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	 As high-resolution satellite remote sensing images become essential tools for understanding 
geospatial information, the large-scale 3D reconstruction of Earth’s surface using these images 
has emerged as a significant research area in computer vision, photogrammetry, and remote 
sensing. However, satellite-based 3D reconstruction is highly sensitive to image changes arising 
from the multitemporal acquisition of images. These changes are primarily caused by varying 
shadows, reflections, and transient objects (e.g., vegetation), which complicate accurate 
modeling. Neural radiance fields (NeRFs), utilizing differentiable rendering to learn implicit 
scene representations, offer a novel approach to generating 4D products from multiview images 
without requiring additional data, gaining considerable attention in 3D scene reconstruction and 
rendering. Building on this, we propose a method for generating digital elevation models 
(DEMs) from satellite images, leveraging NeRF to create 3D scenes from a set of images 
captured at different times while addressing the challenges posed by lighting variations and 
transient objects. Our experiments demonstrate that our approach can generate high-quality 
DEMs and corresponding mesh models, outperforming both traditional and recent methods in 
qualitative and quantitative evaluations.

1.	 Introduction

	 Reconstructing 3D models from multiview images is an important research direction in 
computer vision and photogrammetry.(1–3) This technique involves densely matching 
correspondences from images taken from different viewpoints to generate 3D point clouds and 
reconstruct the 3D surface of the model. Compared with laser imaging detection and ranging 
(LiDAR) technology, multiview image-based 3D reconstruction offers significant advantages 
such as lower cost, faster update, higher resolution, and broader mapping coverage.(4) It is 
suitable for large-scale 3D reconstruction and virtual reality applications. Digital elevation 
models (DEMs), as a crucial component of products derived from images, are widely used in 
scientific research and engineering applications.(5–8) They are an important source of data for the 
study and analysis of terrain, watershed, and object identification. Since DEM data can reflect 
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local terrain features with a certain resolution, a large amount of surface morphological 
information can be extracted through DEMs. This information can be used to draw contour 
lines, slope maps, aspect maps, stereo perspective maps, and stereo landscape maps, and can be 
utilized to create orthophotos, stereo terrain models, and map revisions. However, existing DEM 
data often have lower resolution, making it difficult to accurately represent terrain features, 
particularly in high-precision areas. Low-altitude unmanned aerial vehicles (UAVs) provide an 
efficient and cost-effective remote sensing method, capable of quickly acquiring large-scale 
products for survey areas.(9) This technology provides real-time, accurate data for environmental 
safety and development applications, contributing to the green development of national 
economies. Despite the impressive performance of UAVs in high-precision 3D reconstruction, 
particularly in localized areas such as urban infrastructure and natural resource management, 
their application is still limited by factors such as airspace restrictions and high operational 
costs.
	 In contrast, satellite remote sensing can quickly and efficiently collect geographic spatial data 
across global scales, making it a vital tool for acquiring and understanding geospatial 
information. Compared with UAV images, satellite imagery can cover hundreds of kilometers of 
ground area in a single pass. With advancements in Earth observation technology, commercial 
satellites now achieve ground resolutions as high as 0.3 m, clearly displaying features such as 
buildings, bridges, and aircraft. Satellite imagery is increasingly becoming a crucial tool for 
Earth observation and offers new pathways for large-scale realistic 3D reconstruction. Its global 
coverage and long-term monitoring capabilities provide an economical and efficient solution for 
3D reconstruction over extensive areas. However, since satellite remote sensing images capture 
dynamic scenes, variations in lighting, shadows, surface features, and seasonal changes add 
complexity to model processing. Traditional structure from motion or multiview stereo matching 
methods for 3D reconstruction involve recovering sparse point clouds from multiple images, 
followed by point cloud registration, dense point cloud recovery, outlier processing, and final 
point cloud reconstruction. This process is lengthy, with each step potentially affected 
by errors.(10)

	 In recent years, neural rendering technologies have made significant advancements. These 
technologies use multilayer perceptron (MLP) parameterized continuous volume functions to 
encode 3D scenes, representing space as implicit radiance fields and performing volumetric 
rendering from multiview images to regress density and color. For neural radiance fields 
(NeRFs), it is assumed that the scene is static in terms of geometry, material, and camera angle, 
i.e., the density and radiation field of the scene are static. Therefore, NeRFs require that two 
photos taken at the same position and orientation must be exactly the same. Since it is almost 
impossible to have satellite images with the same shadows, there are some problems with the 
original NeRF in generating DEMs based on satellite images. Many variants have been proposed 
to address this problem. NeRF-W gains robustness to radiometric variation and transient objects 
by separating transient phenomena from the static scene.(11–14) An extra head of fully connected 
layers is used to predict a transient color cτ and volume density στ for each input point, in addition 
to the usual c and σ. The transients are linearly combined with the static ones to render the scene. 
Shadow-NeRF (S-NeRF)(15) is the first attempt to apply NeRF to multiview satellite 
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photogrammetry. It uses solar angles to learn the amount of light reaching each point in the 
scene, enabling a more reliable modeling of shadow areas than with the model alone. Sat-
NeRF(16) learns the transients (e.g., cars, etc.) present in each view with a similar approach to 
NeRF-W,(17) which introduces a coefficient. This coefficient predicts for each point whether that 
point corresponds to a transient object or not. These techniques have been successfully applied 
to satellite photogrammetry with impressive results, primarily focusing on novel view synthesis.
	 In this paper, we propose an enhanced method based on the Sat-NeRF model to generate 3D 
models from a set of multiview satellite images of a scene. The goal is to generate a DEM and 
the corresponding 3D mesh model of the surface. This enhanced method is expected to broaden 
the application scope of satellite remote sensing data in 3D reconstruction and provide a new 
approach to large-scale 3D reconstruction.

2.	 Methods

2.1	 NeRF 

	 When discussing 3D rendering technology, NeRF marks a significant leap. This innovative 
method leverages the mapping function 𝑓 that transforms the 3D spatial location 𝑥 and the 
viewing direction 𝑑 into the volume density 𝜎 and the color value 𝑐, respectively. MLPs face an 
inherent challenge in effectively mapping low-frequency signals, prompting NeRF to employ 
positional encoding. The method for MLPs can be formulated as

	 enc(x, L) =(sin(20πx), cos(20πx), ... , sin(2Lπx), cos(2Lπx)),	 (1)

where 𝑓 is a neural network comprising eight perceptron (MLP) layers parameterized by 𝜃, 
denoted as 𝑓𝜃: (enc(𝑥), enc(𝑑)) → (𝜎, 𝑐), where enc() represents a positional encoding. The 
expected pixel color ( )Ĉ r  is obtained by casting a ray 𝑟(𝑡)=𝑜+𝑡𝑑, where o is the origin of the 
ray, d is the direction of the ray, and t is the parameter along the ray. The ray is constrained by 
near and far bounds 𝑡𝑛 ​and 𝑡𝑓, which define the valid range of t values along the ray. We evenly 
partition [𝑡𝑛, 𝑡𝑓] into 𝑁 points (𝑡1, 𝑡2, …, 𝑡𝑁) along a ray 𝑟 and compute the expected pixel color 
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reconstruction loss can be formulated as

	 LNeRF = ||( ( )Ĉ r , C(r))||2,	 (2)

where ( )Ĉ r represents colors blended by 𝑁 samples and 𝐶(𝑟) represents the ground-truth pixel 
color. We utilize coarse-to-fine sampling as discussed for the original NeRF. Here, we omit the 
detailed rendering for simplification.
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2.2	 Sat-NeRF  

	 NeRF assumes that the scene is static in terms of geometry, material, and camera angle, i.e., 
the density and radiance field of the scene are static. Therefore, NeRF requires that two photos 
taken from the same position and orientation must be exactly the same. Since it is almost 
impossible to have satellite images with identical shadows, a more flexible model is needed. 
Unlike the original NeRF, Sat-NeRF revises the color dependence on viewing angles. By 
combining neural rendering with native satellite camera models, Sat-NeRF uses the shadow-
aware irradiance model proposed for S-NeRF to compute the color of each point on the ray. To 
account for transient phenomena in the input image, Sat-NeRF adopts a method similar to 
NeRF-W to learn a transient embedding vector specific to each image by learning an uncertainty 
image as a network output, based on a latent time vector, to constrain the loss to focus on areas 
without transient objects. 
	 The inputs are as follows: 𝑥 is a 3D vector representing the spatial coordinates of points 
located in the volume. 𝜔 indicates the viewer’s position with respect to the sun in the satellite 
metadata, represented as a 3D direction vector encoding the direction of solar rays. For each 
input image, ω is extracted from the azimuth and elevation (𝜃, 𝜙) that indicate the position of the 
sun in the satellite image metadata. 𝑡𝑗 is the 𝑁(𝑡)-dimensional embedding vector, learned as a 
function of the image index 𝑗. The objective of 𝑡𝑗 is to capture the transient elements in the 𝑗-th 
view that cannot be explained by the sun’s given position. We manually set 𝑁(𝑡) = 4, so that the 
volumetric function of Sat-NeRF can be expressed as 𝑓𝜃: (𝑥, 𝜔, 𝑡𝑗) → (𝜎, 𝑐𝑎, S, 𝑎, 𝛽), where the 
outputs are defined as follows:
𝜎: scalar encoding of the volume density at location 𝑥;
𝑐𝑎: albedo RGB color, which depends exclusively on the geometry, i.e., the spatial coordinates 𝑥;
S: shadow-aware shading scalar, learned as a function of 𝑥 and the solar ray direction vector 𝜔; 
𝑎: ambient RGB color, independent of scene geometry, which defines a global hue bias based on 

the sun’s position as given by 𝜔; 
𝛽: uncertainty coefficient related to the probability that the color of 𝑥 is explained by a transient 

object.
	 Thus, Sat-NeRF effectively handles appearance changes caused by shadows and transient 
objects, achieving high-quality 3D models and view synthesis.

2.3	 Loss function

	 The loss function of Sat-NeRF differs from that of the traditional NeRF and primarily 
consists of three components: uncertainty for transient objects, a solar correction term, and a 
depth supervision term.
	 The first component is uncertainty for transient objects. Transient objects refer to local 
features that vary between multiple images, such as vehicles. The position, number, and type of 
vehicles in the same area may change at different times of capture, leading to changes in image 
grayscale. These changes cannot be explained by the position of the sun or surface albedo, 
necessitating the introduction of an additional variable, 𝛽, representing the uncertainty of the 
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transient object. With the introduction of 𝛽, the loss function described in Eq. (2) becomes Eq. 
(3). In the equation 𝛽(r) = 𝛽(r)+ 𝛽(min), where 𝛽(min) is set to 0.05, µ  is set to 3. The logarithm 
in the formula is taken to prevent the algorithm from optimizing 𝛽 to infinity. As described in 
Eq. (4), the uncertainty of the transient object along a ray 𝑟 is calculated as the integral of the 
value at each point on the ray. During actual training, Eq. (2) is used to compute the loss in the 
first two rounds, and 𝛽 is introduced from the third round onwards. This approach is taken to 
prevent the algorithm from mistakenly identifying shadows as transient objects, which would 
hinder accurate learning.
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	 The second component is the solar correction term. For sunlight 𝜔 that is not represented in 
the training data, the algorithm may generate unrealistic shadow grayscale estimates. Therefore, 
in addition to the color loss described in Eqs. (2) and (3), the algorithm also incorporates a solar 
correction term, as shown in Eq. (5).
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	 The third component is the depth supervision term. This term involves identifying key points 
using the scale-invariant feature transform algorithm and optimizing the rational polynomial 
coeffcients parameters through bundle adjustment at these points to enhance the scene rendering 
performance of the algorithm. Additionally, these key points are utilized to assist in training 
neural networks by providing true depth information. Previous studies have demonstrated that 
incorporating some 3D points with known coordinates as depth ground truth data can improve 
NeRF’s performance. Consequently, in this paper, we introduce a depth supervision loss, as 
described in Eq. (6). In the equation, 𝑥(𝑟) represents a 3D point with known coordinates, 𝑑(𝑟) 
denotes the estimated depth value of a ray 𝑟, and 𝑤(𝑟) is the contribution weight of 𝑥(𝑟) to the 
depth supervision information, which is calculated on the basis of the reprojection error at point 
𝑥(𝑟) during the adjustment process.

	 DSL ( DSR ) = ( ) ( ) ( ) ( ) 2
2

( )
DSr R

r d r x r o rω
∈

− −∑ 	 (6)

	 Thus, the term of the Sat-NeRF loss function can be expressed as

	 𝐿=𝐿𝑅𝐺𝐵(𝑅)+𝜆𝑆𝐶𝐿𝑆𝐶(𝑅𝑆𝐶)+𝜆𝐷𝑆𝐿𝐷𝑆(𝑅𝐷𝑆),	



5482	 Sensors and Materials, Vol. 36, No. 12 (2024)

where 𝜆𝑆𝐶 and 𝜆𝐷𝑆 are weights assigned to each secondary term. In experiments, we chose 𝜆𝑆𝐶 = 
0.1/3 and 𝜆𝐷𝑆 =1000/3 to provide good results, ensuring that the secondary terms are sufficiently 
relevant but remain below the magnitude of 𝐿𝑅𝐺𝐵. For depth supervision, we used approximately 
2k–10k bundle adjustment points for each area of interest. 𝑅, 𝑅𝑆𝐶, and 𝑅𝐷𝑆 have the same batch 
size.

2.4	 Architecture 

	 Our model is based on the Sat-NeRF architecture. In Sat-NeRF, the primary block consists of 
fully connected layers, each with ℎ channels, dedicated to predicting the static properties of the 
scene: the volume density 𝜎 and the albedo color 𝑐𝑎. A secondary head, comprising fewer layers 
and half the number of channels per layer, estimates the shading scalar 𝑠 on the basis of the 
direction of solar rays, 𝜔, and the geometry-related features learned by the primary block. 
Additionally, two single-layer heads are employed to predict the uncertainty coefficient 𝛽 and 
the ambient color 𝑎, on the basis of the transient embedding vector 𝑡𝑗 and 𝜔, respectively. For our 
implementation, we set ℎ = 512.
	 After constructing the Sat-NeRF, we convert the ray data and depth information into 
geographic coordinates. These geographic coordinates are subsequently transformed into the  
Universal Transverse Mercator (UTM) coordinate system, specifically into the easting 
coordinate.
	 We then integrate the UTM coordinates with elevation data to generate a point cloud, with 
each point representing a location on the ground. To ensure the accuracy of the point cloud 
model, we filter out ground points by setting an appropriate elevation threshold; points with 
elevations below this threshold are classified as ground points. Subsequently, we read parameters 
from a file (such as offset, size, and resolution) to define the extent of the DEM. Finally, we 
apply interpolation and smoothing to the filtered point cloud model to produce the DEM and the 
mesh model with the specified resolution and size. See Fig. 1 for details.

3.	 Experimental Datasets and Analysis of Results

	 All experiments were conducted on an RTX A5000 GPU, with a batch size of 4096 rays to 
optimize GPU memory usage. The learning rate started at 0.001 and was adjusted dynamically 
during the training process on the basis of the model’s convergence behavior. The loss function 
is described in Sect. 2.3. In all experiments, a single NeRF model was used, trained with the 
Adam optimizer starting with a learning rate of 5 × 10−4, which is decreased at every epoch by a 
factor of 𝛾 = 0.9 according to a step scheduler. The batch size is 1024 rays, and each ray 𝑟 is 
discretized into 64 uniformly distributed 3D points. The loss function used is consistent with 
that implemented in the Sat-NeRF framework.

3.1	 Dataset preparation 

	 The experiments were conducted using the Data Fusion Contest (DFC2019) dataset, which 
includes features of Jacksonville (JAX) obtained from satellite images captured by WorldView-3, 
with a resolution of 0.3 m per pixel, over the course of a year.
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	 For the qualitative analysis, we compared our method with traditional photogrammetry and 
the latest research techniques, such as NeRF and S-NeRF. Traditional photogrammetry involves 
several steps to generate a 3D model or DEM. Initially, multiple images with a specific degree of 
overlap are imported and preprocessed. The software automatically extracts feature points from 
the images, estimates the camera poses by matching these points, and generates a sparse point 
cloud. By utilizing depth information from the multiview images, the software then creates a 
dense point cloud and reconstructs the surface to produce a 3D mesh model. Given that 
traditional photogrammetry is a well-established technique, we selected the mainstream 
commercial software Metashape (formerly known as PhotoScan) for comparison.(18)

	 For the quantitative analysis, we utilized LiDAR data with a ground sampling distance of 0.5 
m as the reference for the 3D reconstruction. To assess the accuracy of the generated DEM, we 
interpolated the digital surface model (DSM) to the DEM and evaluated the associated errors 
across various DEM generation methods. In all instances, we ensured that the input views and 
configurations were consistent across all methodologies to facilitate a fair comparison.

3.2	 DEM generation experiment 

	 Figure 2 illustrates the DEM results for the AOI area generated using our proposed method 
alongside comparative approaches. In these visualizations, darker colors represent higher 
elevations. We analyzed our algorithm across three key dimensions.
	 Overall, our method is better than NeRF-based, S-NeRF-based, and traditional 
photogrammetry approaches. The NeRF-based method exhibits the poorest performance, 
particularly struggling with DEM generation in JAX_004 and JAX_260. This problem is due to 
the satellite’s high altitude, which leads to blank areas in traditional sampling methods and 

Fig. 1.	 (Color online) The flowchart of our method is as follows. First, we construct the Sat-NeRF field on the basis 
of satellite imagery. Then, we convert the ray data and depth information coordinates into geographic coordinates. 
After setting an appropriate threshold, we generate a point cloud. Finally, we apply interpolation and smoothing to 
the filtered point cloud model to produce the DEM and the mesh model with the specified resolution and size.
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generates noise in other regions. Although traditional photogrammetry can preserve details, it 
tends to produce overly smooth transitions, resulting in detail loss in specific areas, such as 
JAX_214. The S-NeRF-based approach, although superior to NeRF, falls short of our method in 
terms of detail preservation. For instance, in JAX_068, traditional photogrammetry introduces 
holes near the white building area owing to its inability to handle weak textures. The NeRF-
based method also has artifacts caused by shadow misinterpretations, leading to incorrect 

Fig. 2.	 (Color online) Left to right: Ground truth RGB, NeRF DEM, S-NeRF DEM, photogrammetry DEM, and 
our method. Red areas represents the clear areas, and yellow areas are enlarged examples of the areas.



Sensors and Materials, Vol. 36, No. 12 (2024)	 5485

mappings. Although S-NeRF addresses shadow-related issues, it fails to account for moving 
objects, leading to erroneous mappings.
	 Moreover, in JAX_260, traditional photogrammetry struggles with sunlight reflections from 
water bodies, leading to significant mapping errors. Although S-NeRF addresses this issue, it 
also introduces discontinuities. In contrast, our algorithm effectively handles sunlight reflections 
from water bodies, producing better results with more details.
	 In summary, our method not only preserves good details but also delivers the best overall 
performance compared with the other algorithms. Figure 2 shows the DEM results of the AOI 
area obtained using the proposed and comparative methods. These results are analyzed from 
three perspectives, as follows. Overall, our method is better than the methods based on NeRF, 
S-NeRF, and traditional photogrammetry. The NeRF-based and traditional photogrammetry 
methods exhibit significant noise, likely due to insufficient geometric regularization. The 
S-NeRF-based method does not achieve the same level of detail as our method. As shown in 
JAX_068, near the white building area, NeRF and traditional photogrammetry methods show 
holes and artifacts in the details. This is because these two methods fail to adequately address 
shadows, leading to inaccurate mapping. Although S-NeRF can mitigate shadow effects, it 
introduces white noise in the details owing to its inability to account for the physics of motion 
over time. As shown in JAX_004 the section of Fig. 2, our algorithm can effectively eliminate 
the problem of moving objects, and particularly objects such as trees and other natural features, 
obtaining better results and smoother details. Furthermore, for the building details in JAX_214 
and JAX_260 our method shows better details and performs better overall. 
	 To further illustrate the advantages of our method in 3D modeling, Fig. 3 shows the mesh 
model reconstructed by our approach alongside those produced by other comparison methods. 
	 The figure also explains the DEM results from Fig. 3 for reference. For instance, in JAX_068, 
the mesh model generated by the traditional photogrammetry method exhibits holes near the 
white building area, a consequence of its inability to handle weak textures. The NeRF-based 
method introduces artifacts, whereas S-NeRF struggles with moving objects, resulting in 
incorrect mappings in roof details. Similar issues are observed in JAX_260, where the NeRF-
based method fails to accurately recognize the ground, and traditional photogrammetry cannot  
resolve sunlight reflections from water bodies, leading to mapping errors. Although S-NeRF 
mitigates the reflection problem, it introduces discontinuities. In summary, our method not only 
preserves better details but also delivers the best overall performance among the algorithms 
compared.

3.3	 Accuracy evaluation 

	 To evaluate the accuracy of the generated DEM, in this study, we interpolate the DSM to 
create the DEM and calculate the elevation error using various DEM generation methods. 
Standard quantitative evaluation metrics, including the mean absolute error (MAE), median 
absolute error (MED), and root mean squared error (RMSE), are employed to assess the accuracy 
of the different methods. The formulas for these metrics are as follows:
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Fig. 3.	 (Color online) Left to right: Ground truth RGB, NeRF, S-NeRF, photogrammetry, and our method for 
generating meshes. Black areas represent clear areas, and red areas are enlarged examples of the areas.
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where ,recon ih  and ,lidar ih  represent the elevation values of the i-th pixel in the reconstructed 
DEM and the reference DEM, respectively. n represents the number of all pixels in the DEM.
	 Table 1 presents the quantitative comparison results for the DFC2019 dataset, which provides 
only the DSM as ground truth. MAE and MED measure the absolute elevation error, offering a 
straightforward evaluation of overall and median error levels, respectively. On the other hand, 
RMSE emphasizes larger errors by squaring the differences, making it particularly effective for 
highlighting extreme errors and assessing the robustness of the methods. Our approach obtains 
good results compared with the other methods across every metric and scenario.

4.	 Conclusions

	 In this study, we implemented the NeRF model and developed a data processing method to 
generate DEMs with mesh structures from satellite images. We integrated a recent approach 
based on the Sat-NeRF model, which directly accounts for lighting conditions in conjunction 
with radiance modeling. Our approach constructs 3D scenes from a series of satellite images 
captured at different times, effectively addressing challenges such as lighting variations and 
transient objects. Compared with existing methods, our experiments demonstrate that our 
approach can produce high-quality DEMs and corresponding mesh models. Furthermore, it 
outperforms both traditional and more recent techniques in qualitative and quantitative 
evaluations. Our exploration was focused on the NeRF, S-NeRF, and Sat-NeRF implementations, 
which require a significant amount of training time. We will further study time acceleration in 
the future. 

Table 1
Quantitative results of the DFC2019 dataset. Arrows pointing upwards indicate higher precision for higher values, 
whereas arrows pointing downwards indicate higher precision for lower values (in meters).

NeRF S-NeRF Photogrammetry Ours

JAX_004
MAE↓ 3.327 1.830 1.531 1.288
MED↓ 2.800 1.230 0.932 0.8

  RMSE↓ 4.500 2.300 1.900 1.500

JAX_068
MAE↓ 3.644 1.496 1.301 1.249
MED↓ 2.794 0.860 0.794 0.66

  RMSE↓ 4.900 2.000 1.600 1.500

JAX_214
MAE↓ 3.687 2.691 2.402 2.009
MED↓ 2.590 2.041 1.732 1.030

  RMSE↓ 4.900 3.400 3.100 2.400

JAX_260
MAE↓ 3.257 3.245 2.051 1.864
MED↓ 2.942 2.590 1.760 1.530

  RMSE↓ 4.400 4.300 2.700 2.300
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