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 With the continuous improvement of living standards in modern society, the demand for 
refined 3D object representation models has grown considerably. Concurrently, the 
diversification of methods for acquiring 3D point clouds has significantly enhanced our ability 
to digitally express the surrounding environment. Consequently, the efficient and straightforward 
generation of high-precision 3D mesh models from point clouds has become particularly vital. 
As a typical production method for 3D mesh models, point cloud surface reconstruction 
technology has gained widespread application across various industries owing to its convenience 
and efficiency. Therefore, in this paper, we propose a distance-constrained scale-space surface 
reconstruction algorithm, which utilizes the neighborhood distances of point clouds to constrain 
the anomalous triangular mesh generated by the scale-space reconstruction algorithm, thereby 
enabling the more precise and efficient surface reconstruction of point clouds. Initially, the raw 
point set obtained from 3D laser scanning undergoes preprocessing, followed by point cloud 
reconstruction and mesh construction using the distance-constrained scale-space algorithm. 
Finally, the constructed mesh is back-projected onto the original point set, resulting in a more 
refined 3D model. Experiments conducted on the urban underground tunnel dataset successfully 
reconstructed the surface model of the tunnels, validating the effectiveness of the proposed 
method and enhancing the visual quality of the model.

1. Introduction

 With the advancement of 3D laser scanning technology, particularly with its rapid maturation 
and widespread application, 3D laser scanning has emerged as a crucial tool for urban 
underground measurement.(1,2) Owing to its noncontact, high-precision, and high-efficiency 
characteristics, 3D laser scanning enables the swift acquisition of vast amounts of point cloud 
data, facilitating the construction of 3D models of target objects and significantly enhancing the 
accuracy and efficiency of data collection.
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 Point cloud 3D reconstruction refers to the establishment of topological relationships between 
points based on the coordinate information of a 3D point set, resulting in the generation of a 
mesh model, which is then rendered.(3) Scholars both local and international have continuously 
innovated and improved reconstruction algorithms. Currently, 3D reconstruction algorithms can 
be broadly categorized into two types: explicit and implicit.
 Explicit surface reconstruction involves the reconstruction of objects with arbitrary geometric 
features. However, this process entails extensive calculations involving circumcircles, angles, 
edge lengths, and so forth. When dealing with large point clouds, the algorithm’s operational 
efficiency may be compromised, and it can also require substantial memory space. Yang et al. 

proposed a mesh reconstruction method based on adaptive grids, which necessitates the 
segmentation of point clouds into grid cells prior to reconstruction.(4) This method is well-suited 
for high-density point cloud reconstruction and demonstrates commendable robustness. The 
Delaunay triangulation technique is a method for constructing a triangulation from a given set of 
points, characterized by its ability to minimize the interior angles of the triangles, thereby 
avoiding the generation of excessively elongated triangles and optimizing the geometric quality 
of the mesh.(5)

 Regarding implicit surface reconstruction, Crivellaro et al. proposed a multi-level 
interpolation radial basis function reconstruction algorithm that enhances the accuracy of the 
reconstructed surfaces.(6) However, this improvement comes at the cost of increased 
computational complexity and longer runtime. Hamza et al. introduced an implicit curve and 
surface iterative algorithm, providing both optimal and practical acceleration factors, which 
effectively reduces computational costs.(7) Xu et al. improved the Poisson reconstruction 
algorithm, enabling it to address the challenges of 3D reconstruction from point clouds with 
missing data.(8) Implicit surface reconstruction methods exhibit a degree of insensitivity to 
noise, allowing them to function without being significantly affected by noise present in the 
point cloud, resulting in smoothly reconstructed surfaces. The efficiency of these algorithms is 
contingent upon the selection of implicit functions, and the quantity of point clouds can also 
affect the processing time. Additionally, because the reconstructed surfaces tend to be smooth, 
capturing the geometric features of the objects can be challenging, which presents an avenue for 
further research in this area.
 Scale-space point cloud surface reconstruction falls under the category of implicit 
reconstruction methods. Proposed by Digne et al. in 2011, this approach enhances the processing 
capabilities and reconstruction speed of point clouds through the introduction of scale space and 
a sphere-rotation-based algorithm.(9) In 2015, Digne further advanced this work by presenting a 
parallelized scale-space meshing algorithm aimed at reconstructing high-precision meshes from 
oriented input point sets.(10) However, both of these scale-space algorithms often lead to the 
generation of unnecessary anomalous triangular meshes during surface reconstruction. To 
address this issue, we present in this paper a distance-constrained scale-space surface 
reconstruction algorithm that preserves geometric features while constraining the formation of 
anomalous triangles. The effectiveness of this algorithm is validated using a point cloud 
modeling system on the latest data focused on urban underground spaces.
 This paper is organized as follows. In Sect. 2, we utilize a point cloud modeling system to 
preprocess the raw point cloud data and elaborate on the principles of scale space and its 
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implementation. In Sect. 3, we focus on the application of our proposed algorithm for 3D 
reconstruction, followed by an analysis of the experimental results, which are compared with 
those obtained from the original and the parallelized scale-space algorithms. Finally, in Sect. 4, 
we present the conclusions drawn from this study.

2. Methods and Techniques

 In Fig. 1, the constrained scale-space point cloud reconstruction method is demonstrated, 
which consists of three main steps: 
(1) Point Cloud Preprocessing: This step includes the segmentation, denoising, and simplification 

of the point cloud.
(2) Implementation of Distance-Constrained Scale-Space Surface Reconstruction: This involves 

iterative smoothing and the constraint of anomalous triangle generation.
(3) Reprojection: The generated triangular mesh is projected back onto the original point set.

2.1 Preprocessing

 Given the elongated and irregular contours of underground tunnels, as depicted in Fig. 2, 
along with the large volume and incompleteness of point cloud data, segmenting and recognizing 
shapes from the entire point cloud can be very time-consuming. Therefore, dividing the point 
cloud data of the tunnel into multiple blocks presents an effective approach. 

Fig. 1. (Color online) Workflow for distance-constrained scale-space point cloud reconstruction.
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 Point cloud denoising is a critical step in the preprocessing stage, as 3D laser scanning results 
may include outliers caused by environmental factors and instrument limitations.(11) These 
outliers not only degrade the overall quality of the point cloud but also distort the estimation of 
local features, leading to inaccurate computational results. In this study, a manual denoising 
technique is initially employed to remove the most prominent noise from the raw point cloud 
data. This process involves selecting and removing erroneous points using bounding boxes and 
polygonal selections. Manual denoising is chosen here for its precision in removing significant 
outliers in complex datasets. However, further automated denoising steps will be applied 
subsequently to refine the data and handle more subtle noise patterns, ensuring optimal data 
quality for downstream tasks.
 After completing the point cloud denoising, the substantial volume of point cloud data can 
make direct processing computationally intensive and slow. To address the challenges posed by 
large-scale point cloud data, in this study, we employed the resample method from the octree 
structure.(12) This method reduces the data volume by randomly selecting a subset of points from 
the point cloud. A sampling ratio of 50% is set on the basis of the desired point cloud density or 
level of downsampling. This approach not only decreases the overall data volume but also 
mitigates the effects of uneven point cloud distribution (or varying densities). The results of the 
preprocessing are illustrated in Fig. 3. Table 1 provides relevant information regarding the 
parameters for each module.

2.2 Distance-constrained scale space

2.2.1	 Definition	of	scale	space

 Consider a smooth surface S within a 3D Euclidean space, which is assumed to exhibit C2 
smoothness. At any given point x on the surface, a normal vector n(x) can be defined, which is 
perpendicular to the tangent plane. This normal vector can orient itself in either an inward or 
outward direction. In the case of continuous surfaces, the normal vector n(x) consistently points 
towards the concave side of the shape. At each point x, one may select a normal plane that 
encompasses both the normal vector and a chosen tangent direction (that is, a plane containing a 
vector from the tangent plane). The intersection of this normal plane with the surface generates a 

Fig. 2. (Color online) Top view of the raw point cloud data P.
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planar curve, and the curvature of this curve at point x represents the directional curvature of the 
surface in that specified tangent direction. The principal curvatures of the surface at point x, 
denoted as k0(x) and k1(x), are defined as the minimum and maximum of the directional 
curvatures, respectively. The mean curvature of the surface S at point x is given by 

 ( ) ( ) ( )( )1 0
1 .
2

H x k x k x= +  (1)

 The scale space of point sets is introduced in Refs. 13 and 14, which show the application of 
mean curvature motion (MCM) on the point sets. The expression for mean curvature is given by

 ( ) ( ).x H x n x
t
∂

=
∂

 (2)

 This corresponds to all points moving towards the concave side of the shape, with a velocity 
equal to the speed of the surface’s mean curvature.

Fig. 3. (Color online) Top view of the four blocks partitioned from cloud P: (a) HD0816_1, (b) HD0816_2, (c) 
HD0816_3, and (d) HD0816_4.

(a) (b)

(c) (d)

Table 1
Parameters of segmentations.
Parameters Size after preprocessing PointsFigure X/m Y/m Z/m
HD0816_1 7.85 39.88 3.83 10885622
HD0816_2 10.14 39.87 4.01 10884145
HD0816_3 10.25 39.90 3.97 10885259
HD0816_4 9.71 39.88 4.55 10886548
Total \ 43541574
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2.2.2 MCM implementation

 MCM can be approximated through an iterative process that projects each point in the dataset 
onto its local regression plane. By iteratively applying this projection process across multiple 
scale spaces, robust geometric information can be computed and traced back to the initial scale. 
For instance, the curvature of a point calculated at a certain scale can be associated with its 
position at the initial scale 0. The implementation steps of the MCM algorithm include the 
following.
 The algorithm requires the input of a point set P, a query point p, and a radius r, ultimately 
outputting the distance d and a point p', which is the result of applying one iteration of MCM to 
p. The steps are as follows:
Step 1: Retrieve the set of neighbor points Nr(p) within radius r from the point set P.
Step 2: If the number of neighbor points is less than 5, p is considered an outlier and is removed. 

If there are more than 5 points, calculate the distance d between each pair of neighboring 
points.

Step 3: Compute the centroid p and the average distance d :

 ( )
( )

( )
( )
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where w(e) is the weight function defined as a Gaussian weight, given by
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Calculate the covariance matrix C:

 ( )
( )

( ) ( )
r

T

e N p
C w e e p e p

∈

= − −∑ . (5)

Step 4: Compute the eigen-decomposition of the covariance matrix C to find the eigenvector v0 
corresponding to the smallest eigenvalue.

Step 5: Update the position of the point p':

 ( )0 0, ,p p p p v v′ ′= − −  (6)

where (p − p', v0) is the projection length of the point p onto the eigenvector v0.
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Step 6: Update the normal vector  at the new position p n′ ⋅ :

 ( )sign ,p pp n p p p n
p p

′−′ ′ ′⋅ = ⋅ − ⋅
− ′

. (7)

where ( )sign ,p p p n′− ⋅′  ensures the consistency of the normal vector direction.
 These steps guarantee the stability and accuracy of the projection process. Even when the 
direction of the normal vector differs slightly from the continuous case, the smooth handling of 
the normal vector enhances the performance of the algorithm.

2.2.3 Scale-space implementation

 The implementation is achieved by applying the mean curvature flow algorithm to the entire 
point set. In each iteration, a new point set is constructed, but it is unnecessary to retain the 
results of all iterations; only the original point set, the results of the last iteration, and the point 
set currently being constructed are stored. The point sets are organized within an octree, where 
each node contains three point sets: the original point set and two sets for storing intermediate 
results (Steps 1 and 2), which alternately hold the results of the previous and current scale-space 
iterations. The octree maintains an index of the current collection and is updated after each 
iteration. Spatial queries are performed by traversing the octree. The initial point set or the 
results of even-numbered iterations are stored in Step 1, while the results of odd-numbered 
iterations are stored in Step 2. Each point records its original source for back-projection 
purposes. To enhance efficiency, a depth-first traversal method is employed for the octree, 
allowing for the faster processing of leaf node points. The process of applying the scale-space 
iterative algorithm to the point set P is as follows:
 The algorithm requires the input of a point set P, the number of iterations (N), and a radius r, 
ultimately outputting the modified point set PN.
Step 1: Sort the point set P and store it in P0, simultaneously constructing an octree structure to 

facilitate rapid neighborhood queries in subsequent steps.
Step 2: For each point P in the point set P0, set its initial origin to itself p.origin = p.
Step 3: Initialize the index variable idx to 0, which will indicate the point set currently in use 

during the iteration process.
Step 4: Begin N iterations, with the primary objective of smoothing the point set in each 

iteration.
Step 5: Calculate a new index variable nidx to indicate the position of the point set where the 

results of the current iteration will be stored. The modulo operation is used to alternate the 
index between 0 and 1

Step 6: For each point p in the current point set Pidx, apply the MCM algorithm to compute the 
new point position p' and store it in Pnidx, while retaining the initial origin information of the 
new point.

Step 7: If the current iteration is not the first, delete the old point set Pidx to free up memory.
Step 8: Update the index variable idx to the new index variable nidx in preparation for the next 

iteration.
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 The final results must retain the initial point set, the outcomes of the scale-space iterations, 
and the correspondence between the point sets to facilitate the back-projection of the coarse-
scale mesh to the fine scale. Throughout the entire process, the number of points remains 
consistent, although a small number of points (<0.1%) may be lost. The results of the scale-space 
iterations represent a denoised point set that approximates a smooth surface, achieved through 
interpolation methods constrained by the average distance p  computed from the neighborhood, 
such as the ball rotation algorithm and the advancing front algorithm for mesh partitioning.(15)

2.3 Back-projection

 After data input and mesh partitioning, the final step involves back-projection. Since each 
point in the smoothed point set records its original position, the back-projection process simply 
transfers the connectivity of the smoothed mesh back to the original points. This back-projection 
can generate an interpolated mesh of the original point set, although it cannot guarantee that the 
final mesh is free from self-intersections. However, with reasonable choices of radius and 
iteration count, this phenomenon typically does not adversely affect the visualization. The back-
projection algorithm proceeds as follows:
 The algorithm requires the input of the mesh MN corresponding to the final smoothed point 
set PN and outputs the mesh MN on the initial point set P0.
Step 1: Traverse each triangle t in the final smoothed point set PN.
Step 2: Retrieve the three vertices of triangle t, denoted as v0, v1, and v2.
Step 3: Using the initial positions of the vertices v0, v1, and v2 (i.e., their origins v0.origin, 

v1.origin, and v2.origin), create a new triangle t'.
Step 4: Add the new triangle t' to the initial mesh M0.
 By mapping each vertex of the smoothed mesh’s triangles back to their original positions, the 
final interpolated mesh is generated.

3.	 Experiments	and	Analysis	of	Results	

 All experiments in this study were conducted on a computer equipped with a 3.60 GHz quad-
core Intel Core i7-4790 CPU and 16 GB of DDR3 RAM. The point cloud 3D reconstruction 
system, along with the algorithms presented in this paper, was developed using Microsoft Visual 
Studio 2019. This system facilitates the import and export of point cloud data, as well as 
preprocessing operations such as point cloud segmentation, denoising, and simplification. 
Additionally, the OpenGL graphics library was employed to render the models, enabling their 
visualization. The system allows for interactive operations such as zooming, rotating, and 
scaling the models, which aids in dynamically observing the effects of the reconstruction. In the 
following section, we introduce the data required for the experiments.

3.1 Data description

 The profile of the urban underground tunnel is an irregular polygon, with a length of 100 m, 
a maximum width of 10 m, and a height of 4 m. Pipes are stacked in layers along the walls, with 



Sensors and Materials, Vol. 36, No. 12 (2024) 5529

a maintenance route running through the center. The entire scanning task for the underground 
tunnel was conducted using nine scanning stations, resulting in a total of 1954204895 scanning 
points. The point cloud data used in this experiment consists of data from four scanning stations, 
totaling 87853148 scanning points, as shown in Fig. 4.

3.2	 Experimental	parameters	and	performance	evaluation	indexes

 In this study, we primarily compare the original scale-space algorithm with the parallelized 
scale-space algorithm. The parameters are configured on the basis of the authors’ 
recommendations, with the scale selection for all algorithms set to N = 4, which ensures 
consistency across different methods. The parameters of the proposed algorithm align with those 
of the parallelized scale-space algorithm, while the distance constraint and neighborhood radius 
r exhibit adaptability, indicating that these parameters are adjusted according to the number of 
point clouds sampled from different regions. In this study, the neighborhood radius is set as 
Nr(p) = 24, which is determined on the basis of the result of empirical analysis.
 The performance of the algorithms is evaluated using two key metrics:
(1) Root Mean Square Error (RMSE): This metric measures the average distance between the 
sample points and the reconstructed surface, providing insight into the overall accuracy of the 
reconstruction.
(2) Hausdorff Distance (HD): This metric quantifies the maximum deviation between the 
reconstructed surface and the true reference surface from the dataset, highlighting the worst-
case errors in the reconstruction process.

3.3	 Results	and	comparisons

 The algorithm presented in this paper was evaluated using a real urban underground tunnel 
dataset, comparing the accuracy of RMSE and HD as shown in Table 2. Each row of data under 
the two evaluation metrics was normalized by comparing it with the maximum value, with 

(a)

(b)

(c) (d)

Fig. 4. (Color online) Effect of each viewpoint of the underground tunnel data. (a) Top, (b) side, and (c) elevation 
views of the point cloud. (d) Internal.
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smaller values indicating greater accuracy. The best results are highlighted in bold in Table 2. 
From Table 2, it can be observed that the proposed algorithm demonstrates a degree of accuracy 
improvement across various segments of the urban underground tunnel dataset. Notably, the HD 
value achieved the optimal result in the HD0816_4 tunnel segment model, while the HD0816_1 
and HD0816_2 models also exhibited similar levels of accuracy. Owing to the presence of noise, 
data loss, and mismatches, the HD values of the original scale-space algorithm are relatively 
high, as demonstrated by the local model of HD0816_4 shown in Fig. 5. However, the RMSE 
values of the proposed algorithm are not particularly outstanding across all models. This is 
primarily because the distance-constrained scale-space algorithm is designed to address the 
issues of abnormal triangular meshes generated by the original scale-space algorithm (as 
illustrated in Fig. 6), which allows point clouds in certain areas to better conform to the 
generated surface model. Conversely, the accuracy optimization for other normal regions is 
relatively minor. From Table 2, it is evident that the original scale-space algorithm performs the 
worst in the HD0816_4 model, primarily owing to significant data loss (see Fig. 7), leading to 
the generation of numerous abnormal triangular meshes. In contrast, the proposed algorithm 
implements targeted constraints, regulating the generation of triangular meshes based on the 
average radius of neighborhood points, thereby minimizing the impact of edge noise and data 
loss, resulting in lower HD values. Ultimately, the underground tunnel model results are depicted 
in Fig. 8. Owing to small areas of point cloud data loss, the reconstructed model inevitably 
exhibits holes, which can be filled as needed in subsequent processes.

Table 2
Quantitative comparison results under different dataset models.

RMSE HD

Original scale Parallelization 
scale

Constraints 
scale Original scale Parallelization 

scale
Constraints 

scale
HD0816_1 0.920 1.000 0.925 1.000 0.745 0.701
HD0816_2 1.000 0.855 0.861 0.936 1.000 0.854
HD0816_3 1.000 0.892 0.859 1.000 0.782 0.815
HD0816_4 1.000 0.905 0.785 1.000 0.945 0.835

Fig. 5. (Color online) Comparison of the reconstruction results of our algorithm with those of the original 
algorithm on the HD0816_4 model. (a) Original scale-space algorithm and (b) our algorithm.

(a) (b)
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(a) (b)

(c)

Fig. 6. (Color online) Comparison of the reconstruction results of our algorithm with those of the two original 
algorithms on the HD0816_4 model. (a) Original scale-space algorithm, (b) parallelized scale-space algorithm, and 
(c) our algorithm.

Fig. 7. (Color online) Comparison of the reconstruction results of our algorithm with those of the original 
algorithm on the HD0816_4 model. (a) Original scale-space algorithm and (b) our algorithm.

(a) (b)

(a)

Fig. 8. (Color online) (a) Final model HD0816_4 and (b) local details of the model HD0816_4.
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4. Conclusions

 In the construction of smart cities, the development and utilization of urban underground 
spaces are gaining increasing attention. As a crucial component of these underground spaces, 
underground tunnels benefit significantly from the generation of more refined point cloud 
models, which enhance the efficiency and accuracy of smart city construction and management. 
In this paper, we proposed a distance-constrained scale-space surface reconstruction algorithm 
based on the scale-space surface reconstruction technique. The algorithm constrains the 
distances within point cloud neighborhoods across different regions, thereby reducing or 
eliminating the formation of anomalous triangular meshes within those areas. By making full 
use of the neighborhood information of the point cloud, experimental results in the urban 
underground tunnel dataset show that our proposed algorithm achieves more accurate 
reconstruction results in urban underground tunnels.
 However, in this study, we focused solely on the surface modeling of underground tunnels 
and do not delve into the internal components (such as pipelines) within the tunnels. In our 
future work, we aim to conduct in-depth modeling research on the internal components of the 
tunnels.
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