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 In this study, we present a practical bed-exit monitoring system designed specifically for 
healthcare settings, distinguished by its focus on privacy, accuracy, cost, and ease of use. The 
NVIDIA Jetson Xavier, a compact System-on-Module, powered the system, using a camera 
serial interface for video data acquisition. Specifically, the presented system aims to recognize 
the bed-exit behavior from a series of images with narrow fields of view for privacy preservation. 
Our approach encompasses a three-stage process for detecting, tracking, and classifying human 
body trunk movements relative to a bed. First, the You Only Look Once (YOLO) algorithm 
detects the human body trunk within the scene. Following detection, the Simple Online and 
Real-time Tracking (SORT) algorithm tracks the detected body trunk objects across frames. 
Finally, deep learning techniques such as long short-term memory (LSTM) or gated recurrent 
unit (GRU) networks classify the tracked objects’ actions into three categories: getting off the 
bed, being on the bed, and returning to the bed. Our experimental findings demonstrate that this 
system achieves a high accuracy rate of 97.97% and operates at a processing speed of 7.1 frames 
per second. This methodology offers precise bed-exit monitoring and represents a significant 
step forward in improving patient safety and the efficiency of care in healthcare environments, 
underscoring its importance in minimizing fall hazards and enhancing patient care quality.

1. Introduction

 According to statistics from the World Health Organization on individuals over 65, about 30 
to 50% of patients/residents in care facilities experience falls annually, with 40% of those who 
fall experiencing recurrent falls.(1) The widespread concern over falls stems from their potential 
to cause significant subsequent injuries, including head injuries or even death.(2) Data from the 
Centers for Disease Control and Prevention in 2015 indicate that the medical costs incurred from 
falls among Americans aged 65 and older amount to approximately $50 billion annually, with 
the costs related to severe injuries being $754 million.(3,4) In addition to medical expenses, other 
incalculable social costs include long-term care expenses due to fall-induced disabilities, work, 
time losses, and decreases in quality of life.
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 For patients at high risk of falling, detecting bed-exit behaviors is considered the first defense 
against falls. Bed-exit behavior recognition is a branch of Human Activity Recognition. With 
advancements in sensing technology, the market has seen a diversification in bed-exit detection 
products. These technologies can be broadly categorized into image-based and non-image-based 
types. Non-image-based sensing sources can be divided into stationary and wearable types, 
including IR rays that detect distance and obstruction,(5–7) pressure sensors that detect weight 
and pressure,(8) and piezoelectric devices that sense object deformation.(9) Wearable sensors 
typically include accelerometers and gyroscopes that detect the wearer’s motion.(10,11)

 Image-based sensing sources include two-dimensional RGB color images,(12,13) thermal 
images,(14–16) and three-dimensional light detection and ranging.(17) The process generally 
involves capturing human images with recording devices, identifying human features (body, 
head, and limbs) from these images to obtain movement information, and feeding this 
information into a deep learning network for training, testing, and validation to classify bed-exit 
behaviors. Popular deep learning networks include convolutional neural networks (CNN)(18) and 
long short-term memory (LSTM).(19) Researchers such as Chen et al. have used deep imaging to 
create datasets with images sized 32 × 24 (width × length), categorizing behaviors into lying in 
bed, getting up from bed, and rolling out of bed; these behaviors are processed through two 
layers of CNN networks followed by a max-pooling layer, and finally classified by a fully 
connected layer.(12) Inoue et al. used a color camera to capture human figures and then employed 
the pose estimation technique OpenPose to calculate and generate skeleton information 
describing human postures.(13) On the basis of the relative positions of the skeleton nodes and the 
bed, we established a bed-exit behavior recognition system centered on LSTM. The LSTM 
network output consists of two categories: bed-exit and other behaviors. Of 3084 data entries and 
videos, 308 (approximately 10% of the dataset) were used as validation data. This method 
achieved a high classification rate of 99.2%. Chiu et al. opted for thermal imaging technology, 
which is less invasive to privacy, capturing ten frames per second of 1 × 64 temperature data, 
and classified behaviors using CNN into three categories: bed-exit, lying in bed sleeping, and 
other in-bed behaviors, achieving an average discrimination accuracy of 92.77% across 360 
video datasets, with bed-exit behaviors accurately identified 99.23% of the time.(14)

 In general, image-based technologies offer better accuracy and convenience but lower 
privacy and higher costs. In contrast, non-image-based technologies have the advantage of lower 
privacy concerns and costs. Still, they may suffer from higher false positive rates owing to 
interference from various activities of caregivers and patients. In this study, we focus on using 
image-based sensing for bed-exit detection, employing narrow-field-of-view (NFV) images to 
cover only a specific part of a broad space (e.g., the bed) to minimize the capture of spatial 
information of the patient and avoid privacy issues involving other individuals. Utilizing NFV 
images as the sensing source, we developed a portable, embedded system for bed-exit behavior 
detection, comprising four stages: object detection, object tracking, data segmentation, and 
behavior recognition. The first two stages are aimed at detecting the presence of a human body 
and capturing its movement coordinates within the detection space. In the object detection stage, 
the body’s torso is identified to exclude caregiver limb movements in NFV images. Subsequently, 
the spatial coordinate changes generated by human movement are used for behavior recognition 



Sensors and Materials, Vol. 37, No. 1 (2025) 119

through deep learning networks. Since the spatial coordinates observed over time show 
continuous changes corresponding to human behaviors or actions, these changes are treated as 
time-series data. In the data segmentation stage, we employed a sliding window technique to 
segment the time-series data into segments containing historical and recent data. In the behavior 
recognition stage, the deep learning network calculates the behavior category using the input 
data segments, referring to previously trained parameters. To achieve better performance, we 
explored the effects of window size and step size in the sliding window technique. We compared 
the behavior recognition performance of several classic deep learning networks, including CNN, 
LSTM, gate recurrent unit (GRU),(20) and their fusion versions. The training process of the deep 
learning networks utilized the Taguchi method to identify the optimal performance 
parameters.(21,22) Experimental results showed the following: (1) LSTM achieved the highest 
behavior recognition accuracy of 97.97% with an overall system running speed of 7.1 frames per 
second, (2) time-domain networks such as LSTM and GRU showed slightly higher accuracy 
than did spatial-domain CNN, and (3) fusion of CNN with time-domain networks yielded 
slightly higher accuracy and speed than CNN alone but slightly lower than that of time-domain 
networks.
 The structure of this paper is as follows. In Sect. 2, we describe the system architecture of the 
bed-exit behavior recognition system and the technical details of the four stages. In Sect. 3, we 
present the experimental design and performance comparison. Finally, we conclude and discuss 
future work in Sect. 4.

2. Materials and Methods

 In this section, we outline the methods and technologies used to develop and evaluate our 
bed-exit behavior monitoring system. We aim to achieve accurate and real-time monitoring of 
bedridden individuals by integrating advanced object detection and tracking algorithms. Our 
approach leverages lightweight models and efficient tracking techniques to ensure that the 
system is effective and suitable for deployment in real-world healthcare environments. Below, 
we detail the specific methodologies and tools employed in our study.

2.1 System overview

 Figure 1 illustrates scenarios of tracking objects using different fields of view. Compared 
with a wide field of view (WFV) covering a larger area, NFV only includes a specific location, 
such as a bed. Generally, the smaller coverage area of NFV limits the number of detectable 
objects and recognizable behaviors, making NFV more suitable for monitoring simple behaviors 
within a specific location. On the other hand, NFV reduces the tracking of nontarget objects, 
thereby maintaining higher privacy. To align with real-world caregiving environments, we 
utilized RGB cameras with infrared night vision capabilities deployed at the head or foot of the 
bed, capturing NFV images during both day and night to monitor bed-exit behaviors. As shown 
in Fig. 1, installing the camera at the head of the bed is referred to as front-end deployment, 
while installation at the foot of the bed is referred to as rear-end deployment. Front-end 
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deployment primarily captures the back and side of the bedridden person but is more likely to 
capture the faces of other individuals. Rear-end deployment captures more of the bedridden 
person’s front and less of others. Figure 2 shows NFV images captured during the day and night 
using rear-end deployment. Owing to the close distance and narrow field, NFV images generally 
capture the torso and head of the bedridden person, with other individuals being only partially 
visible, such as hands or incomplete heads and bodies.
 Figure 3 shows the bed-exit behavior recognition system developed in this study using NFV 
images. This system consists of four main modules: object detection, object tracking, data 
segmentation, and behavior recognition. The object detection module aims to detect human 
bodies, providing spatial information of detected bodies in the image {object length, object 
width, center X coordinate, center Y coordinate} = {L, W, X, Y}. The object tracking module 
distinguishes the bedridden person from others in the image. Additionally, owing to the limited 
field of view, movements in NFV images exhibit significant coordinate fluctuations. The object 
tracking module provides smoother object movement trajectories: {object ID, center X 
coordinate, center Y coordinate} = {ID, X, Y}. Each frame’s spatial information is linked in the 
data segmentation module and segmented into discrete time-series data. A segment of time-
series data is referred to as a window. The behavior recognition module uses deep learning 
networks to quickly expand behavior recognition types to classify bed-exit behaviors based on 
these data windows. The data segmentation and behavior recognition modules require 
appropriate parameter selection to optimize the system’s performance. Given the numerous 
hyperparameters in deep learning networks, the behavior recognition module uses the Taguchi 
method for optimal parameter selection.
 In the Taguchi method, less quality loss indicates higher quality. Let 𝑛 represent the total 
number of products being evaluated, yi the characteristic of the output product, and 𝑚 the target 
value for the quality. MSD refers to the mean squared deviation of the product sample, defined as
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Fig. 1. Object tracking range in the ward/room. Cam stands for the camera.
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The total quality loss function can be categorized into three types: larger-the-better (LTB), 
smaller-the-better (STB), and nominal-the-best (NTB). In this study, the LTB criterion is used as 
the reference for selecting the optimal parameters. In this case, the value of 𝑚 in Eq. (1) is set to 
0:
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The Taguchi method uses the signal-to-noise ratio (SNR) to compare the effects of different 
control factors and noise factors on the final result within the same experiment. The SNR for the 
LTB criterion is expressed as
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Fig. 2. (Color online) NFV images captured from the rear-end camera: (a) day and (b) night.

Fig. 3. Bed-exit behavior recognition system architecture.

(a) (b)
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where η refers to the calculation group for each factor level in the orthogonal array. For example, 
if a control factor has two levels, it is necessary to calculate the SNR for level 1, denoted as η1, 
and for level 2, denoted as η2. A larger SNR indicates a smaller quality loss for that level, making 
it the more ideal level.

2.2 Object detection

 Traditional object detection methods can be categorized into two types: two-stage and one-
stage. In two-stage methods, common approaches include fast R-CNN(23) and faster R-CNN.(24) 
Although two-stage methods can enhance accuracy, the more regions generated by the feature 
pyramid networks (FPNs), the greater the processing load for regions of interest, leading to 
slower detection speeds. One-stage methods achieve object detection by directly predicting 
object classes and bounding boxes using FPN to address this efficiency issue. Among one-stage 
methods, the single shot multibox detector(25) and the You Only Look Once (YOLO) series(26) 
are notable examples. One-stage methods offer the advantage of fast operation, making them 
suitable for real-time object detection. These methods provide quick and accurate object 
detection, meeting real-time requirements, although they may not perform as well in multi-
object and complex feature classification scenarios.
 In this study, we used the YOLOv4-Tiny object detection method. YOLOv4-Tiny is a 
lightweight model that detects and locates multiple object classes within images.(27) Compared 
with the standard YOLOv4, YOLOv4-Tiny is even more lightweight, with a smaller model size 
and faster inference speed. Owing to its compact size and quick inference, it is suitable for 
deployment on embedded devices. As shown in Fig. 2, we use human detection as the basis for 
identifying bed-exit behaviors. To avoid confusion between background objects and humans, 
YOLOv4-Tiny labels humans by including the torso and upper limb regions (green frame in Fig. 
2).

2.3 Object tracking and data segmentation

 In this study, the object-tracking method is Simple Online and Real-time Tracking (SORT).(28) 
SORT is a multi-object tracking method that employs a Kalman Filter(29) and the Hungarian 
Algorithm(30) to track and identify targets in images. It maintains accuracy even when targets 
appear, disappear, or occlude each other, effectively operating in complex environments. Figure 
4 shows the tracking results of six bed-exit behaviors of the bedridden person. In Fig. 4(a), the 
bedridden person exits the bed from the right side of the image. A significant change in the 
Y-axis value can be observed during the bed exit, with the X-axis value gradually increasing, 
indicating that the target is moving to the right. Figure 4(c) shows a similar observation for bed 
exit from the left side, but the X-axis value gradually decreases as the target moves to the left. 
Figure 4(b) illustrates the bedridden person returning to bed from the right side of the image. 
The X-axis coordinate decreases, indicating that the target moves from right to left. When the 
target reaches and lies back on the bed, the Y-axis coordinate shows a horizontal displacement, 
and the X-axis coordinate gradually stabilizes. Figure 4(d) depicts the bedridden person 
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returning to bed from the left side, showing similar observations as in Fig. 4(b). Nevertheless, 
the X-axis coordinate increases, representing movement from left to right until it stabilizes upon 
returning to bed. Figure 4(e) shows the coordinate trajectory of the bedridden person maintaining 
a supine/prone position without movement. Figure 4(f) shows the coordinate trajectory of the 
bedridden person turning over in bed. Compared with Fig. 4(e), the X-axis and Y-axis coordinates 
display slight oscillations.
 After performing object tracking, segmenting the data for subsequent action recognition is 
essential. In this study, we use the sliding window technique for data segmentation. This method 
involves moving a fixed-size window over the sequential data, to capture overlapping segments 
that serve as input for the action recognizer.
 The sliding window technique is critical in dividing continuous tracking data into manageable 
segments. Each segment, or “window”, contains a snapshot of the tracked coordinates and 
movements within a specific time frame. This approach ensures that the action recognizer can 

Fig. 4. Coordinate traces for bed-exit behaviors: (a) right exit, (b) right return, (c) left exit, (d) left return, (e) lie 
still, and (f) turn over. The solid black line represents the X-axis trace, and the dotted grey line represents the Y-axis 
trace.

(a) (b)

(c) (d)

(e) (f)
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analyze smaller, consistent data portions, making it easier to identify distinct behaviors 
accurately.
 Several considerations must be taken into account when using the sliding window technique. 
The size of the sliding window must be carefully chosen. A window that is too small might miss 
crucial contextual information, whereas a very large window can include multiple actions, 
leading to confusion in recognition. The degree of overlap between consecutive windows is vital 
as well. Sufficient overlap ensures that transitional movements between actions are captured, 
which is critical for accurate behavior recognition. Maintaining data continuity is essential, and 
the sliding window should move incrementally across the dataset to ensure no relevant 
information is lost between segments. While more oversized windows and higher overlap can 
improve accuracy, they also increase computational load. Therefore, balancing accuracy with 
efficiency is critical to optimizing system performance.
 Using the sliding window method, we ensure that the behavior recognition system receives 
well-segmented, contextually rich data, enhancing the accuracy and reliability of action 
identification in our bed-exit monitoring system.

2.4 Behavior recognition

 In this study, we recognize five bed-exit behaviors: exiting the bed from the right side, 
exiting from the left side, returning to the bed from the right side, returning from the left side, 
and lying in bed. We utilized CNNs, LSTM networks, and GRU networks, alongside hybrid 
models combining CNN with LSTM and CNN with GRU, to recognize these behaviors and 
compare their performances. 

2.4.1 CNN model

 CNNs are widely used in deep learning for their ability to extract local features through 
convolutional layers and reduce dimensionality via pooling layers, effectively capturing spatial 
and temporal relationships in data. The CNN architecture includes 1D convolutional layers, 
max-pooling layers, flattening layers, and fully connected layers. The input layer receives a 2D 
time series X ∈ RT×2 with a time step T. This input data is then processed by a 1D convolutional 
layer, which extracts local features by sliding filters over the input data. A 1D convolutional 
layer processes the data to extract local features, represented as

 ( ) ( ) ( )( )1 1 1*Y f w X b= + , (4)

where w(1) is the convolution kernel, b(1) is the bias, and f is the ReLU activation function. The 
output is then passed to a max-pooling layer with a pool size of two to reduce dimensionality and 
computational load, followed by a flattening layer to convert the output into a 1D vector for the 
fully connected layers. The purpose of the max-pooling operation is to reduce the dimensionality 
of the feature map, thereby decreasing the computational load and mitigating the risk of 
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overfitting. The output from the pooling layer then passes through a flattening layer, converting 
the multidimensional output into a one-dimensional vector suitable for the fully connected 
layers.
 The first fully connected layer (dense) contains 64 neurons, 

 ( ) ( ) ( ) ( )( )3 2 2 2Y f W Y b= + , (5)

where W(2) is the weight matrix of the fully connected layer, b(2) is the bias, and Y(2) is the output 
of the flattening layer. The second fully connected layer (output layer) contains five neurons, 
corresponding to the five bed-exit behavior categories:

 ( ) ( ) ( ) ( )( )4 3 3 3softmaxY W Y b= + . (6)

The softmax function converts the output into a probability distribution. The network, trained 
using backpropagation and the cross-entropy loss function,

 ( )5
1  log ˆi iiL y y

=
= −∑ , (7)

where yi is the actual label and ˆiy  is the predicted probability, can accurately recognize the input 
time series category.

2.4.2 LSTM model

 LSTM networks are a type of recurrent neural network (RNN) suitable for time-based data. 
They capture long-term dependences and avoid the vanishing gradient problem. LSTM 
introduces memory cells and gates to selectively retain or discard information, maintaining 
stable memory over time. The LSTM architecture includes the LSTM layers and fully connected 
layers. Figure 5 shows the architecture of an LSTM unit.
 Each LSTM unit contains a forget gate, an input gate, and an output gate. The input layer 
receives a 2D time series X ∈ RT×2. The LSTM layer, with hidden units, processes the data in the 
following steps.

1) Forget gate:

 [ ]( )1,t f t t ff W h x bσ −= ⋅ + . (8)

2) Input gate:

 [ ]( )1,t i t t ii W h x bσ −= ⋅ + , (9)
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 [ ]( )1nˆ ta h ,t C t t CC W h x b−= ⋅ + . (10)

3) Cell state update:

 1* ˆ*t t t t tC f C i C−= + . (11)

4) Output gate:

 [ ]( )1,t o t t oo W h x bσ −= ⋅ + . (12)

5) Hidden state:

 ( )* tanht t th o C= . (13)

Here, σ is the sigmoid activation function, tanh is the hyperbolic tangent activation function, Wf, 
Wi, WC, and Wo are the weight matrices for the forget gate, input gate, cell state, and output gate, 
respectively, bf, bi, bC, and bo are the corresponding biases, ht is the hidden state at the current 
time step, and Ct is the cell state at the current time step. The final hidden state ht is passed to the 
fully connected layer:

 ( )softmax d T dY W h b= ⋅ + . (14)

The softmax function outputs a probability distribution for the five categories. The network, 
trained using backpropagation and the cross-entropy loss function, can accurately recognize the 
input time series category.

Fig. 5. (Color online) Architecture of an LSTM unit.
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2.4.3 GRU model

 GRU is a simplified version of LSTM. It combines input and forget gates into a single update 
gate and uses a reset gate for efficiency. The GRU architecture includes GRU layers and fully 
connected layers. Figure 6 shows the architecture of a GRU unit.
 The input layer receives a 2D time series X ∈ RT×2. The GRU layer processes the data in the 
following steps.

1) Update gate:

 [ ]( )1,t z t t zz W h x bσ −= ⋅ + . (15)

2) Reset gate:

 [ ]( )1,t r t t rr W h x bσ −= ⋅ + . (16)

3) Candidate hidden state:

 [ ]( )1tanh *ˆ ,t t t th W r h x b−= ⋅ + . (17)

4) Hidden state update:

 ( ) 11 * * ˆ
t t t t th z h z h−= − + . (18)

Here, σ is the sigmoid activation function, tanh is the hyperbolic tangent activation function, Wz, 
Wr, and W are the weight matrices for the update gate, reset gate, and candidate hidden state, 
respectively, bz, br, and b are the corresponding biases, and ht is the hidden state at the current 
time step. The final hidden state ht is passed to the fully connected layer:

Fig. 6. (Color online) Architecture of a GRU unit.
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 ( )softmax d T dY W h b= ⋅ + . (19)

The softmax function outputs a probability distribution for the five categories. The network, 
trained using backpropagation and the cross-entropy loss function, can accurately recognize the 
input time series category.

2.4.2 Hybrid model

 Hybrid models combine the ability of CNNs to extract local features and the ability of RNNs 
to model temporal dependences, making them advantageous for time series data classification. 
In this study, we designed hybrid models combining CNN with LSTM and CNN with GRU. 
When designing a hybrid model that combines CNN and LSTM/GRU, the trade-off between 
complexity and performance needs to be dynamically adjusted in accordance with the 
application’s requirements. For scenarios that demand high accuracy, it is appropriate to increase 
the complexity of the model. In contrast, for situations that require rapid response, lightweight 
models should be prioritized. In the application of Embedded Bed-Exit Monitoring, real-time 
prediction is crucial. A model with fewer parameters and lower computational effort is more 
suitable for running on embedded systems. Therefore, when determining the optimal 
architecture and parameters for the hybrid model, evaluating the performance of different 
architectures and parameter combinations is essential, ensuring that the model can provide 
predictions within a reasonable time frame without sacrificing accuracy.
 The hybrid model extracts local spatiotemporal features through convolutional and pooling 
layers, captures global temporal dependences through LSTM/GRU layers, and classifies data 
through fully connected layers. The input layer receives a 2D time series X ∈ RT×2. After 
convolution and pooling, the flattened output is passed to the RepeatVector layer, the LSTM/
GRU layer, and finally, to the fully connected layers. The network, trained using backpropagation 
and the cross-entropy loss function, can accurately recognize the input time series category.

3. Results

3.1 Object detection results

 We established an NFV image dataset for bed-exit behaviors, including bed exits, lying in 
bed, and returning to bed. Table 1 lists the dataset statistics used in the object detection stage. To 
align with real-world care settings, the dataset’s images are primarily divided into daytime and 
nighttime categories. For each image mode, the data ratio for training, validation, and testing is 
7:2:1, with the test data being independent of training and validation purposes. The total amount 
of data in the dataset is 6937 images. As stated in Sect. 2.2, we labeled the torso, including the 
upper limbs, to identify humans in NFV images. On the basis of the detection results, we can 
obtain the following classification parameters: true positive (TP), false positive (FP), false 
negative (FN), and true negative (TN). With these parameters, the main object detection 
performance metrics are precision, recall, and F1 score (F1) in order:
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TPPrecision
TP FP

=
+

, (20)

 
 

TPRecall
TP FN

=
+

, (21)

 
2    1 .

  
precision recallF

precision recall
× ×

=
+

 (22)

Furthermore, the area under the precision and recall curve is the average precision (AP). Table 2 
presents the validation and test results of human detection using Yolov4-Tiny in this study. In the 
validation results, the precision and AP for nighttime images were slightly lower than those for 
daytime images: daytime images achieved a precision of 99% and an AP of 99.68%, while 
nighttime images had a precision of 98% and an AP of 97.63%. A similar observation can also be 
seen in the test results. Overall, both validation and test results showed that we could achieve a 
precision of 99% in daytime images, whereas the precision for nighttime images was above 
98%. These results indicate that effective human detection obtained during the object detection 
stage can be utilized for subsequent behavior recognition.

3.2 Data segmentation and behavior recognition results

 To observe the impact of sliding window parameters, we conducted a series of experiments 
using an LSTM as the deep learning network model for behavior recognition and compared the 
performance differences of different parameter settings within the same network model. In the 
experiments, the deep learning network utilized a single layer of LSTM, followed by a dropout 
layer, a dense layer, and an output layer sequentially; the hyperparameters for neurons and dense 
layer units were fixed at 100, with a dropout parameter of 0.5. The activation function for the 
dense layer was ReLU, while the output layer used softmax. The window size was set to 
{50, 100, 200}, and the step size was set to {5, 10, 20, 40}. The accuracy of behavior recognition 
is defined as follows:

 
( )

TP TNAccuracy
TN TP FN FP

+
=

+ + +
. (23)

Table 1
Statistics in the dataset.
Mode Train Validate Test
Day 2983 658 329
Night 2017 634 316
All 5000 1292 645
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 Table 3 illustrates the bed-exit behavior recognition results for various window and step size 
combinations. Besides accuracy, we also recorded the timing of bed-exit behavior occurrences 
for each parameter combination. From Table 3, we can observe that (i) when the window size is 
fixed at 50, increasing the step size results in lower accuracy and delays the recognition timing 
of bed-exit behavior; (ii) when the window size is increased to 100 or 200, the impact of step size 
on performance is not significant; and finally, (iii) the optimal sliding window parameters 
{window size, step size} are {100, 10} and {200, 20}. Since a smaller window size allows for 
quicker recognition of the target’s behavior, the parameter combination of {100, 10} is preferred 
in this study.
 In the behavior recognition stage, we used various deep learning networks to compare the 
performance of behavior classification and selected the hyperparameters for each network using 
the Taguchi method. Table 4 shows the hyperparameter selection results for five deep-learning 
network models. We used 159 bed-exit behavior videos to evaluate the identification performance 
of three behaviors: in-bed, bed-exit, and return-to-bed. For in-bed behavior, there were 22 
daytime videos and 15 nighttime videos; for bed-exit behavior, there were 31 daytime videos and 
28 nighttime videos; for return-to-bed behavior, there were 34 daytime videos and 29 nighttime 
videos. With the hyperparameters shown in Table 4, the performances the five behavior 
recognition networks were compared and the results are summarized in Table 5. Besides 
accuracy and loss, we also calculated the memory space required to run the network—the 
number of hyperparameters and the floating-point operations per second (FLOPs) were related 
to execution speed. The FLOPs varies depending on the operations of the deep learning model. 
The FLOPs calculation for a CNN is

 ( )2 1CNN in h w outFLOPs C K K H W C= × × × − × × × , (24)

where Cin is the number of input channels, Kh × Kw is the kernel size, H and W are the height and 
width of the output feature map, and Cout is the number of output channels. The FLOPs 
calculation for an LSTM is

 ( ) 4 2LSTMFLOPs E H H= + × × × , (25)

where E is the embedding dimension, which represents the dimensionality of word vectors, H is 
the hidden state dimension, representing the number of neurons in the LSTM, and 4 represents 
the four nonlinear transformation blocks in an LSTM. FLOPs for a GRU is defined as

Table 2
Performance results in the object detection stage.

Validate Test

Mode Precision 
(%) Recall (%) F1 score 

(%) AP (%) Precision 
(%) Recall (%) F1 score 

(%) AP (%)

Day 99 99 99 99.68 99 99 99 99.17
Night 98 95 96 97.36 99 96 98 97.98
All 99 97 98 98.57 99 98 98 99.30
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 ( ) 3 2.GRUFLOPs E H H= + × × ×  (26)

In Eq. (23), 3 represents the three nonlinear transformation blocks in the GRU, which is one less 
gating mechanism compared with the LSTM. For hybrid models, such as CNN+LSTM and CNN 
+ GRU, the FLOPs result is the sum of the FLOPs of the two models:

 CNNLSTM CNN LSTMFLOPs FLOPs FLOPs= + , (27)

 .CNNGRU CNN GRUFLOPs FLOPs FLOPs= +  (28)

 Table 5 reveals that under the condition of selecting hyperparameters based on accuracy, all 
network models can achieve an accuracy between 97 and 98%, with LSTM performing the best, 
reaching an accuracy of 97.97%, and GRU having the next best performance with 97.89% 
accuracy. For the three single networks (i.e., CNN, LSTM, and GRU), CNN has a slightly lower 
accuracy than LSTM and GRU but has fewer parameters and computational FLOPs. On the 
other hand, for the two types of hybrid network model, CNN + GRU can achieve slightly lower 

Table 3
Accuracy and time results with various window and step sizes.

Window size

Step size 50 100 200
Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s)

5 87 31.29 97 30.54 100 32.75
10 80 33.47 100 32.02 97 32.02
20 70 33.47 90 34.93 100 32.02
40 43 36.39 97 32.02 97 34.93

Table 4
Selected hyperparameters for five deep-learning network models.
Model Hyperparameters
CNN Filter = 16, Kernel size = 3, Dense = 64
LSTM Neurons = 128, Dense = 64
GRU Neurons = 128, Dense = 64
CNN + LSTM Filter = 16, Kernel size = 5, Neurons = 64, Dense = 16
CNN + GRU Filter = 8, Kernel size = 5, Neurons = 64, Dense = 8

Table 5
Performances of deep-learning network models.
Model Accuracy (%) Parameters FLOPs
CNN 96.87 25077 30719
LSTM 97.97 477061 134400
GRU 97.89 59269 102368
CNN + LSTM 97.39 112149 297727
CNN + GRU 97.25 48653 79279
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accuracy with fewer parameters and computational effort. In summary, fewer parameters and 
computational effort are more suitable for running on embedded systems. Considering the 
higher loss of the single CNN model, we adopted the hybrid CNN + GRU model for the behavior 
recognition network.
 Referencing the description of behavior recognition outputs in Sect. 2.4, we show the results 
in Table 5 on a window-by-window basis. In contrast, Table 6 shows the final behavior 
recognition results based on a majority vote. The daytime and nighttime video test results for 
three different behaviors indicate that the bed-exit behavior recognition system proposed in this 
study can achieve a 100% recognition rate, thus avoiding unnecessary care burdens caused by 
false reports.

4. Conclusions

 In this study, we presented an embedded bed-exit monitoring system with a combination of 
the Jetson Xavier platform and camera serial interface cameras. The proposed system applies 
YOLO for object detection, SORT for object tracking, and deep learning models such as LSTM/
GRU for bed-exit behavior recognition. The experimental results showed that the proposed 
system has excellent recognition accuracy. 
 To protect patient privacy, the system employs NFV images to monitor bed-exit behaviors. 
By capturing only the specific area of the patient’s bed for recognition, the capture of irrelevant 
images by the system is reduced. This approach ensures that the monitoring process does not 
infringe on the privacy of others in the surrounding area. 
 We chose YOLOv4-Tiny for object detection owing to its light weight and high processing 
efficiency, which are suitable for embedded systems. The experimental results showed that the 
system achieves high accuracy and recall rates day and night, demonstrating its stability under 
different lighting conditions. This is important for medical equipment used in continuous 
monitoring, as lighting conditions can vary significantly over time. Using the SORT algorithm 
for object tracking enhances the system’s ability to accurately track the human torso, even when 
the target is occluded or there are multiple moving objects. This is crucial in dynamic 
environments such medical facilities, where the frequent movement of patients and caregivers 
increases tracking complexity. 
 The five deep learning models used in behavior recognition performed well in recognizing 
bed-exit behaviors. Among the three single-network models, LSTM performed the best. 
Between the two hybrid network models, CNN + GRU achieved slightly lower accuracy with 
fewer parameters and computational requirements. Considering that lower parameter counts and 
computational loads are more suitable for embedded system operation, we adopted the CNN + 
GRU hybrid model for behavior recognition. 

Table 6
Behavior recognition accuracy results.
Mode On bed Off bed Return
Day 100% (22/22) 100% (31/31) 100% (34/34)
Night 100% (15/15) 100% (28/28) 100% (29/29)
All 100% (37/37) 100% (59/59) 100% (63/63)
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 In summary, the embedded bed-exit monitoring system developed in this study effectively 
monitors patient movements in healthcare environments. The system integrates deep-learning-
based techniques for object detection, tracking, and behavior recognition, and shows high 
recognition accuracy and real-time performance while protecting patient privacy. The main 
achievements of this study are as the follows:
1) Efficient use of NFV images to achieve precise monitoring while protecting privacy.
2)  Utilizing the YOLOv4-Tiny model to achieve high accuracy and recall rates, suitable for real-

time applications in embedded devices.
3)  Implementing the SORT algorithm for reliable object tracking, and capability to handle  

dynamic and complex environments.
4)  Adoption of a CNN + GRU hybrid network model suitable for embedded system operation, 

achieving excellent behavior recognition performance with lower parameter count and 
computational load, and

5)  Achieving a processing speed of 7.1 frames per second, enabling real-time operation suitable 
for deployment in healthcare facilities.

 Future research will enhance system capabilities by exploring more deep learning models, 
improving detection and tracking algorithms, and conducting extensive field tests in various 
healthcare environments to validate system performance and robustness. Additionally, 
integrating the monitoring system with existing healthcare information systems can provide a 
comprehensive patient care and management solution.
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