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 The effective integration of multisource survey data for power grids benefits designers by 
providing comprehensive and accurate analyses of the terrain and landforms surrounding the 
survey area. In this study, inspired by the Mamba concept, we propose an iterative attentional 
feature fusion Mamba (iAFF-FMA) framework that constructs a multibranch state space for 
iterative fusion, reducing differences between data modalities and enhancing feature interaction 
within the same modality. Experiments conducted with actual engineering data from ultra-high-
voltage direct current (UHVDC) transmission lines demonstrate the iAFF-FMA framework’s 
superiority over six common fusion methods. This offers a novel technical approach to the 
integration of power grid survey data.

1. Introduction

 The rapid evolution of sensor technology has endowed the power grid surveying sector with 
access to a diverse array of data sources, including satellite panchromatic imagery, multispectral 
imagery, Digital Elevation Model (DEM), and geotechnical and hydrometeorological datasets. 
Despite their individual merits, these data sources alone are insufficient to fully represent the 
terrain and landforms of the surveyed area. The integration of these diverse datasets is essential 
for gaining a holistic and profound understanding of the topography, thereby enhancing the 
reliability of decision-making for power grid planning and maintenance. This integrated 
approach is pivotal for advancing the field of power grid surveying. Understanding and analysis 
of the terrain provide more reliable decision support for power grid planning and maintenance.
 Multisource data fusion methods are broadly categorized into five types: pixel-level,(1) 
feature-level,(2–5) decision-level,(6–8) model-based methods,(9–11) and hybrid methods. Hybrid 

mailto:lvjingguo@bucea.edu.cn
https://doi.org/10.18494/SAM5257
https://myukk.org/


194 Sensors and Materials, Vol. 37, No. 1 (2025)

fusion methods primarily include direct fusion,(12) attention-based fusion,(13) and multistage 
fusion. Multistage fusion, which combines multiscale and attention mechanisms, captures 
features at different levels and is conducive to fully integrating multiscale features. Common 
methods include Pathformer,(14) IFT,(15) CDDFuse,(16) and SwinFusion.(17) However, these 
methods often require high computational resources and time owing to the complexity of 
attention mechanisms, especially for large-scale data fusion. The emerging Mamba model of 
2023, with its selective mechanism and hardware-aware efficient design, is more suitable for 
large-scale data fusion. However, Mamba is mostly applied to object detection, and its 
application in image fusion is still rare, with only a few fusion models like MambaDFuse(18) and 
FusionMamba(19) existing.
 Power grid survey data significantly differ from other data types in their imaging methods 
and formats, often originating from specialized remote sensing technologies such as high-
resolution satellite and aerial imagery, and LiDAR technology that provides a detailed three-
dimensional perspective on terrain. The data may include multispectral imaging, extending 
beyond the visible light to include infrared and ultraviolet spectra, thus offering additional 
dimensions for the analysis of terrain and vegetation. Moreover, power grid surveys encompass 
geological and meteorological data, which often come in nonimage formats, adding to the 
complexity of data fusion. The datasets are typically vast, with rich spatial and temporal 
dimensions, necessitating fusion algorithms capable of managing large-scale and high-
dimensional data with precise spatial and temporal alignment. To address these challenges, in 
this paper, we introduce an iterative fusion framework based on the Mamba model (iAFF-FMA), 
which performs deep iterative attentional feature fusion within a hidden state space, aiming to 
enhance the quality and efficiency of data fusion for power grid surveys. The main contributions 
of this paper are as follows.
(1)  To fully exploit the characteristics of multisource data, a differentiated feature extraction 

module is proposed, tailoring extraction strategies for terrain remote sensing, multispectral 
imagery, DEM, and so forth, effectively addressing the issue of incomplete feature extraction.

(2)  To enhance the efficiency and accuracy of multisource power grid survey data fusion, a 
Mamba-based iAFF-FMA framework is designed, integrating visual state space and iterative 
attention mechanisms and significantly improving the efficiency and quality of fusion.

(3)  To compensate for the loss of detail in feature fusion, iAFF is introduced, where an iterative 
attention fusion Mamba block is designed in the state space to address the simplistic addition 
or parameterized fusion of features in previous fusion Mamba approaches.

2. Related Work

2.1 State space models (SSMs)

 SSMs are mathematical models used to describe and predict system states. They generate 
outputs y(t) ∈ R by passing a 1D input sequence x(t) ∈ R through intermediate hidden states 
h(t) ∈ RN. Mathematically, SSM is often formulated as a system of linear ordinary differential 
equations (ODEs).
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Here, system behavior is defined by a set of parameters, including the state transition matrix 
A ∈ RN×N, observation matrix B, C ∈ RN×1, and the noise impact matrix D ∈ R. h(t) represents the 
latent state at any given time t.
 The matrices A and B are discretized using zero-order hold with a time scale parameter Δ. 
This discretization process is illustrated as follows:
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 After discretization, the SSM is computed by a global convolution with structured 
convolutional kernels.

2.2 Mamba

 In SLAM, SSMs depict estimated states with observation and prediction components. 
Mamba’s SSM is inspired by these traditional models and has broadened its application from 
NLP to computer vision since its inception.
 VMamba introduces the SS2D, an innovative four-directional scanning algorithm that 
enhances the MAMBA-based visual backbone, surpassing the Swin Transformer in performance 
for object detection, segmentation, and tracking. The SS2D’s strength is its comprehensive 
capture of image context through scanning in horizontal, vertical, and diagonal directions. It 
optimizes computational efficiency and feature representation, showing robust adaptability and 
stability across visual data of different resolutions and complexities. Moreover, the synergy 
between SS2D and the MAMBA model significantly boosts the processing of two-dimensional 
visual data, enabling precise control and effective integration of information in visual tasks, 
which minimizes information loss. Despite Mamba’s global modeling capabilities and linear 
complexity, its use in image fusion via SSM remains limited.
 
3. Methods

 In this paper, we present a fusion model for multisource data in power grid surveying, 
addressing the challenges of diverse data types and large volumes. Drawing on deep learning’s 
feature extraction capabilities and inspired by FusionMamba, we introduce a model that 
maintains linear complexity and global perception while optimizing computation with dynamic 
weight allocation.
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 The iAFF-FMA model fuses features in a hidden state space, using an iterative attention 
mechanism to dynamically integrate feature weights based on correlations, culminating in a 
comprehensive feature representation Ff, as shown in Fig. 1.

3.1 Data preprocessing

 Before fusion research on power grid survey data, preprocessing is essential to standardize 
data within a consistent spatiotemporal framework. This involves the following.
 Time synchronization is achieved by setting a common reference point for all data sources, 
using the panchromatic terrain imagery from January 20, 2024, to ensure temporal consistency. 
A temporal backdrop is established, covering the period from January 10 to 30, 2024, with daily 
resolution to align data points in time.
 Spatial registration aligns diverse data sources to a common resolution and geocoding 
standard in the WGS 84 system. Imagery and DEM data are resampled to 0.5 m/pixel resolution 
using bilinear interpolation. Location data from exploration and meteorological reports are 
georeferenced for map overlay. The UTM projection is used for consistent spatial alignment.

3.2 Multisource data feature extraction

(1) Terrain Panchromatic Image Feature Extraction
  In this study, we employed LightM-UNet to extract critical features from high-resolution 

panchromatic images, this is essential for detailing terrain features in power grid surveys. As 
shown in Fig. 2. The process starts with an input image XP ∈ RC×H×W, where LightM-UNet 
uses depthwise separable convolution (DWConv) layers to initially capture basic features.

Fig. 1. (Color online) iAFF-FMA multisource survey data fusion network flowchart.
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(2) Feature Extraction of Tower-site Multispectral Imagery
  We used group convolution on multispectral imagery to enhance the detail of spectral and 

spatial features in power grid surveys.
     First, the tower-site multispectral image XM is fed into several spectral feature extraction 

modules to determine the size R of the convolution kernel along the spectral dimension. 
Then, for each layer i in the convolutional neural network and each feature map j within that 
layer, the dot product of the kernel with the input feature map is calculated over the local 
region in the spectral dimension z at every spatial position (x, y), yielding the output value 

xyz
ijF . Ultimately, these operations effectively extract and emphasize spectral features within 

multispectral images.
     Additionally, to ensure that spatial information is not mixed with spectral features, we 

employed group convolution instead of standard 2D convolution on the spatial dimension. 
Group convolution initially appeared in AlexNet to address the hardware limitations of the 
time, as shown in Fig. 3, resulting in compact multispectral image features for tower sites  
FM.

(3) DEM Data Feature Extraction
  Elevation data from DEM is essential for power grid surveys, detailing the terrain’s slope, 

aspect, and contours. We use multiscale dilated convolution to adeptly capture this data’s 
depth. 

     In our study, we introduce a three-branch convolutional module, each with kernels of 
varying sizes (1, 3, 5) for scale-specific feature capture, as shown in Fig. 4. For the kernel size 
of 1, we used average pooling to smooth minor noise and preserve the general terrain trends. 
The kernel size of 3 employed K-Max pooling to highlight key changes in terrain, such as 
ridges or valleys. Kernels of size 5 utilized max pooling to emphasize local extreme features 
of the terrain, such as steep slopes or obstacles. These features converge in a fully connected 

Fig. 2. (Color online) Light M-UNet feature extraction module.
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layer, generating a feature sequence FD that encompasses a wealth of scale information, 
providing a comprehensive description of terrain features for power grid surveys.

(4) Geotechnical Exploration and Hydrometeorological Data Feature Extraction
  Geotechnical and hydrometeorological data, often textual, are analyzed using the TextCNN 

model in this study. It extracts key details from descriptions of geological conditions for 

Fig. 3. (Color online) Spatial-spectral dual-branch feature extraction module.

Fig. 4. (Color online) Improved multiscale feature extraction module for DEM data.
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transmission tower foundations. The text is tokenized and then transformed into word 
embeddings by BERT before being processed by TextCNN. Features are captured through 
convolutional kernels of varying sizes and enhanced by ReLU activation and Max pooling, 
ultimately yielding geotechnical features FR and hydrometeorological features FH. 

3.3 Multibranch state space iAFF-FMA fusion

 In this paper, we introduced a channel shuffle module to enhance the interaction between 
multimodal feature channels. It segments input feature maps into groups, recombines them, and 
thus boosts information exchange and feature integration.
 Specifically, the panchromatic terrain image FP ∈ RN×C×H×W is divided into G groups on the 
basis of C channels, with each group containing C/G channels. This results in G groups of 
feature maps 1

PF , 2
PF , …, G

PF  ∈ RN×C/G×H×W. Subsequently, a channel shuffle is performed; for 
each group i

PF , the feature maps are rearranged along the channel dimension C/G to obtain ˆ i
PF . 

Then, all the rearranged groups ˆ i
PF  are merged back along the channel dimension to the original 

number of channels C, generating features TP, TM, TD, TR, TH ∈ RN×C×H×W that incorporate 
channel interaction information.
 To enhance cross-modal feature association and complementarity, we established a hidden 
state space based on Mamba. We propse to project features from five modalities onto the hidden 
state space and utilize a gating mechanism to construct the transition of the hidden states. 
Furthermore, the iAFF method is employed to achieve deep cross-modal feature fusion.
 After obtaining the individual channel interaction features TP, TM, TD, TR, and TH, they are 
initially projected into the hidden state space through a VSS  block without gating.
  We optimized the model by substituting depthwise convolutions with grouped convolutions, 
which divide input channels into groups for independent kernel processing. The grouped 
convolution outputs are ReLU-activated, normalized, and then input into SS2D to expand feature 
maps in four directions, enhancing contextual comprehension.
 Subsequently, by projecting Py , My , Dy , Ry , and Hy , gating parameters ZP, ZM, ZD, ZR, and ZH 
are obtained. These parameters play a crucial role in the gating mechanism, which controls the 
flow of information through the network.
 Then, to fully leverage the cross-branch information complementarity through dual attention, 
the gated outputs ZP, ZM, ZD, ZR, and ZH are used to adjust yP, yM, yD, yR, and yH , achieving the 
fusion of hidden state features into Py , My , Dy , Ry , and Hy . This results in the hidden state 
features that represent the interaction of features post-fusion.
 Traditional feature fusion methods typically involve mere addition or concatenation of 
features without considering the suitability of fusing features from different modalities. In this 
study, by introducing an iAFF block into the state space, a multiscale channel attention 
mechanism is utilized to better integrate multimodal features that vary in scale and semantic 
inconsistency.
 From the previous steps, features from five modalities are obtained, and the features of these 
five modalities, denoted as Py , My , Dy , Ry , and Hy , are subjected to iterative iAFF  integration. 
Initially, each iteration step comprises two attention modules: one for the features of the current 
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modality, Att( Py ), and the other for the features of another modality, Att( My ). In the first 
iteration, weighted representations for the features of each modality are computed using the 
gating parameters ZP, ZM, ZD, ZR, and ZH and the attention modules:
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 The attention mechanism assigns different weights to each part of the features, highlighting 
the important ones while suppressing the less important ones. Subsequently, the weighted 
feature representations are iteratively fused:

 ( ) ( )( ) ( ) ( ) ( )( )( ) ( ), 1i
P M P M P P M MF Att y Att y Att y Att y Att y Att yα α= + ⊗ + − + ⊗      , (4)

where ,
i
P MF  ∈ RC×H×W. The + symbol represents the initial feature integration. ⊗ signifies 

element-wise multiplication.
 In the subsequent iterations, the output from the previous iteration is used as the input for the 
current attention module, and the formula is applied repeatedly. Each iteration generates new 
features ,

i
P MF , where i denotes the iteration number. After the iterative process is completed, the 

output from the last iteration, FP,M, serves as the final integrated feature representation.
 As shown in Fig. 5. Ultimately, FP,M,D,R,H is projected back to the original space to obtain the 
multimodal fused features.

Fig. 5. (Color online) iAFF-FMA feature fusion schematic diagram.
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4. Experiments

4.1 Experimental setup

 To assess our proposed fusion method, we compared it with standard techniques such as 
SDNet, FHM, DeFusion, DIDFuse, CDDFuse, and Super Fusion. The experimental dataset, 
derived from the 2023 Ningxia section of the Ningxia-Hunan ±800 kV UHV DC transmission 
line project, is meticulously segmented into training and testing sets. The training set 
encompasses a substantial 80%, totaling around 200000 panchromatic terrain images, 100000 
multispectral images, 80000 DEM samples, 60000 geotechnical samples, and 40000 
hydrometeorological samples. The testing set constitutes the remaining 20%, with approximately 
50000 panchromatic images, 25000 multispectral images, 20000 DEM samples, and 10000 
samples each for geotechnical and hydrometeorological categories. This comprehensive dataset 
facilitates rigorous validation of the proposed fusion methodologies within the power grid 
surveying domain. The experiments were conducted on a server equipped with AMD Ryzen 7 
PRO 5845, NVIDIA T1000 GPU, and 16 GB of RAM using TensorFlow, taking into account the 
area’s challenging terrain and climate.
 The data comprised GeoEye-1 satellite panchromatic images (0.5 m/pixel), drone-captured 
multispectral images (0.3 m/pixel), and LiDAR-derived DEM data (2 m/pixel). Fusion 
effectiveness was gauged by RMSE, UIQI, DD, and mAP at IoU 0.50, with mAP evaluated across 
a range from 0.50 to 0.95 in 0.05 increments. Higher metric values signify better model 
performance.
(1)  RMSE quantifies the discrepancy between predicted and actual values. It is calculated as

 ( )
2

1
1 ˆm

i iiRMSE y y
m =

= −∑ , (5)

  where yi is the actual value, ˆiy  is the predicted value, and m is the number of samples. A lower 
RMSE indicates a higher model accuracy.

(2)  UIQI assesses image quality by considering luminance, contrast, and structure. The formula 
is

 1 2 , , , , , , , ,
1 1

1 2 , , , , , , , ,

1 logk k max k l min k l max k l min k l
l k
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  Here, Imax,k,l and Imin,k,l represent the maximum and minimum values of each color 
component in the RGB space, and k1 and k2 are the dimensions of the image blocks.

(3)  DD is a measure of the difference between two images and is often used to assess similarity. 
The specific calculation depends on the context, but it generally involves pixelwise 
differences. The formula for DD is context-dependent and thus not provided here. A lower 
DD indicates greater image similarity.
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(4)  mAP is a performance metric in object detection, being a measure of the average precision 
across categories. It is calculated as

 1
1 K

kkmAP AP
k =

= ∑ , (7)

  where K is the number of categories, and APk is the AP for category kk. AP is the area under 
the precision–recall curve, or AUC, for each category. mAP is computed at various IoU 
thresholds (from 0.50 to 0.95 with increments of 0.05) and then averaged to provide a 
comprehensive performance evaluation.

4.2 Ablation experiment

 Here, we introduce an iAFF module within our Mamba-based power grid survey data fusion 
framework to enhance the fusion within the hidden state space. Ablation studies were conducted 
to test the iAFF module’s impact by varying its components. As shown in Table 1, results 
indicated a 2.2% drop in mAP50 and a 0.8% drop in mAP without the iAFF block, highlighting 
its role in reducing modality differences and aligning feature representations, which is crucial 
for effective deep fusion.

4.3 Comparative experiment

 In this experiment, we meticulously preprocessed multisource power grid survey data, 
including panchromatic terrain images, multispectral tower-site images, and DEM data, to 
remove noise and retain essential information. The data were cropped and split into training and 
testing sets at an 80:20 ratio, following specific spatial resolution guidelines.
 In the experiment, we integrated digitized data from geotechnical and hydrometeorological 
reports as additional features, enriching the model’s environmental and geological insights. The 
fusion performance was assessed using metrics such as mAP and mAP50. Our iAFF-FMA 
network outperformed other methods, increasing mAP by 0.9% and mAP50 by 1.0%. Although 
there was a noted increase in distortion, likely due to spatial resolution differences in the 
preprocessed data, the overall fusion performance of iAFF-FMA was superior.
 To validate the effectiveness of the methods presented in this paper, as shown in Table 2, we 
have selected a variety of comparative algorithms, including three component substitution (CS) 
methods (HIS,(20) BDSD,(21) and PRACS(22)), two multiresolution analysis (MRA) methods 
(MTF-GLP(23) and Indusion(24)), one variational optimization (VO) algorithm (GND(25)), and six 

Table 1
The iAFF module has a significant impact on the fusion model.
Methods mAP50 mAP70 mAP Param Time (ms)
iAFF-FMA 85.6 46.5 48.9 296.2M 82
Removing iAFF 83.4 45.3 48.1 278.5M 76
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deep-learning-based algorithms (SDNet,(26) FHM,(27) DeFusion,(28) DIDFuse,(29) CDDFuse,(30) 
and Super Fusion(31)).

5. Conclusions

 We introduced the iAFF-FMA framework, which harnesses the Mamba model to amalgamate 
a spectrum of power grid survey data, encompassing panchromatic and multispectral imagery, 
digital elevation models, and geotechnical–hydrometeorological datasets. This innovative 
approach addresses the shortcomings inherent in conventional fusion methodologies tailored for 
grid survey applications.
 The ablation studies conducted underscore the indispensable function of the iAFF module 
within the fusion process, mitigating disparities between modalities and augmenting feature 
congruence. Comparative analyses demonstrate the iAFF-FMA framework’s superior 
performance, marked by enhanced metric outcomes and a more nuanced understanding of the 
environment. While these strides are commendable, there exists a spectrum of opportunities for 
further refinement. This includes the exploration of more efficient feature extraction techniques 
to escalate algorithmic efficacy and the contemplation of a broader array of data and scenarios to 
bolster the model’s resilience.
 Looking ahead, future endeavors may delve into the model’s efficacy across a variety of 
power grid settings and the investigation of the potential application of the iAFF-FMA 
framework to disparate power grid data fusion. Moreover, we aim to scrutinize the model’s 
responsiveness and constraints when confronted with unforeseen data patterns, thereby 
enriching our understanding of its adaptability and the scope of its enhancement.

Table 2
Fusion experiment performance metrics.
Comparison Methods RMSE UIQI DD mAP mAP50
IHS 13.54 0.24 7.42 52.6 65.4
BDSD 15.26 0.16 8.64 50.8 69.1
PRACS 11.92 0.19 9.36 52.6 70.9
MTF-GLP 13.61 0.27 8.47 53.4 73.5
Indusion 14.85 0.34 8.69 52.9 72.4
GND 10.46 0.49 7.06 51.7 68.6
SDNet 9.12 0.53 6.54 53.2 79.6
FHM 12.56 0.27 9.21 52.8 80.1
DeFusion 7.84 0.49 7.32 54.1 79.2
DIDFuse 10.27 0.52 5.46 52.5 81.6
CDDFuse 10.69 0.65 4.95 55.0 82.3
Super Fusion 8.37 0.48 5.07 56.7 81.9
Ours 7.05↑ 0.71↑ 5.95↓ 57.6↑ 83.3↑
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