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 Tool wear substantially affects efficiency, accuracy, and cost in the manufacturing industry. 
The objective of this research was to propose an innovative method to detect tool wear offline on 
the basis of a deep learning classification model using audio signals. Tool wear experiments 
were conducted, and an International Organization for Standardization (ISO) standard was used 
to categorize tool wear into three levels. Using offline signals and three-level categorization can 
help non-professionals who operate cutting machines easily determine the tool’s condition. A 
mechanism was designed to collect the audio signals generated by a tool offline to avoid 
inconsistencies in manual operation. The collected signals were then converted into the 
frequency domain using the fast Fourier transform (FFT) to facilitate the observation of 
frequency variations of the signals, followed by the normalization and extraction of the 
frequency range. Data augmentation techniques were used to help generate more data to increase 
the robustness of the classification model, which was built on the basis of convolutional neural 
networks (CNNs). The results showed that the CNN model achieved an accuracy of 84.44% in 
classifying the wear of unseen tools, which outperformed the results obtained using the method 
in one of the previous research studies. In summary, we demonstrated that offline audio signals 
can be used for tool wear detection, providing a simple solution to detect tool wear without using 
the complicated online tool wear detection approach.

1. Introduction

 As the use time of a cutting tool increases, the tool gradually becomes worn and can cause 
machining problems, such as low accuracy and high cutting force. Therefore, the development of 
a tool wear detection method is imperative in the manufacturing industry. The International 
Organization for Standardization (ISO) has proposed criteria(1) for tool wear, which include 
situations such as tool flank wear, chipping, cracks, and catastrophic failure. In recent years, 
more and more non-professionals operating cutting machines have become common. For 
example, some dental clinics have multi-axis engraving machines specializing in the 
manufacture of dental crowns and bridges. However, technicians operating these machines 
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usually lack sufficient machining knowledge and do not know the tool wear conditions, leading 
to inappropriate sizes of dental products. As a result, it is necessary to have a method that will 
enable non-professionals to easily detect tool wear. 
 Many institutions and researchers have developed techniques to detect tool wear. Various 
methods have been proposed, such as image, force, vibration, and audio detection.(2,3) 
Furthermore, numerous studies have focused on the use of multiple sensors to improve the 
accuracy of the predictions.(4–6) However, the use of multiple sensors also increases the 
complexity of implementing such an approach on cutting machines. In contrast, audio-signal-
based tool wear detection has several advantages, including noncontact, nonintrusive, simple, 
and stable measurements. The audio signals can be collected online or offline. Online collection 
means that the audio signals are collected directly while the tool is cutting. Several studies using 
audio signals have been dedicated to online detection.(7–12) However, online audio signal 
detection is challenging because the audio signals would be significantly affected by noises from 
many sources during the machining process. Furthermore, installing audio sensors on a cutting 
machine for online detection may not appeal to some users. 
 To address this issue, we proposed an offline tool wear detection system based on audio 
signals. Offline means that the audio signals from a tool are generated and recorded in a 
controllable environment, which makes the approach simple and reliable.

2. Materials and Methods 

2.1 Overview

 The proposed offline tool wear detection method based on audio signals generated by a tool 
is shown in Fig. 1. Initially, we conducted tool wear experiments and used the ISO standard(1) to 
categorize tool wear. Owing to the challenges in manually collecting audio data, we developed 
an audio collection device. To analyze the frequency changes associated with various wear 
levels, we applied the fast Fourier transform (FFT) to the collected audio signals. Subsequently, 
the frequency domain signal was normalized to standardize the magnitude range, and the most 
distinctive frequency range was extracted as a feature for deep learning. To enhance the model’s 
robustness, the data augmentation technique was employed, efficiently generating a substantial 
amount of training data. On the basis of previous research(13–20) highlighting the success of 
convolutional neural network (CNN) models in audio classification, we also adopted the CNN 
approach for tool wear classification in this study.

Fig. 1. Overview of tool wear detection method proposed in this research.
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2.2 Tool wear experiment

 To obtain tools with various levels of wear, we designed an experiment specifically aimed at 
generating such tools. In this experiment, we utilized the tools (part no. ZB-05-V1) from ARUM 
(Germany). This tool is made of tungsten carbide and features a ball-end cutting tool with a 
diamond-coated surface. The radius at the end of the tool is 1 mm. The tool was installed in a 
five-axis machining center (model no. CT-350) made by Tongtai (Taiwan), and the workpiece 
was made of low-carbon steel.
 The machining plan of the workpiece to generate various levels of wear on the cutting tool is 
as follows. Each cutting path had a length of 50 mm and the spindle speed was set to 10000 rpm. 
To avoid any potential tool breakage caused by excessive cutting resistance, we limited the 
cutting depth to 0.3 mm and set the feed rate to 5 mm/min. Cutting fluid was used throughout 
the cutting process to reduce temperature and improve chip removal. The slot milling was 
adopted to generate uniform tool wear on both flanks of the tools. The machining path is 
illustrated in Fig. 2. The process started from the edge of the workpiece. As the cutting length 
reached 25 mm in the y-direction, a lateral movement of 1.2 mm was introduced in the 
x-direction. Finally, the cutting continued in the negative y-direction for another 25 mm, 
completing one machining pattern. We repeated the cutting of the workpiece using the same 
pattern at a nearby location until the desired level of tool wear was reached.
 After each machining pattern was completed, a 2D vision measuring machine was used to 
examine the tool flank wear. We noticed a correlation between the wear area on the tool flank 
and the cutting length. As the cutting length increased, the wear area of the tool gradually 
increased as well. We referred to the tool deterioration phenomena described in ISO 8688-
2:1989(1) and categorized the wear into three levels: “new” for tools without any cutting 
performed, “worn” for tools with uniform wear on the tool flank, and “failed” for tools with 
chipping. The definitions of tool wear levels are listed in Table 1. The “new” condition indicates 
that the tool is completely new and has not been cut. The “worn” and “failed” conditions 
represent the accumulated cutting lengths of 150 and 300 mm, respectively. We wanted to report 

Fig. 2. Cutting pattern used to generate the tool wear.
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the state of the tool as “new,” “worn” or “failed” so that non-professionals can easily understand 
whether the tool can still be used. If a cutting tool is in a “failed” state, it is at its end of life and 
cannot be used anymore. 

2.3 Audio data collection

 The audio signals of a tool were generated by holding the tool and using the tool end to 
scratch an aluminum plate, as illustrated in Fig. 3. A linear motion module consisting of a 
hydraulic rod was developed to consistently make the scratch with the tool. The completed audio 
data collection device with the linear motion module is shown in Fig. 4. Using the device can 
reduce the effects of manual operation, such as varying the scratching force, tool holding angle, 
and scratching speed, during the data collection.
 To use the device, we first fixed the tool on the cutting tool holder, pushed the tool holder to 
one side of the aluminum plate, and released the tool holder. Owing to the spring in the hydraulic 
rod, the tool holder slowly returned to its original location, causing the end of the tool to scratch 
on the aluminum plate. The audio signals were collected by the microphone next to the aluminum 
plate. The microphone that we used in this study was a condenser microphone (part no. AM310) 
made by AVerMedia (Taiwan). The settings for recording audio signals included a sampling rate 
of 48 kHz and a 16-bit sampling capacity.
 Figure 5 shows the time-domain plots of audio signals corresponding to different levels of 
tool wear. The total time length was about 1 s. To avoid misclassifying non-tool-generated audio 
signals as tool-generated signals, additional audio signals, including operation noises from the 
mechanism and background noises, were collected and classified as “env.” 
 We used three tools to collect their audio signals while at the “new,” “worn,” and “failed,” 
levels. Twenty audio data were collected for each tool at one wear level. Thus, 180 raw data were 
collected for the three tools at all three levels. Furthermore, 60 “env” audio data were also 
collected to allow us to have 240 audio signals in total.

2.4 Data preprocessing

 FFT was then employed to convert audio signals into frequency domain representations, 
allowing the observation of frequency distributions under different tool wear levels. The analysis 

Table 1
Definitions of various tool wear levels and their corresponding accumulated cutting lengths.

Tool-end image    

Accumulated cutting length 0 mm 150 mm 300 mm
ISO 8688-2: 1989 — tool flank wear chipping
Wear condition new worn failed
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revealed that environmental audio signals lack significant resonance peaks beyond 5000 Hz, 
while tool-generated signals exhibit distinct peaks after this frequency. This distinction enables 
straightforward differentiation between the two types of audio signal. To ensure comparability, a 
frequency normalization technique was applied, normalizing audio signals above 5000 Hz to the 

Fig. 3. (Color online) Audio signals generated by scratching an aluminum plate with the tool were collected using 
the microphone next to the aluminum plate. (a) Top and (b) front views.

Fig. 4. (Color online) Completed audio data collection device.

Fig. 5. (Color online) Time-domain plots of audio signals of tool wear level: (a) new, (b) worn, and (c) failed.

(a)

(b)

(a) (b) (c)
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range of zero and one. Figure 6 shows the frequency spectra of different tool wear levels after 
normalization, revealing three distinct frequency distribution patterns. For “new” tools, as the 
frequency increases, the magnitudes gradually decrease from low to high at a consistent rate. 
“Worn” tools exhibit larger magnitudes concentrated before 9265 Hz. In contrast, “failed” tools 
show a higher magnitude concentration before 7700 Hz. These characteristics provide valuable 
information for the successful classification of tool wear using audio signals.
 Data augmentation techniques were utilized to obtain more data to train the CNN model and 
enhance its robustness. These techniques include time shifting, amplification, and noise 
addition. Time shifting randomly displaces the raw audio signal from −0.2 to +0.2 s. 
Amplification means multiplying the amplitude of the raw audio signal by a random number 
between 0.8 and 1.2. For noise addition, random noises with a normal distribution in the range of 
0 to 0.0004 dB were added to the audio signals, considering the microphone’s average noise 
value of approximately 0.0008 dB. These techniques were applied to each wear level, generating 
65 additional data per level, leading to 260 additional data. The complete audio dataset consists 
of 500 audio data after the data augmentation process, as listed in Table 2.

2.5 Training the CNN model

 In this study, we utilized CNN for tool wear classification. The data of 500 audio signals were 
divided into training, validation, and testing sets in an approximate 6:1:3 ratio. The training data 
comprised 300 audio data for model training, whereas 52 data were used for validation. The 
remaining 148 data were used to test the performance of the model.

Fig. 6. (Color online) Frequency spectra of tool wear level: (a) new, (b) worn, (c) failed after normalization. 

Table 2
Total amount of data after data augmentation. 
Category No. of raw data No. of augmented data Summation
“new” 60 65 125
“worn” 60 65 125
“failed” 60 65 125
“env” 60 65 125
Total 240 260 500

(a) (b) (c)
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 The model took preprocessed audio signals as input. For feature extraction, two 1D 
convolutional layers with filter sizes of 16 and 32 were employed, activated by the ReLU 
activation function for nonlinear transformation. Each convolutional layer was followed by a 
max pooling layer to reduce the size of the feature data. A flattened layer was used to convert the 
feature data into a one-dimensional vector for the subsequent dense layer. A dropout layer was 
introduced after the dense layer to prevent overfitting. The output dense layer had the number of 
neurons corresponding to the classification levels.

3. Results and Discussion

3.1 Results of CNN model

 We explored the best frequency range of audio signals for tool wear classification using the 
CNN model. Multiple CNN models were constructed using different frequency ranges from the 
training data, and their accuracy was evaluated on the test data. The results indicated that the 
CNN model achieved the highest accuracy of 99.32%, calculated using the confusion matrix 
shown in Fig. 7, when the frequency was between 7000 and 15000 Hz. As shown in Fig. 7, the 
model effectively distinguished between environmental and tool-generated audio signals. 

3.2	 Effects	of	preprocessing

 We used various preprocessing techniques, including normalization and data augmentation. 
The effects of these preprocessing techniques on the CNN classification model were investigated 
here. As listed in Table 3, if we did not adopt the data augmentation technique, the accuracies 
were 88.89 and 90.28%. However, when data augmentation was adopted, the accuracies were 
improved to 97.97 and 99.32%. The normalization technique may increase or decrease the 

Fig. 7. (Color online) Confusion matrix for CNN model to classify the sample tools (accuracy = 99.32%).
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accuracy by approximately 1.4%, depending on whether the data augmentation technique was 
used. It can be realized that the data augmentation technique can help, but normalization may or 
may not help improve the accuracy of the CNN model in this research.

3.3 Out-of-sample test for CNN model 

 After obtaining the trained CNN model, we then applied it to evaluate the wear of nine tools 
whose audio signals were not collected previously. The nine unseen tools include three “new” 
tools, three “worn” tools, and three “failed” tools, as shown in Fig. 8. Ten audio data were 
collected for each tool, so 90 raw data were obtained in total. The confusion matrix for the CNN 
classification model is shown in Fig. 9. The model achieved an accuracy of 84.44% for 
classifying the tools. As shown in Fig. 9, the model performed well in distinguishing between 
the “new” and “worn” tools, but it misclassified two “worn” tools into “failed” tools. A 
significant error occurred when the model was used on the failed tools, where there was a 40% 
(12 out of 30) misclassification. 
 To understand the misclassifications made by the CNN model, we analyzed the corresponding 
frequency spectra. The frequency distributions of the audio signals generated by the “new” and 
“worn” unseen tools were similar to those obtained when using the samples for training. 
However, the frequency distribution of the “failed” tools differed significantly. Upon closer 
examination of the misclassified audio data, we found that among the three “failed” tools we 
used in the out-of-sample test, one exhibited chipping only, while the other two showed chipping 
and coating delamination. The audio signals from the tools with coating delamination had a 
distinct frequency distribution, combining the characteristics of the “worn” and “failed” tools. 
This may explain why the CNN model misclassified some audio signals from the “failed” tools 
as those from the “worn” tools.

3.4 Comparison with previous research

 In a previous study,(7) various feature extraction methods and classification models were 
tested to monitor the condition of face milling tools using audio signals. Their results showed 
that the highest accuracy was achieved by combining the discrete wavelet transform (DWT) 
with the support vector machine (SVM). On the basis of their approach, we applied the DWT to 
extract the first seven wavelet coefficients from audio signals and trained an SVM classification 
model. The SVM model achieved an accuracy of 80.40% in the test data and an accuracy of 

Table 3
Effects of preprocessing on the accuracies of the CNN model: “Y” means that the technique was used and “N” 
means that the technique was not used.

Normalization Data augmentation Accuracy (%)
N N 90.28
Y N 88.89
N Y 97.97
Y Y 99.32
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51.11% in the out-of-sample data. The results obtained using the proposed method and those 
obtained using the method of the previous research are compared in Table 4. These results 
demonstrate that our proposed method for tool wear classification outperforms the method in the 
previous approach.

Fig. 8. The tool-end images were captured using the 2D vision measuring machine. (a) to (c), (d) to (f), and (g) to 
(i) are “new”, “worn”, and “failed” tools, respectively.

Fig. 9. (Color online) Confusion matrix of CNN model in classifying unseen tools (accuracy = 84.44%).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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4. Conclusions

 An offline tool wear detection method based on audio signals was proposed in this paper. 
The preprocessed audio signals were used to train a CNN model. The results showed that the 
CNN model achieved an accuracy of 84.44% for the audio data in the out-of-sample test. 
Furthermore, we compared our method with an approach using the DWT and SVM, which 
achieved an accuracy of 51.11% using the same out-of-sample datasets. The method does not 
need to install sensors and collect data on the cutting machines, making it simple, especially for 
non-professionals seeking an easy-to-use solution to determine the tool wear approximately.
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