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	 In this study, we investigated the spatial and temporal changes in village distributions within 
the Korean Peninsula’s Demilitarized Zone (DMZ) using deep learning methods. Historical 
maps from the 1910s and 1950s were analyzed to analyze house distributions and identify 
changes caused by historical events. A custom convolutional neural network model was 
developed for automated feature extraction, achieving high accuracy compared with traditional 
methods. The findings provide foundational data for understanding the historical continuity of 
settlements within the DMZ and aim to support future research on its restoration and 
development.

1.	 Introduction

	 With the signing of the “Korean Military Armistice Agreement (hereinafter referred to as the 
Armistice Agreement)” on July 27, 1953, the division of the Korean Peninsula was effectively 
established, and as a result, new boundaries and regions that had never existed before were 
formed. In the full text of Volume 1 and the maps in Volume 2 of the Armistice Agreement, 
boundaries and border areas such as the Military Demarcation Line, Demilitarized Zone (DMZ), 
and Han River Estuary Neutral Area are described and diagrammed in detail. The DMZ, formed 
around the Military Demarcation Line, has become a space where people can no longer reside.
	 The DMZ, which had been recognized as a residential area before the signing of the 
Armistice Agreement, began to be reexamined only after the year 2000, and studies concerning 
the region started to emerge. However, the investigation of villages that disappeared within the 
DMZ was conducted by superimposing a 1:50000 scale topographic map produced by the 
Japanese Government General of Korea in the 1910s to analyze the distribution of houses and 
villages in the 1910s. In this investigation, the number of houses and village size and 
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characteristics were examined.(1–3) In this study, spatial data regarding houses were extracted 
and analyzed using the screen digitizing method, and village areas and sizes were derived 
through Thiessen polygon creation. However, screen digitizing consumes a significant amount 
of time because the scanned maps are georeferenced and researchers manually extract the 
coordinates of individual houses one by one.
	 On the other hand, the 1:50000 scale topographic map of the Korean Peninsula was measured 
three times. The third topographic map, referred to as the “Oman Basin Topographic Map,” is 
the first official 1:50000 scale map produced using triangulation and consists of 722 map sheets. 
This map provides critical information about the Korean Peninsula in the early 1900s. Later, in 
the 1950s, the Volume 2 map of the Armistice Agreement, which revised the map produced 
during the Japanese colonial period, also provides important contemporary information.
	 Past maps contain historically, geographically, and economically significant information of 
an era.(4) These maps display Earth’s surface as it existed in the past, with rich geographical 
features and high geographical accuracy, providing detailed information on elements such as 
ecology, urban structures, and natural landscapes. Such maps are valuable for conducting large-
scale time-series analyses across various scientific disciplines, including urban planning, 
transportation, natural disasters, and archaeology.(5–9) The most critical task in utilizing such 
data is the accurate extraction of geographical features in digital data formats.(10) Typically, this 
involves digitizing scanned paper maps, a process that is time-consuming and costly.
	 To address these challenges, researchers have recently been adopting automated feature 
extraction methods, with deep convolutional neural network (CNN)-based models being proven 
highly efficient.(11) For example, Can et al.(4) conducted a study to automatically recognize 
various road types and their pixel-level locations using a CNN architecture on the third military 
map of the Austria–Hungary historical map series. Similarly, Xia et al.(11) investigated and 
compared three CNN-based texture map models with different feature extractors on the old 
national map of Switzerland: a pretrained VGG19 CNN, an autoencoder, and a hybrid model 
combining both. Additionally, Uhl et al.(10) conducted research on the extraction of human 
settlement patterns by applying CNN techniques to historical topographic maps of the U.S. 
Geological Survey. In Korea, however, no studies have applied CNN to the analysis of historical 
topographic maps. Previous studies primarily utilized the screen digitizing method, which did 
not fully account for time and spatial constraints.(1–3) The application of CNN to symbol 
extraction analysis on historical maps is expected to effectively overcome limitations related to 
time and spatial constraints.
	 The purpose of this study is to conduct a foundational investigation into houses distributed 
within the DMZ in the past. By identifying their spatial distribution and examining changes over 
time, we aim to provide a dataset of historical villages that can be used for future research. This 
work carries future-oriented value, serving as a basis for restoring the DMZ into a habitable area 
in the years to come.
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2.	 Methods

2.1	 Study area

	 The Military Demarcation Line was determined by the Armistice Agreement on July 27, 
1953, and the areas retreating 2 km to the north and south from the Military Demarcation Line 
were designated as the DMZ. The DMZ has become a space where people can no longer settle 
down and live, and the records of this space are not easily obtainable. The ultimate goal of this 
research is to reinterpret these spaces and explain to current generations that they were spaces 
where many people lived even before the war, so that they can recognize them as spaces with 
historical continuity.
	 The area of the DMZ is 889.7 km2, and its administrative districts include Paju-si and 
Yeoncheon-gun in Gyeonggi-do, and Cheorwon-gun, Yanggu-gun, Inje-gun, and Goseong-gun 
in Gangwon-do in South Korea and Kaesong-si, Cheorwon-gun, Pyeonggang-gun, Gimhwa-
gun, Geumgang-gun, and Goseong-gun in Gangwon-do in North Korea. The 1:50000 scale 
topographic map consists of 20 map sheets from the 1910s and 9 map sheets from the 1950s, as 
shown in Fig. 1.

2.2	 Overall methods

	 To achieve our research purpose, deep learning, an artificial neural network learning 
technique, was employed in machine learning and cognitive science, which is a statistical 
learning algorithm based on neural networks in biology.(12,13) Among these methods, we planned 
to use the CNN algorithm, a type of deep neural network, to create a distribution map of houses 
in the DMZ and its adjacent areas, and to detect changes by using period-based overlap analysis, 
as shown in Fig. 2.
	 To analyze disappeared villages within the DMZ, we collected maps from the 1910s and 
1950s and performed georeferencing using the Arcgis 10.8 program to assign coordinates to the 
maps and conduct sampling. After completing the sampling, houses in the maps were extracted 
using a CNN model created through the eCognition program, and house distribution data were 

Fig. 1.	 (Color online) Extent of study area and location of selected map sheets for analysis.
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constructed. Accuracy was improved through machine learning, and after confirming the 
results, the positional accuracy of the house distribution was maximized manually. Subsequently, 
Arcgis 10.8, a spatial analysis program, was utilized with the extracted data to derive results 
through overlap and change detection based on the distribution.

2.3	 Step 1: Data collection and preprocessing

	 To analyze the disappeared villages in the DMZ, as a preparatory step, we first collected the 
1:50000 topographic map of the Korean Peninsula produced in the 1910s and Volume 2 of the 
Armistice Agreement map produced in the 1950s. Then, using the ArcGIS 10.8 program, the 
military demarcation line was extracted from the 1950s map, the outskirts of the DMZ were 
extracted through buffer analysis, and the DMZ boundary was transformed into a polygon 
through modification. Afterwards, the maps of each era were georeferenced and coordinates 
were assigned to each map. The 1950s map was obtained from the U.S. National Archives, but 
owing to its low resolution, preprocessing graphics work was performed to physically increase 
the resolution. Data with high spatial resolution are very important for improving the analysis 
accuracy of CNN models.(14)

	 To detect disappeared villages, a sampling step was performed to identify and extract houses 
from historical topographic maps, which were produced as GroundTruth data through the 
sampling process. By defining the training area through the selection of a test area and 
overlapping the GroundTruth data, we used this training region for the validation of the CNN 
model.

Fig. 2.	 (Color online) Overall methods.
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	 In the training area, target and nontarget samples were classified, as shown in Fig. 3. Target 
samples correspond to houses, and nontarget samples correspond to other symbols. In this 
manner, each dot symbol representing a house was divided into individual objects, labeled, and 
prepared as data for CNN-based feature extraction. This preprocessing step is essential to ensure 
that the model can accurately identify house locations and distinguish them from other map 
symbols.

2.4	 Step 2: Model architecture design (custom CNN model for geospatial analysis)

	 The eCognition program’s CNN analysis architecture is designed primarily for object-based 
image analysis, focusing on detecting specific symbols on topographic maps and extracting their 
features. Therefore, it provides an extremely effective model structure for this study. Compared 
with other architectures such as LeNet, AlexNet, VGGNet, GoogleNet, ResNet, DenseNet, and 
DPN—primarily designed for general image classification and object recognition tasks—this 
architecture is more suitable for geospatial data analysis. It is optimized for detecting symbolic 
features on topographic maps and adopts a single-layer architecture, enabling faster and more 
efficient detection of target patterns and symbols. This approach also captures the spatial 
information surrounding each point.
	 The CNN model architecture used in this study consists of an input layer, a convolutional 
layer with a relatively large kernel, a max pooling layer, and an output layer that generates a 
probability heatmap for the presence of the target object (house).(15–17) Each layer performs a 
specific function in the detection process, allowing the model to capture the spatial patterns 
necessary for accurately identifying the distribution of village houses.
	 The input layer receives preprocessed 14 × 14 pixel patches, enabling the model to recognize 
fine-grained patterns within map segments. This 14 × 14 pixel size serves as the basis for the 
typical spatial resolution analysis of houses on a 1:50000 scale map.
	 The convolutional layer applies a 7 × 7 kernel, producing 40 feature maps. By performing 
this convolution operation 40 times using different kernels, we can generate unique feature 

Fig. 3.	 (Color online) Sample load (thematic map) and creation of samples.
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maps, capturing patterns such as house shape, density, and alignment. Through this, the model 
can learn to distinguish houses from other symbols. The convolutional layer operation follows 
Eq. (1).

	
7 7

1 1
[ , ] [ , ] [ , ]

m n
Y i j X i m j n W m n b

= =

= = + + ⋅ +∑∑ 	 (1)

Y[i, j] is the output feature map at position (i, j), X[i + m, j + n] represents the input values from 
the 7 × 7 neighborhood around position (i, j) in the input patch, W[m, n] is the weight of the 
convolutional kernel at position (m, n), and b is the bias term added to each convolutional 
operation.
	 Following the convolutional layer, a max pooling layer is applied to reduce the spatial 
dimension of the feature maps. This step excludes irrelevant information, retains only the most 
salient features, and enhances the model’s robustness. It is the most important step in spatial 
analysis, playing a crucial role in preserving the extracted house locations by removing parts 
that do not contribute to house detection. With the reduced computational burden, it allows the 
model to process large amounts of map data more efficiently. The max pooling operation, 
generally applied with a 2 × 2 pooling window, selects the maximum value within each 
subregion of the map, with related operations following Eq. (2).

	 [ , ] max( [ : 2, : 2])Y i j X i i j j′ = + + 	 (2)

Y′[i, j] is the pooled output and X[i : i + 2, j : j + 2] represents a 2 × 2 region in the feature map 
from the convolutional layer.
	 The final layer is the output layer, which generates a location-based probability heatmap 
representing the likelihood of a house being present across the patch. This provides a visual 
representation of the spatial distribution of detected houses, with higher values indicating a 
higher probability of target presence. This approach makes the distribution of villages over time 
directly interpretable, facilitating geospatial analysis and change detection. The output heatmap 
is generated using a softmax or sigmoid activation function, depending on whether multiclass or 
binary detection is required. In this case, it appears that the sigmoid function is used to calculate 
the probability of target presence.

2.5	 Step 3: Training of model (custom CNN model)

	 Training consists of numerous individual training steps. In each step, a randomly selected 
batch of samples is input into the model, gradients for each weight are calculated using 
backpropagation, and the weights are optimized using statistical gradient descent. In this 
training, the learning rate was set to 0.0006, the number of training steps was set to 5000, and 
the batch size, which is the number of samples used in each training step, was set to 50. The 
learning rate is a very important parameter. If it is too low, not only does the training process 
become slow, but there is also a risk of getting stuck in local minima without reaching near-
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optimal weights. If it is too high, the model may initially improve quickly, but it may not be able 
to reach the bottom of the minimum and may simply “jump” around it. When the model is 
applied through CNN training, the model is created as a heatmap layer, as shown in Fig. 4. On 
the basis of this layer, pixels (houses) classified as targets are analyzed.

2.6	 Step 4: Model validation and evaluation of error rates

	 Through model training, the locations of houses were compared against the original 
GroundTruth data. In the training area (3000 × 5000 pixels), where there are a total of 183 
houses in the GroundTruth data, 182 houses were displayed through model training, yielding a 
Miss value of 1, as shown in Fig. 5 and an overall error rate of 99.45%. This value was calculated 
by setting the threshold to 0.9. When the value was less than 0.9, more points appeared on the 
line based on vector data, and when it exceeded 0.9, fewer house points appeared. Regarding the 
error rate, the following equation was used.

	 Error False MissError Rate Error Rate
Total Number of Samples Hit False Miss

+
= =

+ +


	 (3)

2.7	 Step 5: Custom CNN model application to study area

	 The model, which was applied on the basis of the training area, was then sequentially applied 
to the nine map sheets that comprise the study area. The results were tested again on the 
Pyeonggang map sheet, from which the GroundTruth data were extracted but were not part of 
the training area. Out of 3288 houses, 3188 houses (Hit value) matched, and 100 houses were 
Miss values. A False value meant that there was no overlap. The accuracy was approximately 
97%. This model was applied to each of the remaining eight map sheets and the houses extracted 
from each map sheet were converted into vector files, as shown in Fig. 6.

Fig. 4.	 (Color online) Model training and creation of target vector layer.
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3.	 Results: Temporal Analysis of Village Distribution Changes

	 Using the Arcgis 10.8 program, we extracted only the house data inside the DMZ from the 
house data of the nine map sheets obtained by applying the Custom CNN model, and a single 

Fig. 5.	 (Color online) Miss value in the training area.

Fig. 6.	 (Color online) Results of applying nine map sheets to CNN model.
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DMZ house dataset was created using the Merge tool. This dataset represents the houses in the 
DMZ in the 1950s. The house data for the 1910 topographic map were created by vectorizing and 
then excluding the urban area of the 1950s. These two datasets were then analyzed for changes 
using kernel density analysis and overlap analysis, and the distribution pattern of houses was 
confirmed by comparing their density distribution within the DMZ. The change in the number 
of houses by administrative district in the DMZ is presented in Table 1. In Gyeonggi-do, the 
number of houses appears to have decreased owing to the incorporation of houses into city areas, 
resulting from urban expansion.
	 In Gangwon-do, the number of houses increased, particularly around Cheorwon; in contrast, 
Goseong experienced a reduction of more than half. This difference is likely due to the 
concentration of houses around the plains. In the case of Goseong, it is suggested that the 
reduction in the number of houses is related to their incorporation into the expanding city 
boundaries.

Table 1
Results of changes in the regional distribution of houses (units) in the DMZ.

Category Total Gyeonggi Paju Yeoncheon Gangwon Cheor-
won Yanggu Inje Change

1910s 4188 1894 669 1225 2294 1550 265 176 303
1950s 4015 1682 476 1206 2333 1777 212 201 143
Change −173 −212 −193 −19 +39 +227 −53 +25 −160

Fig. 7.	 (Color online) Results of house density analysis in the 1910s.
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	 In the 1910s, according to the administrative districts of South Korea, houses were 
concentrated in nine areas: Sagok, Kaeseong-si, Gyeonggi-do; Hangdong-ri–Bangnae-dong and 
Yangjimal, Yeoncheon-gun; Woljeong-ri, Yugok-ri, and Soseong-dong, Gangwon-do; 
Mundeung-ri, Yanggu-gun; Jangseung-ri, Inje-gun; and Oemyeon-ri, Goseong-gun, as shown in 
Fig. 7. However, in the 1950s, houses were concentrated in eleven areas: Daeseong-dong, Paju-
gun; Hangdong-ri–Bangnae-dong, Yeoncheon-gun; Yangjimal, Daemari, Cheorwon-gun; 
Woljeong-ri, Yugok-ri, Sinmok-dong, Soseong-dong, Mundeung-ri, Yanggu-gun; Jangseung-ri, 
Inje-gun; and Oemyeon-ri, Goseong-gun, confirming that the population distribution expanded 
more east–west than before, as shown in Fig. 8. What these regions have in common is that they 
have well-developed roads and rivers connecting north and south, making it easier to expand 
houses.

4.	 Discussion and Conclusions

	 In this study, we constructed house data by creating and applying a custom CNN model to 
villages that disappeared in the DMZ, and used these data to compare house and village patterns 
according to the distribution of houses in the DMZ. Data were constructed more easily and 
quickly through the creation of the CNN model than through manual methods of existing 
vectorization. In the error rate verification, an accuracy exceeding 97% was achieved, and it is 
expected that future data construction research using CNN models will be able to provide more 
accurate and easy-to-use basic data.

Fig. 8.	 (Color online) Results of house density analysis in the 1950s.
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	 However, through this study, several points requiring improvement were identified for 
constructing point data within vector data. To build sample data, such as the initial GroundTruth 
data, it is necessary to have a topographic map with improved resolution, and when constructing 
GroundTruth data, the “Point” must be displayed precisely at the very center. Through this 
process, more accurate analysis and data acquisition will be possible. One must also clearly 
understand the settings for the second preprocessed pixel patch value and the threshold value, 
and input the corresponding values. This is because applying preprocessed pixel patch values 
and threshold values is crucial for ensuring accuracy and reducing analysis time. In this study, a 
preprocessed 14 × 14 pixel patch was applied, and the threshold value was set to 0.9, resulting in 
highly accurate data. The 14 × 14 pixel patch is best suited for point extraction on the map, and if 
it is larger, similar symbols are detected. The smaller than 0.9, the more unnecessary symbols 
were detected, and such symbols were not extracted. In the case of learning rates and training 
phases, model operation speed and analysis accuracy were set to the closest value. Adjustment of 
these values ​​was determined to be the most suitable for house extraction on the map.
	 Lastly, there is the issue of data unification for time series analysis. To align the data, a 
unified analysis based on newly constructed data rather than previous data is required. In this 
study, existing data were modified and used because of the low resolution of the 1910s map. It is 
evident that there is an error in this regard. Furthermore, since accurate house data values for 
built-up areas formed owing to urban expansion did not exist, data on these built-up areas were 
excluded, limiting the analysis results for house and village patterns. In the future, it will be 
necessary to explore various methods to address these issues in order to reconstruct the past and 
contribute to research.
	 This is the first study exploring the discovery and use of data with deep learning from a 
geographical perspective. Given that research on disappeared villages and the extraction of 
related data are not actively pursued, and that there is insufficient research on how to efficiently 
extract such data, we focused on the geographical aspect of research on the distribution and 
change detection of disappeared villages through deep learning. It is anticipated that it will 
contribute to providing more accurate and user-friendly basic data through the sharing of 
research results based on the constructed database.
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