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 Neural radiance field (NeRF) has emerged as a cutting-edge approach in neural rendering for 
3D scene representation. Addressing the limitations of conventional NeRF in handling dynamic 
foregrounds and depth discrimination in complex power grid scenes, in this study, we introduce 
an enhanced NeRF algorithm leveraging the dense prediction transformer (DPT). Our method 
employs DPT to eliminate dynamic foreground elements across viewpoints and integrates a 
dual-sphere reparameterization with a differentiable sampling strategy within the NeRF model 
to apply blur constraints to distant scenes. This approach notably improves the reconstruction 
quality of power grid towers. Experiments show that our algorithm surpasses traditional NeRF 
variants in capturing details, rendering backgrounds, and overall visual quality, with improved 
performance in peak signal-to-noise ratio mean structural similarity index measure, and multi-
scale structural similarity index measure (MS-SSIM) metrics compared with state-of-the-art 
models.

1. Introduction

 Power grid towers are crucial structures in the electrical transmission network, and their 
precise 3D models are essential during the surveying phase. 3D reconstruction technology 
provides detailed spatial data and visualization, which is irreplaceable for planning transmission 
lines, assessing the interaction between towers and the environment, and optimizing the tower 
layout. Accurate 3D models allow engineers to foresee and resolve potential spatial conflicts, 
evaluate the feasibility of different tower designs, and make more rational path selections in 
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complex terrains. Additionally, 3D reconstruction helps reduce the time and cost of field surveys, 
enhancing the safety and efficiency of surveying work. As 3D reconstruction technology 
continues to evolve, its application in the surveying phase will become more widespread, 
providing strong technical support for innovation and development in the power industry.
 3D reconstruction is a technique that uses computer vision to extract features from images 
taken from multiple angles and reconstruct the 3D structure of objects. The main 3D 
reconstruction algorithms are divided into traditional geometric and deep learning-based 
methods. Traditional methods include active and passive geometric approaches. Active methods 
use sensors to emit signals and analyze the reflected signals to obtain 3D structural information. 
Passive methods rely on multi-view images and multi-view geometry principles to calculate 
disparities and reconstruct 3D shapes.(1) Others have used SLAM and GNSS information for 
localization and mapping in complex scenes, but these methods have limitations in 
generalization. For scenes with no texture, complexity, and lack of GNSS signals, some 
researchers(2–4) have designed collection devices to recover structures, but complex equipment 
system design has led to weaker generalization capabilities. Structured light scanning 
technology, such as Azure Kinect,(5) obtains the depth value of each pixel through a depth 
camera, is not limited by texture conditions, and further improves accuracy. However, as the 
distance increases, the accuracy decreases, making it difficult to meet the needs of large-scale 
scenes.(6) Others have enhanced reconstruction in textureless scenes with random light sources, 
but this method is limited in strong light environments.
 With the significant progress of deep learning algorithms in the field of computer vision, 
traditional geometric algorithms improved by deep learning have gradually emerged. In 2016, 
Revaud et al. first proposed an unsupervised learning framework.(7) Although unsupervised 
learning may not be efficient, scholars have significantly improved the accuracy of feature 
matching with end-to-end models such as SuperPoint,(8) SuperGlue,(9) and LoFTR,(10) especially 
in weak texture areas, surpassing traditional methods.
 Deep learning applications in the field of 3D reconstruction leverage its powerful data 
processing and complex pattern learning capabilities. Deep-learning-based methods are mainly 
divided into (1) depth-based methods such as DeepMVS(11) and MVSNet,(12) which use 
convolutional neural networks and stereo matching techniques to predict depth maps from multi-
view images; (2) voxel-based methods such as 3D ShapeNets(13) and VoxNet,(14) which 
reconstruct 3D voxel models from a single image through deep belief or 3D convolutional neural 
networks; (3) point-cloud-based methods such as PointSetGeneration(15) and FoldingNet,(16) 
which directly generate 3D point clouds from a single image, handling complex scenes and 
generating high-fidelity point clouds; (4) mesh-based methods such as Pixel2Mesh;(17) and (5) 
implicit-function-based methods such as DeepSDF,(18) which represent and reconstruct 3D 
shapes through graph convolutional networks and continuous signed distance functions, 
respectively. These methods demonstrate the advantages of deep learning in automatic feature 
extraction and improving generalization capabilities. The introduction of PIFuHD,(19) IM-
NET,(20) and occupancy networks(21) has further improved the accuracy and efficiency of deep 
learning in the field of 3D reconstruction.
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 NeRF, a differentiable rendering method based on neural implicit solid representation, has 
emerged as a novel approach for high-quality view synthesis. However, its application in 
complex outdoor environments, such as power grid scenes with dynamic foregrounds and 
distant, unbounded backgrounds, presents challenges. In this paper, we address these challenges 
by proposing an improved 3D reconstruction method for power grid towers based on the DPT 
network’s ability to identify dynamic foreground elements. The overall architecture of the model 
is shown in Fig. 1. Our contributions include the following: 
(1)  The algorithm introduces a DPT semantic segmentation and depth estimation network with a 

transformer structure, which eliminates dynamic foreground interference in images, ensuring 
the continuity and integrity of power facility reconstruction.

(2)  At the same time, the improved sampling strategy and dual-sphere reparameterization 
method optimize the ray tracing process, enhance the focus on the foreground of power 
facilities, and reasonably handle distant scene information, reducing the impact of blur on 
reconstruction quality.

(3)  Comparative experiments are conducted to compare the algorithm in this paper with 
traditional NeRF and NeRF-W algorithms in terms of detail capture ability, background 
rendering ability, and overall visual effect.

2. Related Work

2.1 Three-dimensional reconstruction of power grid towers

 The three-dimensional reconstruction of power grid towers is essential in electrical system 
infrastructure, traditionally achieved through stereo vision techniques such as SFM and MVS, 

Fig. 1. (Color online) Technical approach for model construction.
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which construct 3D models from 2D images by analyzing disparities. Despite their prevalence, 
these methods struggle with efficiency and accuracy in complex and large-scale scenarios.
 Advancements in technology have made LiDAR a preferred method for its precision and 
efficiency, especially in challenging environments. Integrating multisensor data, such as 
photogrammetry with LiDAR, has also improved reconstruction accuracy and robustness.
 Challenges persist, such as obstructions from birds, nests, pedestrians, and vehicles, which 
can degrade reconstruction quality. Additionally, unbounded backgrounds such as vegetation 
and buildings significantly impact the precision of tower reconstruction.
 In this study, we assessed the existing 3D reconstruction techniques and proposed innovative 
solutions to address these challenges, striving for a significant advancement in the field of power 
grid tower reconstruction.
 The 3D reconstruction of power grid towers is essential for electrical infrastructure, yet 
traditional methods such as SFM and MVS struggle with efficiency and accuracy in complex 
scenarios. While LiDAR offers precision, challenges remain with dynamic elements and 
unbounded backgrounds affecting reconstruction quality. In this study, we address these 
limitations by proposing solutions that enhance accuracy, handle dynamic obstructions, and 
improve large-scale reconstruction efficacy, aiming to advance the field and bolster the 
reliability of power grid infrastructure.

2.2	 Neural	radiance	fields

 NeRF technology, introduced in 2020, revolutionizes 3D scene representation and synthesis. 
It uses neural networks to model 3D space’s volume and creates realistic views from limited 2D 
images. NeRF operates on the premise of a 5D function correlating spatial positions and viewing 
directions to color and density outputs.
 NeRF represents a continuous 3D scene as a 5D vector-valued function, where each 5D 
coordinate input includes a position vector x = (x, y, z) in the target space and a viewing direction 
vector d = (θ, φ). By inputting the 5D coordinates of points along the viewing ray into a 
multilayer perceptron (MLP) network, NeRF approximates the continuous 5D scene and 
optimizes the weights Fθ: (x, d)	→	(c, σ) to map out the color vector c = (r, g, b) and volumetric 
density σ0 emitted by the target space point in the direction opposite to the viewing ray. 
Assuming a viewing ray r(t) = o + td with a near boundary tn and a far boundary tf, the formula 
for calculating the color value is 

 ( ) ( ) ( ) ( ), .
t

f tn

n

o sd dst

t
C r e o td c o td d dt
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σ

− +∫= ⋅ + ⋅ +∫  (1)

3. 3 D reconstruction algorithms for key power grid facilities
 
 In this paper, we propose a NeRF algorithm based on foreground exclusion for the 3D 
reconstruction of power grid towers. Initially, image data of the power grid towers are collected 
from multiple viewpoints and preprocessed to enhance image quality. Subsequently, the dense 
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prediction transformer (DPT) network is utilized for semantic segmentation and depth estimation 
to identify and remove dynamic foreground elements from the images. Then, a dual-sphere 
reparameterization method is applied to optimize the spatial representation of the scene, 
focusing on near-field details and appropriately blurring the distant background. Additionally, a 
differentiated sampling strategy is introduced to increase the sampling density in near-field 
areas and reduce the number of sampling points in distant areas, thereby improving the quality 
of reconstruction.

3.1 Dynamic foreground extraction based on DPT networks

 In the 3D reconstruction of power grid towers, images are gathered from multiple 
perspectives, which are then preprocessed to enhance processing accuracy. Employing a DPT 
network, we performed semantic segmentation to distinguish towers from dynamic foreground 
elements, while depth estimation provides additional scene information. This facilitates the 
removal of dynamic elements, ensuring the clarity and accuracy of the tower reconstruction.
 As shown in Fig. 2, the model assembles feature representations into an image-like form 
through a decoder and processes tokens at different resolutions. These feature representations 
are gradually fused, ultimately contributing to the generation of dense predictions. Notably, a 
simple three-stage reassembly operation is introduced, aimed at recovering an image-like 
representation from the arbitrary-layer output tokens produced by the transformer encoder.

 ( ) ( )( )ˆRe Re ReD
s sassemble t assemble Concatenate ad t=  

 (2)

Here, s represents the scale of the reconstructed representation compared with the input image 
and D is the dimension of the output features. 

Fig. 2. (Color online) DPT network model architecture diagram.
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 The process begins by mapping Np + 1 tokens to Np tokens, creating an image-like 
representation through spatial concatenation.

 1Re : p PN N Dad + ×→   (3)

 This operation primarily manages the readout tokens effectively. Although readout tokens do 
not have a clear purpose for dense prediction tasks, they may still aid in capturing and 
distributing global information. Thus, the model evaluates three different variants of this 
mapping.
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 The operation involves passing information from readout tokens to all other tokens by adding 
representations, and then connecting the readout to all other tokens. This is followed by 
projecting the tokens back to the original feature dimension D using a linear layer, and then 
applying a GELU nonlinearity to disseminate the information to other tokens. After the Read 
module, the resulting Np tokens are reshaped into an image-like representation based on their 
initial positions in the image. Formally, a spatial cascading operation is applied to obtain a 
feature map of size H × W with D channels.

  (5)

 Finally, this representation is passed to a spatial reception layer, which scales the 
representation to x times, ensuring that each pixel has H/S × W/S features. The final 
representation is half the resolution of the input image. It is then fed into a dual-output head 
network for semantic segmentation.
 First, the semantic segmentation module of the DPT network identifies dynamic foreground 
elements in the image, such as vehicles and birds. This module outputs a probability map C. To 
better distinguish between the foreground and the background, depth estimation is performed 
using the DPT network. Depth estimation involves predicting the distance of each pixel in the 
image relative to the camera.

 ( ) ( ) ( ) ( ), ,; , ;seg seg depth depthx y x yC f I D f Iθ θ= =  (6)
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Here, C(x, y) represents the probability that the pixel at location (x, y) belongs to the dynamic 
foreground and D(x, y) is the estimated depth of the pixel at (x, y) from the camera. fseg and fdepth 
are the semantic segmentation functions, I is the input image, and θseg and θdepth are the 
parameters of the semantic segmentation network.
 Ultimately, combining the results of semantic segmentation and depth estimation allows for 
the removal of the dynamic foreground. The specific steps are as follows:
(1)  Foreground Mask Generation
  A binary mask is generated from the probability map C by setting a threshold T, indicating 

whether each pixel belongs to the dynamic scene.
(2) Depth Weighting
  To more accurately remove the foreground, especially dynamic objects close to the camera, 

depth information is used to weight the mask. This ensures that closer dynamic objects are 
prioritized for removal.

 ( ) ( ) ( ),
, , max

weighted
max

D D x y
M x y M x y

D
−

= ⋅  (7)

 Here, Dmax represents the maximum depth value in the scene.
(3)  Image Reprojection
  Finally, the original image I is reprojected using the weighted mask Mweighted to generate an 

image Ifiltered that has the dynamic foreground removed.

 ( ) ( )( ), 1 ,filtered weightedI x y M x y I= − ⋅  (8)

 By employing the aforementioned methods, dynamic foregrounds can be effectively removed 
in the 3D reconstruction of power grid towers, resulting in the creation of high-quality 3D 
models.

3.2 Boundaryless far-view blur constraint

3.2.1 Dual-spherical parameterization

 In the 3D reconstruction of power grid towers, in addition to the interference from dynamic 
foregrounds, another critical challenge is addressing the blurriness of unbounded distant views. 
Traditional 3D reconstruction methods often result in blurred distant areas, leading to a loss of 
detail and reduced accuracy in the reconstruction.
 To tackle the issue of distant blur, in this paper, we introduce an enhanced NeRF algorithm 
specifically tailored for the reconstruction of critical facilities such as power grid towers. The 
approach primarily involves two innovations: (1) a dual-spherical reparameterization technique 
and (2) a differential sampling method.
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 The dual-spherical reparameterization technique focuses on confining the geometric 
structure of the scene within a manageable space, allowing for a more effective handling of both 
near and distant views. In the context of power grid scenarios, this helps to concentrate on the 
details of the towers while applying a blur to the distant views.
 First, two spherical surfaces are defined to constrain the reconstruction space: (1) the near 
plane: a sphere with radius r = 1, focused on capturing foreground elements such as power grid 
towers, and (2) the far plane: a sphere with radius R	≥	1,	used	to	handle	distant	view	information.	
Then, for each camera ray, on the basis of its relationship with the unit sphere, a 
reparameterization function called contract is applied. The role of this function is to map the ray 
onto the near or far spherical surface.

 ( )
if 

if 

, 1

,

r r
contract r R r

r r R
r

 ≤


= − ⋅ >


 (9)

Here, r represents the coordinate of the ray and ||r|| is its Euclidean norm.

3.2.2	 Differentiated	sampling

 By defining a dual-sphere parameterization method from the near plane to the far plane, each 
ray is parameterized accordingly. Subsequently, an multi-layer perceptron (MLP) is initialized, 
preparing it for learning the implicit representation of the scene. On the basis of the 
parameterized rays, a differentiable sampling strategy is implemented, achieving a sampling 
scheme where the foreground is densely sampled and the background is sparsely sampled.
 The differential sampling method in NeRF focuses sampling density based on proximity. It 
concentrates more samples in the foreground, such as power grid towers, and fewer in the 
background. This is achieved by parameterizing camera rays to vary sampling density from a 
near plane to a far plane, resulting in denser sampling near the subject and sparser sampling in 
the distance.

 ( ) ( )
( ) ( )

n

f n

g t g t
s

g t g t
−

=
−

 (10)

Here, t denotes the distance along the ray, with tn and tf representing the positions of the near and 
far planes, respectively. g(t) is a defined invertible monotonically increasing mapping function 
that maps t to a normalized ray distance s ∈ [0, 1].
 After parameterizing the ray, sampling points in the t space can be generated by uniformly 
sampling in the s space. This approach ensures a linear interval of sampling points in disparity, 
capturing more details in the foreground area, as shown in Fig 3.

 ( ) ( ) ( )( )1 1i i f i nt g s g t s g t−= ⋅ + − ⋅  (11)
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Here, si represents the uniformly sampled points in the s space, with i = 0, 1, ..., K. The 
corresponding sampling points ti in the t space can be calculated using the inverse mapping 
function g−1.
 Ultimately, the preprocessed images and differentiable sampling points are fed into the MLP, 
which is trained through supervised learning. The model’s predictions are optimized by 
minimizing the discrepancies between the model’s predictions and the actual observations using 
a loss function, thereby refining the MLP parameters. With the trained MLP model, volumetric 
rendering is performed for each ray to synthesize new views. Along the rays, the pixel colors are 
calculated by integrating based on the volumetric density and emitted luminance output by the 
MLP, reconstructing the geometric shape of the power grid tower.

4. Experimental Design

4.1	 Experimental	data	and	environmental	configuration

 The experiment uses the TTPLA and STN PLAD datasets, both rich in high-resolution 
images for power transmission tower and line detection. The TTPLA dataset has 1100 images at 
3840 × 2160 pixels with 8987 annotated towers and lines. The STN PLAD dataset adds 133 
images at 5472 × 3078 or 5472 × 3648 pixels, tagging 2409 objects across five categories. The 
TPLA and STN PLAD datasets differ in image dimensions and annotation categories, allowing 
for a thorough assessment of the algorithm’s adaptability and robustness in diverse scenarios. To 
maintain consistency and accuracy, all images underwent uniform preprocessing, including 
scaling, normalization, and enhancement, prior to model input. Network parameters were 
dynamically adjusted, with convolutional kernel sizes, strides, and paddings modified to suit 
images of varying resolutions.
 Hardware includes an Intel Core i7-11700K CPU with 8 cores, 16 threads, and two NVIDIA 
GeForce RTX 3090 GPUs (24GB GDDR6X each), along with 64 GB of DDR4 RAM. Software 
comprises Windows 10, PyTorch 1.8.1, TensorFlow 2.4.1, CUDA 11.2, and cuDNN 8.1.0.

Fig.	3.	 (Color	online)	Differential	sampling	method	illustration.
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4.2 Evaluation metrics

 The evaluation metrics for 3D reconstruction results based on NeRF mainly include three 
indices: PSNR, which is used to assess the quality of image reconstruction, with higher values 
indicating better reconstruction quality;  SSIM and MS-SSIM, which are used to evaluate the 
visual quality of images, with higher values indicating greater structural similarity; and learned 
perceptual image patch similarity (LPIPS), which is used to assess the visual realism of image 
reconstruction, with lower values indicating that the reconstructed image is more similar to the 
real image. Since SSIM and MS-SSIM yield similar evaluation results, we selected only MS-
SSIM as one of the evaluation metrics.

4.3 Experimental results and analysis

4.3.1 Dynamic foreground removal

 The experiments initially focused on verifying the dynamic foreground removal module. By 
employing a semantic segmentation network, potential dynamic foregrounds were identified and 
masked. These regions were excluded during model training to eliminate their effect and to 
synthesize the missing information from different viewpoints. The effectiveness of this approach 
was evaluated through a comparative analysis of the original and synthesized images, as 
depicted in Fig. 4.
 Figures 4(a) – 4(d) demonstrate that the new perspective images successfully removed 
pedestrians, as indicated by the red boxes, without compromising the depth structure. An 
ablation study was then conducted to qualitatively assess the module’s impact on 3D model 
reconstruction, with results shown in the accompanying Table 1.
 The ablation study shows that the dynamic foreground removal module enhances 
performance across all metrics. With the module enabled, the PSNR improved by 2.22 for set (a) 
and 2.83 for set (b). The MS-SSIM saw an increase of 0.087 for set (a) and 0.028 for set (b), 

Fig. 4. (Color online) Comparison of depth maps between original  and new synthetic perspective images.
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whereas the LPIPS decreased by 0.054 for set (a) and 0.107 for set (b). This indicates that the 
module effectively removes dynamic foreground elements, improving the accuracy of the 
reconstruction.

4.3.2 Boundaryless far-view blur constraint

 To validate the effectiveness of this module, we used an ablation study method to analyze the 
experimental results, as shown in Fig. 5 and Table 2.
 In Fig. 5, the results with and without the boundaryless far-view blur constraint are compared. 
The red frames indicate the unoptimized results, whereas the yellow frames show the optimized 
ones. In group (a), trees in the background are blurred without the constraint, but become clear 
with it. In group (b), building structures and text are distorted without the constraint but are 
clearly defined with it.
 The data in Table 2 demonstrate significant enhancements in all metrics with the module. 
Notably, in group (a), the PSNR improvement was substantial at 3.14, likely due to the abundance 
of background details. The module’s use of differential sampling and dual-spherical 
reparameterization enriches sampling around the target’s surface. In group (b), the module’s 
detail-capture capabilities are evident, yielding a PSNR of 28.26, an increase of 3.43. The MS-
SSIM and LPIPS values of 0.982 and 0.153, respectively, affirm the module’s effectiveness.

4.4 Comparison of experimental results and analysis

 To confirm the effectiveness of our algorithm, we compared it with the commonly used 
NeRF and NeRF-W. Figure 6 shows that NeRF struggles with background acquisition and detail 
extraction in complex scenes. NeRF-W, while an improvement, still exhibits issues with 
rendering distant backgrounds clearly. Our algorithm, however, captures more detailed 
reconstruction information and accurately predicts the depth of distant backgrounds, leading to 
clearer and more accurate background rendering.
 In Fig. 6 and Table 3, our algorithm’s results are compared with the results of NeRF and 
NeRF-W, showing our approach’s superior image quality metrics. Notably, in the scenario (b) 
experiment, our algorithm demonstrated the most prominent results, achieving PSNR, MS-
SSIM, and LPIPS values of 25.37, 0.642, and 0.299, respectively. Compared with the results of 
the NeRF algorithm, there were improvements of 10.68 in PSNR and 0.094 in MS-SSIM, 
whereas the LPIPS value decreased by 0.048. When compared with the results of the NeRF-W 

Table 1
Evaluation of dynamic foreground removal ablation study results.

Serial Number Dynamic Foreground 
Removal ↑PSNR ↑MS-SSIM ↓LPIPS

(a) × 15.63 0.542 0.529
√ 17.85 0.629 0.475

(b) × 14.96 0.764 0.361
√ 17.43 0.792 0.254
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Table 2
Blur constraint ablation study evaluation results.

Serial number Dynamic foreground 
removal ↑PSNR ↑MS-SSIM ↓LPIPS

(a) × 15.63 0.542 0.529
√ 17.85 0.629 0.475

(b) × 14.96 0.764 0.361
√ 17.43 0.792 0.254

Table 3
Overall algorithm comparison experimental evaluation results.
Scenes Evaluation metrics NeRF NeRF-W Ours

(a)
↑PSNR 20.51 23.68 27.34

↑MS-SSIM 0.692 0.605 0.582
↓LPIPS 0.535 0.674 0.512

(b)
↑PSNR 14.69 21.07 25.37

↑MS-SSIM 0.548 0.591 0.642
↓LPIPS 0.293 0.291 0.245

Fig. 5. (Color online) Boundaryless far-view blur constraint strategy ablation study results.

Fig. 6. (Color online) Algorithm comparison experimental results.
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algorithm, the PSNR and MS-SSIM values improved by 4.30 and 0.051, respectively, and the 
LPIPS value decreased by 0.046. These results indicate that our algorithm produces high-quality 
visual effects. The data suggest that our algorithm significantly outperforms both NeRF and 
NeRF-W, showing superior performance in 3D reconstruction tasks for complex outdoor scenes.

4.5 Crossover of experimental results and analysis

 In this experiment, we aimed to evaluate the impact of different datasets (TPLA and STN 
PLAD) on the accuracy of a NeRF-based algorithm for the 3D reconstruction of power grid 
towers with foreground exclusion and to verify the algorithm’s generalization capability. All 
images underwent a uniform preprocessing step before being input into the model, including 
scaling to a unified size, normalization, and enhancement, to ensure the consistency of the input 
data.
 From Table 4, it can be observed that when the TPLA dataset is used for training and the STN 
PLAD dataset for testing, the PSNR is 25.80, the MS-SSIM is 0.864, and the LPIPS is 0.256. 
This indicates that the model performs relatively well on the STN PLAD dataset, likely due to 
the similarity in image size and scene complexity between the TPLA and STN PLAD datasets, 
which enables the model to generalize effectively to new datasets.
 Conversely, when the model is trained on the STN PLAD dataset and tested on the TPLA 
dataset, the PSNR drops to 19.34, the MS-SSIM decreases to 0.783, and the LPIPS increases to 
0.307. This suggests that the larger image sizes and more complex scenes in the STN PLAD 
dataset pose challenges for the model when generalizing to the smaller and less complex scenes 
of the TPLA dataset.
 However, when the model is trained and tested on the same dataset, its performance 
improves. For instance, the model trained and tested with the STN PLAD dataset achieves a 
PSNR of 28.16, an MS-SSIM of 0.931, and an LPIPS of 0.239, demonstrating that the model 
performs optimally when dealing with test data similar to the training data.
 Furthermore, the model trained with the TPLA dataset and tested on the STN PLAD dataset 
shows a PSNR of 25.47, an MS-SSIM of 0.860, and an LPIPS of 0.284, indicating that the model 
can still maintain a certain level of performance when handling different datasets, although not 
as high as when trained and tested on the same dataset.
 The experimental results demonstrate that, despite differences in image size and annotation 
categories, our algorithm can still maintain high accuracy and robustness. This is attributed to a 
series of measures we have taken in the algorithm design, such as the uniform preprocessing and 
dynamic adjustment of network parameters.

Table 4
Crossover of experimental results.
Datasets Training set Test set PSNR↑ MS-SSIM↑ LPIPS↓

TPLA TPLA STN PLAD 25.80 0.864 0.256
STN PLAD TPLA 19.34 0.783 0.307

STN PLAD STN PLAD TPLA 28.16 0.931 0.239
TPLA STN PLAD 25.47 0.860 0.284
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5. Conclusions

 NeRF technology is instrumental in 3D reconstruction for power grid infrastructure, 
enhancing planning, maintenance, and disaster recovery. It also facilitates immersive training 
through virtual and augmented reality.
 In this research, we introduced an enhanced NeRF algorithm tailored for the complex outdoor 
reconstruction of power towers. By employing dynamic foreground removal and managing far-
view blur without boundaries, the algorithm achieves clearer and more accurate 3D models. It 
surpasses traditional NeRF and NeRF-W in capturing details and rendering backgrounds, 
proving effective in complex reconstruction tasks.
 Looking ahead, we aim to optimize the algorithm for faster processing and greater precision, 
especially in larger scenes. We will also test its adaptability across diverse power grid facilities 
and environments. Future efforts will include real-time reconstruction, multimodal data 
integration, and improving the machine learning models’ adaptability to further elevate the 
technology in 3D reconstruction for critical power grid infrastructure.
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