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 Recently, in the forestry sector, the carbon fixation capacity of forests has been highlighted 
for climate change response. In addition, the need for reliable forest management information is 
increasing for large-scale forest disaster response such as landslides and forest fires. In order to 
generate essential data for forest management, horizontal structure surveys, such as tree species 
and forest type, and vertical structure surveys, such as tree height and diameter at breast height 
(DBH), must be conducted. In this study, a comprehensive survey method using multisensor 
airborne LiDAR surveying was introduced for Chiaksan National Park (8.32 km2), which is a 
natural forest. The forest survey method applied in this study was a two-step method that 
performed object-based forest type classification using high-resolution orthoimages, and then 
performed individual tree detection (ITD) for each forest using high-density ALS data. As a 
result of this study, object-based forest type classification using orthophotos showed a 
classification accuracy of more than 95% for both coniferous and deciduous trees. In addition, in 
the ITD of natural forests by forest type, the quality of conifers was good, but the ITD quality 
was higher than 73%. In this process, a method for generating essential data for tree-based forest 
management, such as tree height and DBH, was established. In addition, we established a process 
for calculating the stem volume, biomass, and carbon storage capacity of the extracted trees, and 
created a total of 18 forest management digital twin databases for all trees in the research area. 
The tree-based forest management digital twin database for national park natural forests 
constructed through this study was used for the 2D and 3D visualization of various forest 
management information as well as for the demonstration construction of a forest management 
digital twin pilot system. Such a tree-based forest management digital twin can quickly confirm 
more accurate information necessary for forest management by tree unit, so it is expected to be 
efficiently utilized for establishing a carbon neutrality transition strategy as well as for 
simulating forest disasters for the conservation management of forest resources.
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1. Introduction

 Currently, climate change and global warming are causing frequent natural disasters 
worldwide, such as heat waves, heavy snow, extreme rain, and wildfires. To address this, the 
intergovernmental panel on climate change (IPCC) strongly recommends carbon neutrality.
 Forest resources, as efficient carbon sinks and powerful nature-based solutions, require 
urgent, scientifically sound conservation and management.(1) Accurate forest resource 
management is essential to achieve carbon neutrality and effectively mitigate large-scale forest 
disasters.
 Forest resource management data are classified into horizontal data, such as tree species or 
tree type, and vertical data, such as tree height (H) and diameter at breast height (DBH). The 
general method for obtaining forest management information involves conducting surveys using 
a 30 × 30 m2 area-based approach (ABA). 
 The data obtained through ABA is used to calculate forest information for the entire area by 
considering tree species and multiplying by their respective areas. This area-based survey 
method determines the quality of data depending on the researcher’s skill level, and it is a labor-
intensive method that requires a lot of time and effort.(2) Moreover, there is a problem that the 
accuracy of H is significantly reduced compared with that of DBH.
 Recently, ways to introduce various LiDAR technologies have been studied to mitigate the 
problems of ABA forest surveys. As for LiDAR technology applied to forest surveys, terrestrial 
laser scanning (TLS) technology was first used for forest inventory in the survey area (plot) to 
address the problems of field surveys focusing on manpower. Recently, it has progressed to 
performing individual tree detection (ITD) on the entire forest through  airborne laser scanning 
(ALS) technology and generating forest management data using individual trees.
 LiDAR technology, first introduced for forest inventory, was primarily an alternative to 
existing manpower-intensive surveys. The mainstay was drone laser scanning (DLS) technology 
with LiDAR sensors mounted on rotary-wing drones, as well as handheld and backpack-type 
ground LiDAR technologies. This technology helps to address the issues of existing research 
methods that heavily rely on manpower.(3–6)

 However, while drone LiDAR and ground LiDAR technologies can precisely measure 
individual trees within the survey range, making them suitable alternatives to manpower-
focused survey methods, they have limitations that prevent them from conducting a complete 
survey of large forest areas.
 On the other hand, studies on the utility of ALS technology for forest inventory were 
conducted prior to the development of TLS. Since ALS uses aircraft, it has the advantage of 
quickly measuring large areas. As a result, extensive research is being conducted on ITD using 
ALS data.(7–9)

 In addition, in the past, ALS technology had the disadvantage of low point density, making it 
difficult to detect, extract, or conduct detailed ITD. However, it has recently become possible to 
acquire high-density point cloud data (PCD) of more than 40 points per square meter, a 
significant improvement over the past, although still not at the level of terrestrial LiDAR. As a 
result, more precise forest information than before can now be obtained.
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 To date, research results that have provided individual tree-based forest management data for 
large areas of natural forests using high-density ALS data are extremely limited. Additionally, 
research related to building digital twins for individual tree management is still in its early 
stages.
 Therefore, in this study, we established a method for generating individual tree-based forest 
management data using airborne LiDAR data to support decision-making based on scientific 
data in forest-related public policy processes, such as climate crisis response and various forest 
disasters. 
 This method was applied to the natural forest of Chiaksan National Park (8.32 km² in Bugok 
District) to build a digital twin database for individual tree-based forest management, generating 
18 types of data for each tree through ITD.
 In this study, as shown in Fig. 1, using an orthoimage generated by the computer vision (CV) 
analysis of five-way digital images from the airborne LiDAR survey results, we classified trees 
in the study area into coniferous and broad-leaved forests by applying object-based forest type 
classification. These classifications were then converted into vectors and used to analyze the 
horizontal structure of the forest.
 In the vertical structure analysis of the forest, the optimal ITD methodology(10) for each forest 
type was established on the basis of ALS data with a point density of 40 or more. The quality of 
ITD by forest type was analyzed through recall, precision, and F1 score using the TLS 
performance of six plots.
 In addition, the DBH was determined through a nonlinear regression equation based on the 
height of each tree determined during the ITD, and a process was established to calculate stem 
volume, biomass, and carbon storage capacity for individual trees.
 In this way, the natural forest-based ITD and forest management data generation methodology 
established through this study was applied throughout the Chiaksan National Park Bugok 
District (8.32 km²) to build 18 forest management information databases for each tree. 

Fig. 1. (Color online) Main process of this study.
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Additionally, a forest management digital twin was built on a pilot basis using a 3D tree model.  
Through this, the forest management digital twin database is expected to be used as basic data 
for forest conservation and management in the future, and to support decision-making in 
scientific public policy processes. 

2. Materials and Methods

2.1 Description of study site

 The Bugok District within Chiaksan National Park, the subject of this study, is a nationally 
protected area and is thoroughly managed by the Korea National Park Service. It is less exposed 
to external influences, such as thinning or human intervention, thus maintaining its complex 
natural forest state. The study site covers an area of 8.32 km², which corresponds to more than 
1.5 maps on a 1:5000 digital scale, in order to increase the applicability of the findings across the 
forest.
 There are various tree species in the study area, including 10 types of coniferous tree such as 
Pinus densiflora and Pinus koraiensis, and 30 types of broad-leaved tree such as Quercus 
mongolica and Quercus serrata.
 In this study, six standard survey plots were delineated within Chiaksan National Park, and 
one plantation forest survey plot was established outside the park. A total of seven survey plots 
within the study area were established to evaluate the quality of ALS-based ITD experiments. 
Point cloud data with a density of more than 20000 points per square meter were generated using 
handheld TLS technology. Within the survey plots, the number of trees (N), coordinates (Xt, Yt), 
tree height (Ht), and DBH were observed and used to determine the optimal ITD algorithm based 
on ALS by forest type. The characteristics of the study site are shown in Fig. 2. The seven survey 

Fig. 2. (Color online) Description of study site (Chiaksan Bugok District).
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Fig. 3. (Color online) Plots in study site (Chiaksan Bugok District).

Table 1
Major characteristics of plots in study area (Chiaksan Bugok District).

Plot no. Forest type No. of trees Area (m2) Point density 
(point/m2)

Maximum 
tree height 

(m)
Remarks

Plot 1 CF 71 8159 74 17.5 Plantation forest
Plot 2 CF 102 851 67 23.6

Natural forest

Plot 3 DF 92 887 121 15.6
Plot 4 CF 101 862 87 24.9
Plot 5 DF 78 819 74 25.3
Plot 6 CF 67 816 73 22.4
Plot 7 DF 67 780 125 16.9
*CF: coniferous forest, DF: broad-leaved forest

plots in this study area consisted of one plantation (Plot 1) and six natural forest survey plots 
(Plots 2–7) within the national park to evaluate the applicability of the ALS-based ITD method, 
as shown in Fig. 3 and Table 1.(11,12) 
 There are three conifers (Plots 2, 4, and 6) and three broad-leaved trees (Plots 3, 5, and 7) for 
each forest type. The point density of ALS data is 67–125 points per square meter and the 
maximum tree height is 16.9–25.3 m.

2.2 Data acquisition

 In this study, ALS was conducted on the study site to build a digital twin database for 
individual tree-based forest management using complete enumeration survey data. The ALS 
equipment used in this study was Leica CityMapper-2, a multisensor system consisting of hybrid 
oblique imaging and high-density LiDAR airborne sensors, as shown in Fig. 4.
 In addition, DLS and TLS were also conducted in six survey districts within the study area 
for ALS-based tree entity extraction quality analysis. The TLS equipment used in this study was 
the handheld Leica BLK2GO, and DLS was by an L1 LiDAR sensor mounted on a DJI M300 
RTK quadrotor drone to acquire point cloud data of the survey area.
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2.2.1 ALS data acquisition

 The ALS of the study area was conducted on April 10, 2022, before the forest vegetation 
growth rate accelerated, using the Leica CityMapper-2 system (Fig. 4). A total of 17 flight paths 
of high-density LiDAR point cloud data, along with hybrid oblique imaging and near-infrared 
(NIR) imaging, were adopted.
 The average point density of ALS-based point cloud data was 40.4 points per square meter, 
which was used for ALS-based ITD experiments and the vertical structure analysis of forests, 
including tree height and crown information.(13)

 Additionally, hybrid oblique and NIR images were analyzed through CV analysis to generate 
RGB and color infrared (CIR) orthoimages of the study site. These images were used for object-
based forest type classification, allowing trees in the study site to be classified into coniferous 
and broad-leaved categories and the horizontal structure of the forest to be analyzed. Bentley 
Context Capture software was used for the CV analysis of the images.
 As shown in Fig. 5, in addition to the orthoimage, the point cloud data generated from the CV 
analysis of the study site, DSM, and 3D mesh were also produced to visualize related data when 
building a tree-based forest management digital twin.(8)

2.2.2 TLS data acquisition

 In this study, TLS was performed in six plots (Plots 2–7) established in the study area to 
determine the optimal parameters and perform the quality analysis of ALS-based ITD.(14)

 In TLS, the 3D coordinates of the corners of each plot were measured using VRS GPS and 
the total station and used to match ALS and TLS data. The TLS equipment used in this study is 
Leica BLK2GO, a handheld LiDAR scanner that can easily scan trees in the survey area. This 
equipment, using simultaneous localization and mapping technology (SLAM), is applied to 
enable high-density LiDAR survey, making data acquisition easy. It is small and light, weighing 
less than 1 kg, including the battery. It has the advantage of allowing the easy survey of 
mountainous terrain with steep slopes, as well as areas that are difficult for people to access. In 

Fig. 4. (Color online) Data acquisition with airborne LiDAR photogrammetry.
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this study, for the precise measurement of the study site, scanning was conducted three times, as 
shown in Table 2, to acquire TLS-based point cloud data.
 Figure 6 shows the TLS-based point cloud data status for Plot 2 [(a) 2D PCD, (b) 3D PCD]. 
The TLS-based point cloud data shows a point density of more than 40,000 points per square 
meter on the ground, and the quality of the DEM is very high. However, depending on the 
scanning range of the equipment, the point density of tree crown data is relatively low; thus, for 
trees with a large tree height, the tree height tends to be smaller than that determined by ALS-
based PCD, owing to the limitations of the scanning range.(15)

3. ALS-based Horizontal and Vertical Structural Surveys of Forests

 In this study, the total area of   the study site (8.32 km²), which is a natural forest within the 
national park, was targeted. The results of ITD of forest type and ALS-based PCD, which are 
information on the horizontal structure of forests, were used. As shown in Fig. 7, we performed 
ITD to generate the vertical structural information of the forest, such as H and DBH.

3.1	 Object-based	forest	type	classification	using	orthoimage

 The horizontal structure of a forest is information that generally indicates the tree species and 
forest type included in the forest type map. In this study,  CV analysis was performed on digital 

Fig.	5.	 (Color	online)	Outputs	with	CV	analysis	of	five-direction	aerial	images.
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Fig. 6. (Color online) TLS-based point cloud data of Plot 2: (a) TLS-based 2D point cloud data (Plot 2: BLK2GO), 
(b)	TLS-based	3D	point	cloud	data	(Plot	2:	BLK2GO),	and	(c)	difference	in	tree	height	(ALS	VS	TLS).

Fig. 7. (Color online) ALS-based forest structure analysis.

Table 2
(Color online) TLS methodology with Leica BLK2GO in PLOT.
1st Scanning 2nd Scanning 3rd Scanning

   

- preliminary investigation
- equipment inspection
- GNSS control surveying

- scanner attitude calibration
- closed section settings
-	equipment	location	definition

- data matching 
- inspection performance
- checking for missing data
-	creating	a	scanning	file

(a) (b) (c)
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images acquired through ALS to generate RGB and CIR orthoimages, and on the basis of this, 
nonforest land was first classified through a vegetation index, which is the visible atmospherically 
resistant index (VARI), to distinguish forested vegetation areas from non-vegetated areas, and 
forest type classification was performed using the normalized difference vegetation index 
(NDVI).
 The results of the forest type classification (coniferous forest,  broad-leaved forest) of trees in 
the study area through object-based image analysis (OBIA) performed in this study are shown in 
Fig. 8.(16)

 For the quality analysis of the object-based forest type classification results in the study area, 
500 random points were generated for each clinical trial, and the quality evaluation for each 
forest type was performed using an error matrix.(17)

 In this study, we improved the method using only the existing NDVI and first classified and 
analyzed nonforest land in the target area through VARI. As a result, the classification accuracy 
of broad-leaved trees was relatively improved, with a recall of 95.9%, a precision of 95.9%, and 
an F1 score of 0.959. Through this, we found that the object-based forest type classification 

Fig.	8.	 (Color	online)	Result	of	object-based	forest	type	classification	of	study	area:	(a)	orthoimage	of	study	area,	
(b)	multiresolution	segmentation,	 (c)	 forest	 type	classification	with	assigned	class	 (NDVI + VARI), (d) coniferous 
forest	(0.36	≤	NDVI	≤	1),	(e)	broad-leaved	(0.28	≤	NDVI	<	0.36),	and	(f)	CF	+	DF	+	nonforest	(ground)	(0.32	≤	VARI).

(a) (b) (c)

(d) (e) (f)



704 Sensors and Materials, Vol. 37, No. 2 (2025)

method based on orthoimages proposed in this study showed a reliability of more than 95%. The 
object-based forest type classification results of the study area were vectorized and used for ITD 
and the vertical structure analysis of ALS-based PCD.

3.2	 ALS-based	determinations	of	optimal	ITD	algorithm	and	parameters	by	forest	type	
in natural forest

 The vertical structural analysis of a forest is the process of generating tree height, DBH, and 
crown data. In this study, we determined the optimal algorithm and forest type parameters to 
perform ITD using high-density ALS data to convert from the previous ABA to the individual 
tree-based approach for the vertical structural analysis of forests.
 In general, ITD algorithms using LiDAR data are classified into point cloud segmentation 
(PCS)(18,19) and CHM segmentation (CS).(20,21)

 In this study,  ITD experiments were conducted in two steps. In the first ITD experiment, we 
evaluated the applicability of the ITD algorithm to plantation forest (Plot 1: Fig. 3) comprised 
mainly of coniferous trees included in the study area.
 In the second experiment, we determined the optimal ITD and parameters for each object-
based forest type classification for the six natural forest survey areas (Plots 2 to 7: Fig 3) existing 
in the study area.
 The number of trees (N), tree coordinates (Xt, Yt), and DBH for each survey district were 
determined by cutting a stem cross section at a breast height of 1.2 m, starting from the ground 
surface of LiDAR data, using the TLS scan results for each survey district., and the most 
probable value was generated for trees with DBH > 6 cm.
 In addition, the most probable value of tree height was measured by fusing TLS and ALS 
data to overcome the limitations of the scanning range of the TLS equipment. The ITD 
experiment for Plot 1, an ALS-based artificial forest, was conducted through the same process as 
shown in Fig. 9, and both methods showed an ITD quality of more than 90% (Table 3).
 In the ALS-based ITD experiment, the CHM segmentation method showed a higher detection 
quality than the PCS method owing to the abundant tree canopy information in ALS data.

Fig. 9. (Color online) ITD process and results of Plot 1 (manmade forest).
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 In addition, on the basis of the results of Plot 1, which was an artificial forest, a second ITD 
experiment was conducted targeting the survey area in a natural forest (Plots 2 to 7).
 In the ALS-based tree entity extraction experiment from a natural forest, the parameters with 
the highest quality were determined for each forest type through repeated experiments, changing 
the main parameters for each algorithm,(22–24) as shown in Fig. 10 and in the ITD experiment of 
this study. GreenValley International’s LiDAR360 software was used.
 In the ALS-based analysis of the quality of ITD from natural forests, recall, precision, and F1 
score were analyzed using a confusion matrix, which is used as a classification performance 
evaluation index in machine learning.
 As a result of analyzing the quality of ITD from natural forests using CHM segmentation, as 
shown in Table 4, all plots show an ITD quality of more than 70%. For coniferous trees with a 
DBH of 0.1 m or more (Plots 2, 4, and 6), the ITD quality was close to 80%. On the other hand, 
in the case of  broad-leaved trees (Plots 3, 5, and 7), the quality of ITD was lower owing to the 
variety of tree species and the degree of bending being greater than that of coniferous trees.

3.3 Calculation of DBH	using	nonlinear	regression	equation

 DBH is the diameter of a tree at a breast height of 1.2 m and is important information on the 
vertical structure of a tree along with its height. The direct measurement of the DBH of 
individual trees using ALS-based point cloud data is difficult owing to the lack of point density.
 Therefore, in this study, the tree height data generated during the ALS-based ITD process 
was used to determine the DBH of the detected trees through the following nonlinear regression 
equation:

 .b HH a DBH DBH a b= × → = ×  (1)

 The determination of the optimal nonlinear regression equation for calculating DBH for each 
forest type was conducted on trees from six survey plots (Plots 2 to 7) in the Bugok District of 
Chiaksan National Park. Among these, trees with a small DBH due to a different forest type or 
because the point cloud was cut off owing to being located on the border of the survey area were 
excluded.
 Through the TLS-based height data of 225 trees in the coniferous tree group (Plots 2, 4, and 
6) and 225 trees in the broad-leaved tree group (Plots 3, 5, and 7) obtained in this way, the 
calculation formula for DBH for each forest type was determined as shown in Table 5.

Table 3
ITD quality analysis of Plot 1 (manmade forest).

ITD algorithm Tree No. 
(Plot 1) TP FP FN Sum Recall (%) Precision 

(%) F1 score

Point cloud   
segmentation (PCS) 71

61 3 10 74 85.9 95.3 0.9037

CHM segmentation 
(CS) 64 1 7 72 90.1 98.5 0.9412
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Fig. 10. Determination of optimal ITD methodology (CS) in accordance with forest type in natural forest: (a) 
coniferous and (b)  broad-leaved forests.

Table 4 
(Color online) Results of ITD quality analysis and optimal parameter determination through ALS-based CHM 
segmentation.

(a)

(b)
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 As shown in Table 5, the quality of the regression equation for calculating DBH was analyzed 
using the root mean square error (RMSE) of the DBH observed on the basis of TLS for each 
forest type and the DBH determined by the nonlinear regression equation.
 As a result of the analysis, RSME for coniferous trees was +3.4 cm, which was slightly larger 
than that for broad-leaved trees (±3.2 cm). This result is due to a lack of data on trees with a 
small or large DBH. It is considered that it can be improved by increasing the amount of data, 
such as tree DBH or H, from forest type survey districts in the future.

4.	 Creation	 of	 a	 Digital	 Twin	 Database	 for	 Forest	 Management	 in	 the	 Bugok	
District	of	Chiaksan	National	Park

 In this study, the results of multisensor-based aerial LiDAR surveying for the natural forest in 
the Bugok District (8.32 km²) of Chiaksan National Park were used. The method for creating 
horizontal and vertical structure data based on trees established through this study and the 
process for calculating the carbon storage capacity were performed using the same process as in 
Fig. 11. By doing so, a digital twin DB for forest management based on individual trees was 
constructed. 

4.1	 Creating	a	digital	twin	DB	for	forest	management	based	on	individual	trees

 A tree-based forest management digital twin system refers to a virtual space for forest 
management centered on three-dimensional forest management data for individual tree units 
using ALS data, A tree-based forest management digital twin can perform three-dimensional 
forest management by increasing the level of detail (LOD) of forest management data and can 
improve the ability to cope with forest disasters such as forest fires and landslides. 
 In this study, multidirectional images acquired through airborne laser surveying were used to 
perform object-based forest type classification to create boundaries between coniferous and 
broad-leaved forests.

Table 5 
(Color online) Determination of nonlinear regression equation for calculating DBH.
Forest Type Coniferous Forest Broad-leaved  Forest
No. of trees 225 225
Nonlinear Regression 
Equation DBH = 4.17809*1.000984H DBH = 4.686619*1.001002H

Regression Curve   

RMSE (cm) ±3.4 ±3.2
R-squared 0.8563 0.7499
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 Using the generated boundary, we applied CHM segmentation, an optimal ITD methodology, 
to the high-density PCD acquired through airborne laser surveying to extract coniferous and 
broad-leaved forests in the entire  study area by tree unit, and tree number, tree coordinates, tree 
height, and tree crown information were generated.
 The DBH of the extracted trees was estimated using a nonlinear regression equation for each 
forest type. Using the DBH, the stem volume, biomass, and carbon storage capacity of each tree 
were calculated to create a forest management database for each tree unit for the entire area of   
the study area.

4.1.1	 Postprocessing	of	object-based	forest	type	classification

 In this study, prior to ITD in the study area, RGB and CIR images were used to classify the 
forests in the study area into coniferous and broad-leaved trees through OBIA in order to apply 
different parameters for each forest type.
 In the forest classification applied in this study, the nonforest part of the study area was first 
classified using VARI, and then the boundaries between coniferous and broad-leaved trees in the 
study area were created using NDVI.

Fig. 11. (Color online) Process of tree-based forest management digital twin database construction with airborne 
LiDAR surveying data (Chiaksan Bugok District: 8.32 km²).
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Since the object-based forest type boundary is represented as a square in pixel units, a 
postprocessing step of the object-based clinical boundary was performed to correct this, as 
shown in Fig. 12, to finally create the boundary between the coniferous and broad-leaved forests 
for the research subject.

4.1.2	 CHM	generation	and	ITD	by	tree	type

 In this study, the ALS-based high-density PCD acquired from the entire study area were 
classified by forest type on the basis of the boundary generated through OBIA. 
 Next, ITD was performed by applying forest type-specific parameters of CHM segmentation, 
the optimal ITD methodology determined through this study.
 In particular, in the process of ITD by tree species, deciduous conifers such as larch were 
identified using a large-scale forest map, and the boundaries of each forest were corrected. Then, 
a canopy height model (CHM) for each forest was created following the process shown in Fig. 13 
for ITD.
 In this study, ITD was performed through CHM segmentation applying the parameters in 
Table 4 using the ALS-based CHM for each forest area of   the Bugok District of Chiaksan 
National Park, as shown in Fig. 13.
 As a result of ITD in the research area, a total of 791,280 individual trees were extracted, 
including 293,154 coniferous trees and 498,126 broad-leaved trees (Fig. 14).

4.1.3	 Carbon	storage	data	generation	for	individual	trees	for	forest	management

 In this study, we generated individual tree coordinates (X, Y), tree height (H), and crown 
information for each tree by tree species. Using the generated tree height, we calculated DBH 
through a nonlinear regression equation (Table 5).

Fig. 12. (Color online) Postprocessing of object-based forest type boundary.
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 Additionally, we estimated the stem volume of individual trees by applying species-specific 
breast height form factors to the tree height and DBH data obtained from ITD across the study 
area.
 We then estimated the forest biomass and carbon storage capacity per tree by applying the 
forest biomass expansion and carbon conversion factors to the entire forest in the study area.
 Through this process, we created a total of 18 forest management digital twin databases for 
each tree in the entire research area within the Bugok District of Chiaksan National Park. By 
extracting individual trees by forest type for the whole research site, we built a forest 
management database. 
 The statistical analysis results of the created database, as shown in Table 6, indicate that the 
average height of coniferous trees is greater than that of broad-leaved trees. However, the 
average DBH of broad-leaved trees is larger than that of coniferous trees, and the total stem 
volume is 2.16 times larger for broad-leaved trees. Furthermore, the biomass and carbon storage 
capacity of broad-leaved forests are more than twice those of coniferous forests, indicating that 

Fig. 13. (Color online) Canopy height model of Chiaksan Bugok District (8.32 km²).

Fig. 14. (Color online) Results of ITD of Chiaksan Bugok District (8.32 km²).
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DBH affects carbon storage more than tree height. This suggests that broad-leaved forests are 
more beneficial than coniferous forests in terms of carbon storage capacity.
 In this study, we conducted ALS-based ITD in the natural forest at the research site and 
generated 18 types of vegetation structure and carbon storage data per tree. Our work 
demonstrates the potential for constructing an ALS-based individual tree forest management 
digital twin database.

4.2	 Creating	a	forest	management	data	thematic	map	using	a	forest	management	digital	
twin	DB

 In this study, we confirmed that it is possible to provide intuitive information necessary for 
forest management, such as digital-based tree unit visualization data, by creating a thematic map 
using a total of 18 forest management digital twin databases for individual trees.
 As shown in Fig. 15, through the tree-based tree height thematic map of the research area, it 
is possible to confirm the difference between the tree height distributions of coniferous and 
broad-leaved forests in the research area and the region where very tall trees grow in large 
numbers in accordance with forest type.
 Additionally, the individual tree-based forest management digital twin database can be used 
to create 2D and 3D thematic maps of DBH, stem volume, biomass, and carbon storage capacity. 
 Through this, information on the creation of forest resources and information required for 
effective individual tree-based forest management can be easily checked (Fig. 16).

4.3	 Establishment	of	a	pilot	of	digital	twin	for	individual	tree-based	forest	management

 In this study, we classified forest types across the entire research area in the Bugok District of 
Chiaksan National Park using the results of multisensor-based airborne laser surveying and ITD 
by forest type through CHM segmentation. 
 We then constructed a database containing 18 types of forest management structure 
information and carbon storage for each tree. Through this study, a pilot of the forest 
management digital twin platform was built by linking the forest management digital twin 

Table 6 
(Color online) Tree-based forest management database and statistical analysis of Chiaksan Bugok District (8.32 
km2).
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database based on the entire tree and the related thematic maps.
 For the pilot construction of the forest management digital twin platform, the LOD of the 
forest management database, built using the open-source cesium spatial information platform, 
was enhanced by applying a 3D tree model for each clinical area based on Unreal, a tool recently 
popular in gaming. Additionally, 3D tiles were applied to improve the visualization performance 
and reduce the weight of the 3D model for each tree (Fig. 17).
 In addition, we plan to implement a simulation function for responding to forest disasters 
such as landslides and forest fires by linking the tree unit forest management digital twin 
database constructed through this study with existing meteorological and soil-related topic 
information.

Fig. 15. (Color online) Tree height thematic map with forest type.

Fig. 16. (Color online) 2D and 3D thematic maps with forest management database (tree height/DBH/stem volume/
biomass/carbon storage capacity).
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5. Conclusion

 In this study, a total of 18 types of forest management information were made into a DB by 
applying carbon absorption coefficients to the horizontal structure information of forests 
generated using ALS-based aerial images and CIR images and the vertical structure information 
of forests generated using high-density PCD. The main conclusions drawn through this study are 
as follows.
1)  Object-based forest type classification was performed using an orthoimage, and a 

classification accuracy of more than  95% was achieved for both coniferous and broad-leaved 
trees.

2)  The ALS-based optimal ITD algorithm was established, and an ITD quality of 73% was 
shown for each forest type in a natural forest through CHM segmentation.

3)  DBH was calculated by determining a nonlinear regression equation for each forest type 
using the tree height of the survey districts and showed RMSE of more than ±3 cm for each 
forest type, but it is believed that this can be improved by expanding the survey districts in 
the future.

4)  By applying the optimal ITD methodology established in this study, the forest types of the 
entire study area in the Bugok district of Chiaksan National Park were classified, and 
individual coniferous trees (293194 trees) and broad-leaved trees (498126 trees) were 
classified through CHM segmentation. 

5)  Ultimately, a total of 791280 tree entities were extracted, and a total of 18 forest management 
digital twin databases were created for all trees.

 As mentioned above, the object-based forest type classification technology established 
through this study, individual tree vertical structure analysis through ALS-based ITD, and 
carbon storage calculation technology were used to generate forest management information 
based on total data, and a digital twin for individual trees forest management was built. 
 In addition, the established forest management digital twin databases are expected to be 
widely used as decision-making support data that can provide predictive information through 
cause analysis and simulation in the future when various forest disasters and forest damage, such 
as forest fires and landslides, occur.

Fig. 17. Pilot construction of Unreal-based tree unit forest management digital twin.
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