations should be addressed in future work. First, color cast (color shift) 
may occur when there are significant color differences among images. This can result in 
unnatural colors, where one or more images might be overcorrected or undercorrected, causing 
an overall color imbalance. Additionally, the algorithm may face insufficient color consistency 
across multiple views, especially in extreme cases where the color differences are beyond the 
algorithm’s correction capabilities. This can lead to visible discrepancies in the final multiview 
image set, especially along the edges where images are stitched together.
	 To mitigate these issues, in future work, several potential improvements should be explored. 
Local area optimization may be applied to regions with large color differences, ensuring more 
natural transitions without global correction affecting smaller areas. Additionally, an adaptive 
color correction method may be introduced, where correction parameters are automatically 
adjusted on the basis of the degree of color variation between images. These enhancements will 
help the algorithm better handle cases of extreme color variation, ultimately improving both the 
visual and quantitative outcomes of multiview image correction.

Table 3
Detailed PSNR and SSIM results of four methods on eight datasets.

Small building SCHOOL Small building2 GROUND TJH6 Navona HK-0001BX01
PSNR-SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Moulon et al. 24.338 0.897 22.955 0.841 20.798 0.924 21.935 0.895 16.682 0.836 13.663 0.739 25.251 0.948
Park et al. 21.564 0.937 21.062 0.890 25.472 0.962 N/A N/A N/A N/A N/A N/A N/A N/A
Yang et al. 20.931 0.879 18.343 0.819 25.164 0.936 23.186 0.897 24.794 0.949 24.937 0.924 30.232 0.983
ours 25.087 0.925 23.362 0.919 26.530 0.947 24.871 0.922 25.196 0.945 27.502 0.945 32.782 0.989
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