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 Accurate 3D models of underground cable wells play an important role in the operation and 
management of cities; however, the current modeling of industrial wells suffers from the 
problems of low modeling efficiency and incomplete 3D models. In this paper, we propose a 
method for modeling underground industrial wells based on the automated extraction of skeleton 
line and contour line features from 3D laser point cloud data. In the method, the external point 
cloud inside a well chamber is first separated and the skeleton points of a cable line are then 
extracted using the L1 median skeleton extraction algorithm with the maximum tangent sphere 
for the internal cable point cloud. For problems where the α value in the extraction of the profile 
line based on the conventional alpha shape algorithm is difficult to estimate, we propose a 
method that combines the Delaunay triangularization and the alpha shape algorithm for 
extracting the profile line features of the bottom surface of the well chamber. Boundary 
condition checking and curvature complexity analysis are proposed to adaptively obtain the α 
values of different shapes of industrial wells; finally, the cables and well chambers are modeled 
according to the acquired skeleton points and contour lines, respectively. In the experiments, the 
L1 median skeleton extraction algorithm is used to extract cable skeleton points for four types of 
cable with different levels of point cloud completeness, different levels of sparseness, different 
cable bending degrees, and the existence of missing point clouds, which are prominent in cable 
bending and turning areas. Boundary condition checking and curvature complexity analysis are 
carried out to calculate four typical cable wells, and the proposed α value is obtained to extract 
the bottom surface contour line features. The height parameter of the underground cable wells is 
combined with the acquired contour lines to reconstruct the underground cable wells in three 
dimensions. The underground cable well model is highly consistent with the real object in terms 
of geometry and dimensions and performs well in generating details of the cables. Underground 
cable well modeling is crucial to improving urban infrastructure management, ensuring safety, 
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optimizing maintenance, supporting emergency response, and improving decision-making 
efficiency, which helps achieve smart city development.

1. Introduction

 With the acceleration of urbanization, the data quality of underground pipe networks, which 
are the lifeline of cities, is critical to urban function and disaster prevention.(1,2) Urban pipeline 
networks’ deteriorating service quality necessitates the implementation of transformational 
strategies that will increase their operational effectiveness and quality. 3D laser scanning 
technology can quickly acquire 3D point clouds of underground cable tunnels, providing data 
support for establishing an accurate underground cable management information platform.(3,4) 
Efficient and accurate underground work well models can improve the visualization and 
efficiency of urban distribution network management and meet the needs of urban management 
and development. Underground cable well modeling is essential to ensuring the safety of urban 
infrastructure, improving cable maintenance efficiency, and optimizing urban planning and 
emergency response. It helps accurately locate cable routes, prevent construction damage, 
support asset management, and promote the development of smart cities.
 The majority of domestic pipeline network information systems currently exist as an 
integrated secondary development system that combines large-scale, basic geographic 
information system software and visualization development language from both home and 
international sources. An underground pipeline network crisscrosses, making it impossible for 
two-dimensional visualization to depict the spatial relationships among pipelines. It is unnatural 
to have a segment of a pipeline perpendicular to the ground represented merely by a point and 
related notes on the plan view when certain pipes are undulating up and down. Researchers have 
performed the 3D model reconstruction of subterranean pipes using virtual reality and 3D 
visualization technologies; however, the speed of manual modeling is low and large-scale 
subterranean pipeline facility model development is challenging.(5) Scholars have proposed a 
segmented incremental extrapolation model calculation approach; nonetheless, there is a need to 
improve the 3D display of a limited range of exceedingly complex pipelines,(6) Scholars have 
designed and implemented a true 3D well room–3D data model and an automatic modeling 
method, but they did not include the topological relationships among pipelines and their 
components;(7) Scholars have used constructive solid geometry (CSG) and close-range 
photogrammetry to rebuild 3D pipeline models; nevertheless, reconstructing subterranean pipes 
is challenging and does not entail managing pipelines across a broad variety of locations. The 
method does not include large-scale pipeline management.(8,9) Scholars have also employed an 
enhanced A* path-finding algorithm to identify optimal paths, which are then used as the 
skeleton of cables.(10) However, in a complex cable network, the algorithm may encounter a local 
optimal solution, leading to a loop, or become unable to converge to the global optimal solution.  
Scholars have proposed an L1-based approach that incorporates an improved adaptive k-means 
algorithm.(11) Clustering bootstrapping is not a viable approach to extracting the median 
skeleton. Similarly, while a median skeleton extraction algorithm exists, it is susceptible to 
forming a local skeleton closed loop when the interior of the local point cloud is missing. 
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Scholars have proposed a multilevel minimum bounding rectangle-based method to extract 
building contour lines, but this method is only suitable for extracting regular rectangular 
building contour lines and therefore not universally applicable.(12) Scholars have proposed a 
minimum spanning tree algorithm with the extended Kruskal algorithm to construct the 
minimum spanning graph; however, the classification of its boundary point relies on the 
accuracy of the boundary probability, which may be misclassified if the boundary probability is 
inaccurately estimated.(13) The process of deriving 3D alpha shapes from the underlying 
Delaunay triangulation is modified by adding additional constraints.(14) Scholars have used an 
improved 3D alpha shape algorithm to construct a data pyramid consisting of multiscale point 
layers and extracted ground points using top–down multiscale triangulated irregular network 
encryption.(15)

 In summary, the current modeling methods have certain limitations when targeting 
underground industrial wells, such as manual modeling, which ensures the modeling accuracy 
and completeness, but it is difficult to improve the modeling speed and reduces the modeling 
efficiency. Existing automated extraction methods cannot cope with the extraction of complex 
types of contour from the point cloud of industrial wells nor ensure the completeness of the 
extracted contours of wells with corners, tees, crosses, and other types of well. The technical 
route of this article is shown in Fig. 1. To balance the requirements of modeling speed and 
modeling completeness, in this paper, the adopted cable and well modeling method combines 
automated extraction and parametric modeling and the automated extraction of the cable 
skeleton line, the bottom surface contour line of the well with the height parameter, and the 
bottom surface contour line of the chamber of the well with the standard cable radius and the 
skeleton line of the cable modeling. The method proposed in this paper can quickly extract the 
required underground pipeline information from large-scale point cloud data, which provides 
strong data support for urban planning, infrastructure construction, and pipeline maintenance.

2. Data, Materials, and Methods

 The experimental data used in this paper are 3D laser underground cable well point cloud 
data acquired by a Faro S150 3D laser scanner. The specific scanner parameters are shown in 
Table 1.

Fig. 1. (Color online) Well modeling process.



5562 Sensors and Materials, Vol. 36, No. 12 (2024)

 Aiming at the underground cable wells with the characteristics of narrow space, low oxygen 
content, and complicated lines inside the wells, the advantages of using a 3D laser scanner are 
numerous. Firstly, the 3D laser scanner can conduct accurate measurements without directly 
contacting the surface of the object, which on the one hand helps protect the wells from damage, 
and on the other hand, ensures the safety of the operating personnel. Secondly, the 3D laser 
scanner can obtain 3D coordinate information quickly with high accuracy, and the minimum 
measurement accuracy can reach the millimeter order, which can capture the details of the 
object surface, measure the complex cable lines and pathways inside the cable wells, and collect 
the data of whole elements.
 In this paper, we focus on the following four types of cable well in terms of the shape of 
pathways for experiments: straight-through, corner, tee-type, and four-way cable wells. The 
point clouds of the four types of cable well are shown in Fig. 2.
 In modeling, although the geometries of the four different channel types of cable wells are 
different, they share some basic characteristics: the top and bottom surfaces are the same, and 
the sides are vertically stretched surfaces. From these common characteristics, we can obtain the 
contour lines of the point cloud of the bottom surface of the cable wells and the heights of the 
cable wells, and then construct the 3D models of the cable wells by stretching operations. 
 The two primary categories of noise sources for industrial wells are internal and external. 
The primary interior sources are as follows:(16) (1) noise points generated by internal moisture 
and water mist laser reflection; (2) noise points generated by laser reflection caused by internal 
dust particles; (3) scanner. When working, the noise points generated by jitter can be caused by 
humans or self-caused reasons. Radius outlier removal is carried out to filter the number of 
adjacent points in the point cloud space point radius range. According to the characteristics and 
existence form of noise points in the construction well, the radius R is set. If the set effective 
point does not have more than 2 adjacent points within the specified radius d, then points A and 
B are regarded as discrete points and will be used during denoising. The noise point form and 
denoising results for the work well after the elimination of the noise effect are shown in Fig. 3. 
The methods mainly focused on for streamlining and filtering point cloud data are the bounding 
box method,(17,18) geometric image streamlining method,(19,20) curvature streamlining method,(21) 
and normal precision streamlining method.(22,23) In this study, we use octree downsampling to 
divide the 3D space into eight subspaces.(24) The bounding box method removes the point cloud 
outside the box by constructing a bounding box. Its advantages are its simple operation and high 
calculation speed. Its disadvantages are that it cannot handle complex shapes and may lose 
important features. The geometric image simplification method simplifies points on the basis of 

Table 1
Scanner parameters.
Scanner parameter Value
Scanning distance Interior 10 m
Distance error ±2 mm
Horizontal angle 0–3600
Vertical angle −650–900
Resolution 28.9 MPTs
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the geometric features of the point cloud. Its advantage is that it maintains the shape well. Its 
disadvantages are its high calculation complexity and sensitivity to parameters. The curvature 
simplification method simplifies the point cloud on the basis of the local curvature of the point 
cloud. Its advantage is that it can retain the shape features. Its disadvantages are that it is 
sensitive to noise and involves a large amount of calculation. The normal accuracy simplification 
method simplifies the point cloud on the basis of the normal information of the point cloud. Its 
advantage is that it can effectively retain surface features. Its disadvantages are that the normal 
estimation is complex and sensitive to noise and occlusion. In point cloud downsampling, octrees 
can be used to quickly determine the point cloud density in each subspace and decide which 
points need to be retained and which points need to be deleted on the basis of the set sampling 
rate.

Fig. 2. (Color online) Experimental well data.

Fig. 3. (Color online) Noise point treatment for work wells.
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 To subsequently model cables and cable wells more intuitively and easily, the processed point 
cloud needs to be segmented internally and externally.
 Principal component analysis (PCA) transforms the data into a new coordinate system 
through an orthogonal transformation such that the first largest variance of any projection of the 
data is at the first coordinate and so on. This method is used to determine the main axis direction 
in point cloud data processing because it can effectively capture the main changing trends in the 
data. The reason for choosing PCA to determine the main axis direction of the point cloud is that 
it can significantly reduce the dimensionality of data while retaining the most important 
geometric features. PCA determines the principal axis by identifying the direction of maximum 
variance in the data, which makes it ideal for extracting key structural information in point cloud 
data. In addition, PCA has the advantages of high computational efficiency and easy 
implementation, making it the preferred method for point cloud feature extraction and shape 
analysis.
 The original point cloud was processed by PCA,(25) a commonly used data degradation and 
feature extraction technique that identifies the main directions of change in the data and projects 
the data in these directions to achieve data compression and simplification.(26)

 For the point cloud, suppose there are M sample points {X1, X2, ..., XM}. Each sample point 
has 3D features Xi = {{ }1 2 3 , ,i i i iX x x x= , { }1 2 3 , ,i i i iX x x x= , { }1 2 3 , ,i i i iX x x x= }，and each feature xj has its own eigenvalue.
 To eliminate the impact of translation on the data position, the data must first be centered, that 
is, the mean of the data is subtracted to ensure that the mean of the data is zero. The mean of the 
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 Then, the covariance matrix of the centered data is obtained by calculating Eq. (1). The 
covariance matrix is symmetric with each element representing the correlation between the 
corresponding dimensions. The diagonal elements are the variances in each dimension, and the 
off-diagonal elements represent the covariances between different dimensions.
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where the relationship between the eigenvalue λ of the covariance matrix C and its corresponding 
eigenvector u is shown as:

 .Cu uλ=  (2)

 The PCA method determines the direction of the major axis from the direction in which the 
dispersion of its data is greatest, and the measure of dispersion is reflected by its sample variance 
s, which is obtained by calculating Eq. (3).
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 This process can determine the sample variance along the x-, y-, and z-axes to obtain the axial 
direction of the point cloud in the three directions.
 The boundary information of each face of the model is obtained through the PCA method, 
the point cloud of each face is segmented, and the point cloud that does not belong to the face is 
eliminated by judging the normal. Taking the tee-type well as an example, Fig. 4 shows the 
segmentation effect of the internal and external point clouds of the tee-type well. The blue part 
of the point cloud is the external point cloud of the work well, and the rest of the colored part is 
the internal point cloud of the work well, and the colored part is divided according to the color 
intensity of the point cloud at the time of scanning.

3. Work Well Modeling Based on Automatic Extraction of Contour Features

3.1 Determine the main axis direction of the point cloud

 On the basis of the PCA method in Sect. 2, the point cloud of industrial wells that has been 
separated from the original point cloud is processed. The PCA method is conducted to obtain the 
boundary information of each face of the model, which is used to obtain the corresponding 
parameters of each face to split the point cloud of each face, and the sample variance of the point 
cloud along the x-, y-, and z-axes is determined to obtain the three axial directions.(27,28) The 
results of the PCA screening of the main axis direction are shown in Fig. 5.
 On the basis of the PCA-determined principal axis direction, a random sampling consistency 
algorithm was used to fit the planar model on the basis of the characteristics of the cable well 
point cloud,(29) and outlier points were removed by iteration, thus separating the bottom surface 

Fig. 4. (Color online) Segmentation of internal and external point clouds of tee shafts.
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and non-bottom surface points in the point cloud. The planar fit was optimized by centering the 
point cloud coordinates. Since the separated point cloud may have missing cases, fitting through 
the plane was conducted according to the fitting parameters in the overall point cloud to extract 
a certain distance threshold from the plane of the point cloud, and the threshold for a number of 
iterations of processing was gradually reduced to obtain the final point cloud data of each 
surface without missing cases. The steps are as follows:
(1)  Calculate the normal vector: search for the proximity of individual points in the point cloud, 

fit it and the neighboring points into a surface, and find the eigenvector corresponding to the 
smallest eigenvalue of the point in the surface according to the result of PCA in the previous 
step, and this eigenvector is the normal vector of the fitted surface.

(2)  Perform iterative model estimation using a random sampling consistency algorithm to 
estimate the data model parameters from the point cloud.

(3) Points identified as bottom surfaces are extracted and re-stored.
 The effect of segmenting the individual surfaces of the well chamber is shown in Fig. 6.

3.2 Work well contour line extraction

 When dealing with the contour lines of the projected surface of an industrial well, straight-
through wells are usually presented as regular straight-line geometries; however, corner, tee-
type, and four-way wells contain curved parts, which makes it difficult to accurately reflect the 
real geometrical characteristics of the wells with the traditional feature point extraction and 
fitting methods. In this paper, the alpha shape algorithm combined with the Delaunay triangular 
mesh is used to extract the contour lines of the bottom surface of the well. Owing to the effect of 
the point cloud of the wellhead and small components inside the bottom surface of the industrial 
well, it is necessary to first establish a Delaunay triangular mesh for the point cloud and then 
start to judge from the outer boundary of the triangular mesh.(30)

 The basic idea of the alpha shape algorithm is to roll a circle of radius alpha around a given 
set of discrete points, S. As shown in Fig. 7, when radius is taken appropriately, this circle does 
not roll into the interior of S. The points intersecting the circle are the edge contour points of S, 
and the traces of its rolling are the contour lines of S.(31)

Fig. 5. (Color online) PCA filter spindle direction.
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 Take any two points p1 and p2 within the point set S, set a discriminant radius α, and draw a 
circle with the radius α along the outer boundary of the triangular mesh. If there is no other data 
point inside any circle, points p1 and p2 are considered the contour points, and the center of the 
circle over the two points can be obtained as p3, and the formula for p3 is shown in Eqs. 8 and 9. 
The alpha shape algorithm overcomes the disadvantage of the effect of the shape of the boundary 
points of the point cloud and can extract the boundary points quickly and accurately. When the 
distance between two edges is within a certain threshold, and the angle between them is within a 
certain range, it can be considered that they belong to a straight line.
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Fig. 6. (Color online) Plane segmentation results for work well point cloud.

Fig. 7. (Color online) Alpha shape algorithm with maximum inscribed sphere.
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 The contour lines of the work wells obtained by combining the Delaunay triangular mesh and 
the alpha shape algorithm are shown in Fig. 8, with details of the Delaunay triangular mesh 
illustrated in Figs. 1 and 2.
 The alpha shape algorithm involves the determination of the α value, but the choice of the α 
value is difficult to estimate in practice. To reduce the inaccuracy of the contour line extraction 
results due to human error, this paper employs boundary condition checking and curvature 
complexity analysis to compute a proposed α value adaptively. Boundary condition checking 
finds a minimum α among a series of α values so that the generated contour lines have specific 
properties: (1) contain a specified number of connected components and (2) all data points are at 
the boundary or inside the shape.
 The steps to obtain the adaptive α value by applying boundary condition checking and 
curvature complexity analysis calculations are as follows.

Fig. 8. (Color online) Contour point cloud extraction results.
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(1)  Determine the upper limit αmax and lower limit αmin. Since the experimental datasets in this 
paper are all well-structured physical point cloud models, and considering the constraints of 
the skeleton extraction on the number of regions, here we set αmin = 0.001 and αmax = 1.0.

(2)  For each point, the bisection finding method is used to check whether it can be connected to 
other points through the triangles that satisfy the α-value condition to determine the 
connectivity component of the point cloud and to ensure that all the data points are at the 
boundary or inside of the shape. In this paper, we extracted the external contour line of the 
point cloud of the industrial wells; therefore, we set the connectivity component to 1 and 
obtained α1 between the upper limit of αmax and the lower limit of αmin.

(3)  In increments from α1 to αmax, calculate the curvature complexity under different values of α 
and plot the curve graph.

(4)  The curvature value corresponding to the inflection point on the way down the curve graph 
can indicate the current contour line curvature at the optimal curvature, whereas the value 
larger than this curvature corresponds to the contour line corner points and the wrongly 
extracted interior points.

(5)  According to the number of corner points and the degree of pathway curvature of the contour 
lines at the bottom of different workings, their corresponding curvature that should have the 
complexity of the α value is evaluated to get the adaptive optimal α value.

 As shown in Fig. 9, the curvature at the inflection point of the contour line point cloud with 
different values of α is 0.1, and it is proved by experiments that it is more appropriate to take 0.1 
as the threshold value for the curvature complexity calculation. Figure 10 shows the curvature 
comparison of different positions of the contour line point cloud. It can be seen that the curvature 
at the corners of the contour line is larger, and the curvatures of the straight and curved parts of 

Fig. 9. (Color online) Curvature of contour point cloud under different α values.
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the contour line are basically consistent, but the curvature distribution of the internal points is 
messy owing to the improperly selected α value. Therefore, the adaptive optimal α value can be 
obtained by limiting the complexity of the curvature.

4. Results

 Figure 11 shows the results of underground well chamber modeling. The contour extraction 
of each well chamber is highly consistent with the actual point cloud data, and the peripheral 
model of the well chamber also shows good modeling effect, which means that the model can 

Fig. 10. (Color online) Comparison of curvatures at different positions of contour point cloud.
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accurately reflect the actual situation of the underground well chamber in terms of not only the 
geometric shape but also the spatial position.
 The four types of work well data used in underground work well chambers have their own 
characteristics, so different alpha values   need to be set for different work wells. Taking the three-
way well as an example, as shown in Table 2, when the alpha value is 10, the contour line of the 
bottom point cloud will be incompletely extracted and the point cloud features cannot be 
displayed. When the alpha value is set to 0.01 and 0.001, the contour of the internal components 
such as the wellhead will be extracted. Therefore, when extracting the contour line of the work 
well, it is necessary to select a suitable alpha value to extract the appropriate contour line.
 The alpha value controls the geometric features of the generated shape and indicates the 
thickness of the generated shape. The larger the alpha value, the simpler the generated shape and 
the fewer the geometric features, whereas the smaller the alpha value, the more complex the 
generated shape and the more details can be captured. This paper uses different alpha values   for 
different well data according to the density and distribution of point cloud data. The specific 
settings are shown in Table 3.

Fig. 11. (Color online) Well modeling results.
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Table 3 
Work well contour extraction alpha value setting.

Type Straight-through cable 
well Corner cable well Tee-type cable well Four-way cable wells

Original data count 39736 53932 37945 75032
Contour count 395 844 612 620
Adaptive alpha value 0.116 0. 063 0.147 0.065
Contour extraction 
time 0.326499 0.46657 0.298375 0.663932

Table 2
(Color online) Contour results extracted with different alpha values.
Alpha value 10 0.1 0.01 0.001

Bottom contour     

Table 4
(Color online) Comparison of contour extraction methods.

Original data Mesh generation Normal 
estimation Alpha shape Methods

Straight-through 
cable well      

Time (s) - 0.160583 28. 161530 2.687087 0.326499
Point count 39736 10418 2078 804 395

Te e - t y p e cable 
well      

Time (s) - 0.136134 25.161718 2.384653 0.298375
Point count 37945 6312 2688 767 612

Fou r-way cable 
wells  

Time (s) - 0.150922 61.322852 4.871719 0.663932
Point count 75029 2059 3998 804 620

Te e - t y p e cable 
well      

Time (s) - 0.150684 43.367463 3.344963 0.46657
Point count 53932 4539 4330 654 844
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 The alpha shape algorithm combined with the Delaunay triangulation adopted in this paper is 
more suitable for the contour line features of the well chamber with interlaced straight lines and 
curves. Compared with other algorithms, it has a better contour line extraction effect, and the 
specific comparison is shown in Table 4. It can be seen that the contour line extracted by the 
mesh division method contains a large number of internal points, and the normal estimation 
method cannot distinguish between the internal boundary and the external contour line, and 
neither can be used as the contour line basis for well chamber modeling. The method proposed in 
this paper can extract contour line point clouds with complete shapes and no interference from 
small component contours, which is better than the extraction time of the traditional alpha shape 
algorithm method in terms of time.
 To verify the superiority of the method proposed in this paper over other methods, taking the 
four-way well point cloud as an example, 1179 bottom contour points were selected manually. 
Contour points were obtained by the proposed algorithm of the grid division method and the 
normal estimation method and the alpha shape algorithm method. If the selected contour points 
were within the manually selected points, then they were recorded as qualified points, and the 
satisfactory rates of the different methods were obtained and are shown in Table 5. Combined 
with the contour point extraction times of different methods in Table 4, it can be proved that the 
method proposed in this paper is superior to the other methods in terms of speed and quality.

5. Conclusion

 To overcome the inapplicability of existing skeleton line extraction methods to model 
industrial well cables and the inefficiency of manual industrial well modeling, in this study, we 
developed an automated underground pipeline modeling method, which is based on 3D laser 
point cloud data, and effectively improved the modeling efficiency and accuracy of industrial 
well cables. In this method, the internal and external point clouds of the industrial wells are first 
separated, and the point cloud data are then processed using principal component analysis and 
combined with the Delaunay triangulation and alpha shape algorithms to extract the contour 
lines of the work wells. The following results were from experimental tests:
(1)  For four types of typical cable well in the construction well chamber, in this paper, we used 

boundary condition checking and curvature complexity analysis to compute the proposed 
alpha value adaptively. Compared with the traditional alpha shape algorithm method, which 
requires changing the alpha value one by one to adapt to different data characteristics, the 
method proposed in this paper can automatically change the alpha value to calculate the 
contour lines and the curvature of the contour lines until the curvature meets the curvature 

Table 5 
Comparison of the satisfactory rates of different methods of contour line extraction in four-way wells.

Method Manual Point 
selection Mesh generation Normal 

estimation Alpha shape Methods

Point count 1179 2059 3998 804 620
Qualified points 15 728 491 459
Satisfactory rate 0.728509% 18.209105% 61.069652% 74.032258%
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characteristics of the contour lines of the different data, which enables the quick and accurate 
determination of a complete point cloud of the contour lines that retains the characteristics of 
the well chambers. 

(2)  However, the proposed algorithm also has some limitations, especially when dealing with the 
mutual occlusion of cable point clouds and the modeling of small components in well 
chambers. How to effectively separate the adherent cable point clouds and accurately extract 
the features of small components are difficult problems that need to be tackled in the 
subsequent research.
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