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	 Global warming and increasing disasters have worsened conditions for crop growth, 
intensifying the global food crisis alongside population growth. IoT technology is critical in 
smart agriculture, enabling the real-time monitoring and optimization of crop environments 
through big data analysis and machine learning. However, deep learning models struggle to 
adapt to diverse conditions owing to reliance on specific training scenarios. In this study, we 
propose an ontology-based smart agriculture system that emphasizes flexibility and scalability. 
Unlike deep learning models, ontology models can adapt to different crops or environmental 
changes by simply adding or modifying relevant classes, eliminating the need for extensive 
retraining. The system integrates IoT circuits for real-time data collection and ontology 
reasoning using Owlready2. It automates decision-making and device control, demonstrated in a 
hydroponic environment where it successfully responded to changes and executed appropriate 
actions. This approach combines enhanced adaptability, operational efficiency, and cost-
effectiveness, lowering the barriers for farmers to adopt smart agriculture and enabling seamless 
management across diverse scenarios.

1.	 Introduction

	 With the increasing frequency of global warming and various natural disasters, the global 
environment is becoming less favorable for crop growth. At the same time, the world’s 
population continues to rise, intensifying the food crisis. The United Nations estimates that by 
2050, the global population will grow by an additional 2 billion, bringing the total from today’s 
7.8 billion to approximately 11 billion by the end of the century.(1) To enhance agricultural 
productivity, it is crucial to understand and predict how various environmental factors—such as 
soil conditions, fertilization, and irrigation—affect crop growth. By managing these 
environmental conditions effectively, we can significantly improve crop yields. IoT technology 
plays a vital role in monitoring the environments where crops are cultivated.
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	 In the context of Industry 4.0, IoT technology has been widely adopted in various fields, 
including healthcare, environmental monitoring, commerce, industry, and smart cities.(2) In 
recent years, information and communication technology has been integrated into traditional 
agricultural activities, paving the way for the Fourth Agricultural Revolution. Throughout 
history, agriculture has undergone four key revolutions: (1) the era of traditional agriculture, 
defined by human and animal labor; (2) the era of mechanized agriculture, characterized by the 
introduction of machines; (3) the era of automated agriculture, marked by rapid technological 
advancements; and (4) the current era of smart agriculture, driven by emerging technologies.(3)

	 In this era of smart agriculture, cutting-edge technologies such as wireless sensor 
networks,(4,5) IoTs,(6,7) agricultural robots,(8,9) drones,(10,11) artificial intelligence,(12,13) and cloud 
computing(14,15) are being applied to crop management. As these technologies are further 
developed and implemented, agricultural production is set to experience unprecedented 
revolutionary changes. These innovations not only enhance productivity but also optimize 
resource utilization, laying the foundation for precision agriculture. IoT technology, for instance, 
monitors environmental conditions on farmland in real time using various sensors that measure 
temperature, humidity, soil nutrients, and weather conditions. The data collected from these 
sensors are transmitted to a central system for analysis and processing. On the basis of the 
analysis, the system provides farmers or automated equipment with appropriate recommendations 
or instructions for actions such as irrigation, fertilization, and pest control.(16) IoT enables the 
automation and visual management of the entire agricultural production process, allowing each 
stage, from planting to harvesting, to be precisely controlled through data analysis.
	 The integration of artificial intelligence and machine learning algorithms makes decision-
making in agriculture more scientific and efficient, enhancing both yield and quality. Moreover, 
the widespread use of agricultural robots and drones reduces reliance on manual labor while 
boosting production efficiency. Through the synergy of these technologies, not only can crop 
yields be increased, but resource consumption can also be significantly reduced, fostering 
sustainable agricultural development and effectively addressing the challenges posed by the 
global food crisis.
	 In this study, we focus on the development of smart agriculture, emphasizing the critical role 
of IoT in agricultural transformation, particularly through the application of sensor technology. 
We propose an IoT-based smart agriculture system specifically designed for hydroponic farming 
scenarios. It includes the development of an IoT data collection circuit capable of the real-time 
monitoring of key environmental parameters, such as pH, temperature, electrical conductivity, 
and water level. These data are transmitted to a cloud database via an integrated wireless fidelity 
(Wi-Fi) module for further analysis and management.
	 In addition, we integrated IoT with the proposed ontology model to enhance the system’s 
flexibility and scalability. The ontology model allows for the addition or adjustment of relevant 
classes in response to changes in crop types or environmental conditions, eliminating the need 
for extensive model retraining or parameter adjustments. This enables the system to adapt more 
easily to diverse application scenarios and meet varying agricultural demands.
	 The findings demonstrate how precise data collection and analysis can significantly enhance 
the effectiveness of IoT-based agricultural practices. Furthermore, we provide an innovative 
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approach to building flexible and scalable smart agriculture systems, laying a foundation for 
sustainable and efficient agricultural development.

2.	 Previous Research

	 With the ongoing development of IoT, the market has seen the emergence of low-cost sensors 
and open-source applications available for users to download. As a result, smart agriculture no 
longer requires significant financial investment, enabling farmers to adopt IoT technology in 
agriculture to achieve modern, data-driven farming. IoT-based agriculture leverages information 
technology to ensure that crops and soil receive the necessary resources for optimal health and 
productivity. The intelligent agriculture system is composed of three layers: the physical layer, 
the network layer, and the application layer, as illustrated in Fig. 1. Each layer performs distinct 
tasks while relying on data from others.(17,18)

	 Physical Layer: This layer comprises various sensors, terminal devices, agricultural 
machinery, wireless sensor networks, RFID tags, and readers. Common sensors include 
environmental sensors, animal and plant information sensors, and other agriculture-related 
sensors. These devices capture essential information such as temperature, humidity, wind speed, 
plant diseases, pests, and animal vital signs. The collected data are processed by embedded 
devices and transmitted to higher layers via the network layer for further analysis and decision-
making.
	 Network Layer: The network layer serves as the infrastructure for IoT, encompassing a 
converged network formed by various communication networks and the Internet. Transmission 
can be achieved through wired technologies such as the CAN bus and RS485 bus, or wireless 
technologies such as Zigbee, Bluetooth, LoRa, and NB-IoT. The network layer not only transmits 
agriculture-related data collected by the physical layer to the application layer but also delivers 
control commands from the application layer to the physical layer, enabling devices to perform 
corresponding actions.

Fig. 1.	 (Color online) The three-layer architecture of the intelligent agriculture system consists of a physical layer, 
a network layer, and an application layer
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	 Application Layer: The application layer is the highest level of the architecture and where the 
value of IoT becomes most evident. This layer includes intelligent platforms and systems used 
for the environmental monitoring and control of animals and plants, the early warning and 
management of pests and diseases, and the traceability of agricultural product safety. These 
applications help improve production efficiency, save time, and reduce costs. This architecture 
demonstrates how IoT technologies can revolutionize agricultural practices, bringing precision, 
efficiency, and sustainability to farming.
	 With the advancement of IoT technology, low-cost sensors and open-source applications have 
become available in the market.(19) This development allows farmers to implement IoT 
technology for modern agricultural management without the need for significant financial 
investment in smart agriculture. IoT-based agriculture leverages information technology to 
ensure that crops and soil receive the necessary conditions for optimal health and productivity.(20)

	 IoT agricultural research is categorized into three types of application based on the level of 
intelligence: monitoring, monitoring with basic analysis, and intelligent applications. The role of 
monitoring-only IoT systems in smart agriculture lies at the core of the “data supply chain.” 
These systems provide real-time, reliable data to support the analysis and decision-making 
processes required by more advanced smart applications. While these systems do not possess 
intelligent functions themselves, they serve as a critical foundation for higher-level intelligent 
processing and automation. For instance, Mahaidayu et al. proposed the use of IoT to monitor 
pH and conductivity parameters in real time for hydroponic farming.(21) Hidayanti et al. 
developed a system that combines IoT technology and solar power to remotely monitor and 
maintain various parameters of hydroponic solutions.(22) Similarly, Sung et al. implemented a 
water quality monitoring system utilizing sensors for turbidity, temperature, pH, conductivity, 
and total dissolved solids.(23) Although IoT systems with monitoring functions provide essential 
data support for smart agriculture applications, they lack advanced data processing and real-time 
decision-making capabilities. As a result, they are not equipped to respond flexibly to dynamic 
demands and large volumes of data. These systems play a primary role in supplying data but 
must work in tandem with intelligent systems to achieve fully automated, smart agricultural 
outcomes.
	 IoT systems with both data collection and control capabilities play a more critical role in 
smart applications than agricultural IoT systems that are limited to monitoring functions. These 
advanced systems not only collect real-time environmental and equipment data but also 
automate control processes. For example, Mohammed et al. utilized IoT solutions to manage 
modern underground irrigation systems, improving irrigation management for date palms in 
arid regions.(24) Similarly, Hsu et al. developed a smart farm irrigation system that uses IoT 
technology for remote monitoring.(25)

	 However, such systems still face significant limitations owing to the lack of intelligent 
analysis. This results in low data utilization efficiency, limited decision support, insufficient 
resource optimization, and a lack of predictive maintenance and early warning capabilities. 
These systems cannot be fully managed intelligently, as they still rely on manual data analysis 
and decision-making, which constrains the potential benefits of smart agriculture. To overcome 
these shortcomings, agricultural IoT systems need to incorporate technologies such as big data 
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analysis and machine learning to achieve higher levels of intelligent management and decision 
support. In recent years, many researchers have focused on integrating big data analysis, 
machine learning, and other technologies into smart agriculture. For example, Bu and Wang 
proposed an IoT-based smart agricultural system that leverages edge cloud computing, 
combining advanced information technologies such as AI and cloud computing with agricultural 
production to boost food yields.(26) This system integrates AI models with deep reinforcement 
learning in the cloud, allowing for real-time, intelligent decision-making, such as determining 
the optimal amount of water for irrigation to enhance crop growth environments. Sharma et al.(13) 
applied image-based analysis for crop prediction, using images taken in the field under different 
lighting conditions to assess the nitrogen status of wheat crops and prevent overfertilization. 
They also used artificial neural networks to effectively identify wheat crops alongside unwanted 
plants and weeds. However, deep learning models are typically optimized for specific tasks or 
data, meaning they perform best in scenarios or tasks that closely resemble their training data. 
While these models offer accuracy within a limited scope, they remain constrained when applied 
to vastly different farms or crop types.
	 To address this issue, we propose a smart agriculture system based on an ontological model. 
Unlike deep learning models, which are task-specific, the ontological model offers greater 
versatility owing to its flexible and scalable knowledge representation. Through a well-defined 
semantic structure, the ontological model does not depend on specific data or tasks, allowing it 
to be extended and applied to a variety of scenarios. This flexibility gives the ontological model 
superior adaptability in intelligent applications, the semantic web, and multi-domain knowledge 
management.

3.	 Research Architecture

	 Owing to the controllability of the environment, high-precision data collection, high 
experimental repeatability, and the convenience of technical validation, an indoor hydroponic 
environment was selected as the testing scenario for the intelligent agriculture system. This 
environment utilizes sensors, solenoid valves, hydroponic containers, and other equipment for 
simulation. The system’s architecture is divided into three layers: the physical layer, the network 
layer, and the application layer, as illustrated in Fig. 2. 
	 The specific functions of each layer are as follows:
	 Physical Layer: The physical layer includes various environmental monitoring sensors, such 
as pH sensors, temperature sensors, and water level sensors, in addition to solenoid valves for 
control.
	 Network Layer: The network layer is responsible for transmitting the data collected from the 
physical layer, as well as the control commands generated by the application layer. It serves as a 
bridge between the physical world and the digital environment.
	 Application Layer: The application layer consists of cloud-based applications, such as 
databases for storing data transmitted from the network. The data from the physical layer is 
stored and monitored in the database, with data visualization tools provided for easy observation 
by users. In certain scenarios, the application layer extracts data from the database to perform 
analysis and generate control commands, which are sent back to the devices for execution.



888	 Sensors and Materials, Vol. 37, No. 3 (2025)

	 This multilayer structure allows for efficient environmental monitoring and automated 
control within the hydroponic system.
	 Figure 2 illustrates the detailed operational process of the intelligent agriculture system 
architecture.
1.	 The IoT data collection circuit gathers data from sensors via I/O points.
2.	 The Wi-Fi module within the IoT data collection circuit uploads the sensor data to the cloud 

database for storage.
3.	 Data is extracted from the database and analyzed using a hydroponic ontological model built 

with the Owlready2 suite.
4.	 The inference results are stored back into the database.
5.	 The IoT collection circuit retrieves these inferences and visualizes both the collected sensor 

data and the status of devices (e.g., solenoid valves).
6.	 Finally, the inference results are used to control devices such as solenoid valves via the I/O 

points of the IoT data collection circuit.
	 This system enables the automated, data-driven control of the hydroponic environment for 
precision agriculture.

4.	 Methods

	 The objective of this study is to design and implement a smart agricultural IoT system for 
data collection, storage, inference, and control to ensure that crops are maintained in an optimal 
environment. The following outlines the specific methods and steps involved in constructing the 
system:

Fig. 2.	 (Color online) Ontology-based smart agriculture system architecture diagram.
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4.1	 Physical Layer

	 The physical layer is a fundamental part of the IoT architecture, responsible for interacting 
with the physical world and converting real-world data into processable information. This layer 
consists of sensors, actuators, and embedded devices, allowing IoT systems to collect and 
respond to environmental information in real time. In this study, a hydroponic environment was 
used for validation. The solenoid valve is used as the actuator in this system, controlling water 
levels and nutrient distribution. Aside from the actuator, the following sensors were selected for 
monitoring in the physical layer:
	 pH Sensor: pH measurement is critical in hydroponics, as it affects nutrient uptake, root 
health, microbial balance, and system stability. By accurately monitoring pH levels, hydroponic 
systems can optimize plant growth, improve productivity, and integrate automated management 
using IoT technology.
	 Temperature Sensor: Temperature monitoring plays a crucial role in plant growth, nutrient 
absorption, dissolved oxygen levels, microbial activity, and disease risk. Accurate temperature 
control ensures optimal conditions for healthy plant development, improving both crop quality 
and yield.
	 Electrical Conductivity Sensor: Conductivity measurement provides essential information 
about nutrient concentration and water quality. Monitoring electrical conductivity (EC) allows 
growers to adjust nutrient levels, maintain balance, and optimize plant growth and yield.
	 Water Level Sensor: Monitoring water levels is critical for root health, uniform nutrient 
distribution, and stable system operation. Proper water level management prevents oxygen 
deprivation or nutrient deficiencies and improves resource efficiency.
	 The microcontroller units (MCUs) in the physical layer are responsible for data collection, 
device control, communication management, and energy efficiency optimization. They play a 
key role in the intelligent and automated operation of IoT devices. The LinkIt 7697 IoT 
development board was chosen for this study owing to its built-in Wi-Fi, Bluetooth capabilities, 
low-power design, and rich I/O ports. Since the sensor and actuator signals do not directly match 
the I/O ports of the LinkIt 7697, a peripheral circuit was designed to interface them, as shown in 
Fig. 3.

4.2	 Network Layer

	 The LinkIt 7697’s built-in Wi-Fi module is utilized as the network layer of the IoT system, 
offering efficient, secure, and low-power wireless data transmission. It supports a broad range of 
connectivity options and flexible integration, making it ideal for IoT applications, including 
smart agriculture and smart cities.

4.3	 Application Layer

	 The application layer includes the cloud-based MySQL database and the ontological model. 
As shown in Fig. 4, the cloud server Network Attached Storage serves as the database platform, 
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offering scalability, easy data backup, and low cost. Data management is performed using 
phpMyAdmin, a web-based MySQL management tool. The LinkIt 7697 of the physical layer 
retrieves data from sensors and stores it in the database using SQL syntax through PHP, while 
control commands are similarly processed and executed via the IoT data collection circuit.
	 The following paragraph will explain the process of building the ontological model. The 
ontological model in this study is constructed using Protégé, a tool that establishes knowledge 
ontologies to represent and describe knowledge using Classes, Individuals, and Properties. This 
model allows for better knowledge representation and inference in the hydroponic system. In 
Table 1, the source of knowledge for this ontological model is derived from the Technical Manual 
for the Production and Management of Vegetable Crops (2022), published by Taiwan’s 
Agriculture and Food Agency, Ministry of Agriculture.(27)

	 In ontology, Class, Individual, and Property are three fundamental concepts that are closely 
related to each other. In ontology, Class defines the type of object, Individual is the concrete 

Fig. 4.	 (Color online) Information operation flow diagram of the IoT data collection circuit and cloud database.

(a) (b)

Fig. 3.	 (Color online) IoT data collection circuit: (a) layout diagram and (b) physical printed circuit board.
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instance of that type, and Property describes the characteristics of these instances. The 
relationship among these three forms the fundamental structure of ontology, allowing us to 
organize and understand various aspects of knowledge. Below are the explanations among these 
three.
	 Class is an abstract concept used to define a group of objects that share common 
characteristics or properties. It is a conceptual collection that describes the common features of a 
certain category of entities. For example, “Human” can be a Class that encompasses the 
characteristics of all humans. In this study, Class is created to represent the entities in the 
system. For example, the class Pump includes different control entities such as the pH, EC, and 
water level control pumps. Vegetable types, such as Vegetables A and B, are categorized under 
the class Vegetable (as shown in Fig. 5).
	 Individual refers to a concrete entity that is a specific realization of a Class. Each Individual 
is a member of a Class and possesses the properties defined by that Class. Individual in this 
study is then created under the established classes. Each pump (e.g., pH and EC control pumps) 
and vegetable type (e.g., Vegetables A and B) is defined as an individual within their respective 
class (as shown in Fig. 6).
	 Property is a specific entity used to describe the characteristics or attributes of a Class or 
Individual. It can be viewed as the qualities or features of a Class or Individual. Property in this 
study is added to define the specific characteristics of individuals. For instance, a property could 
describe the state of a pump, whether it is active or inactive (as shown in Fig. 7).
	 Next, rules are established on the basis of the basic formula of hydroponic nutrient solutions 
shown in Table 1, and these are categorized into two types of vegetables: A and B. We retrieve 
data from the database to store the properties that change the state of the individual based on 
sensor values. This information is used to infer whether to open the solenoid valve to increase 
the hydroponic nutrient solution or regular water level. Since temperatures vary across regions 
in spring and summer compared with autumn and winter, a temperature of 20 ℃ is used as the 
cutoff point to determine whether it is spring/summer or autumn/winter (as shown in Fig. 8). 
Inference rules are established to trigger control actions. For example, when pH falls below a 
specified threshold, the system infers that the pH pump needs to activate to add more nutrient 
solution. After generating inferences, the results are uploaded to the cloud database for storage, 
where they can be used for controlling devices, such as opening solenoid valves to adjust the 
hydroponic environment automatically. This process allows the ontological model to represent a 
flexible and extensible knowledge structure, enabling smart inferences for the hydroponic 
system.

Table 1
Basic formula of vegetable hydroponic liquid.

Vegetable groups EC (mS/cm) pH
spring/summer autumn/winter spring/summer autumn/winter

A group: Chinese 
cabbage, amaranth, 
rapeseed, water spinach

1.02–1.28 1.28–1.70 5.5–6.0 6.0–6.5

B group: Crown daisy, 
Japanese crown daisy, 
mustard greens

1.28–2.13 1.70–2.55 5.5–6.0 6.0–6.5
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5.	 Results and Discussion

	 The data collected in this study include pH, EC, temperature, and water level. The units that 
need to be controlled are the pH, EC, and water solenoid valves, which are used to adjust the 
nutrient solution or water level. First, environmental data are captured via the IoT and uploaded 
to a database for storage. The crop type used in this study is vegetable type A, as illustrated in 
Fig. 9(a). As time progresses, plants gradually consume water and nutrients, resulting in 
decreases in pH, EC, and water level, as shown in Fig. 9(b).
	 The inferred control commands for the pH, EC, and water solenoid valves are also stored in 
the database, as depicted in Fig. 10. A, B, and C represent the pH, EC, and water solenoid valves, 
respectively, with their current control statuses being ON/OFF/ON.
	 Once the pH, EC, and water level are uploaded to the database, a Python program retrieves 
the data and makes inferences based on pre-established rules within the hydroponic ontology 
model. The inference results are shown in Fig. 11, indicating that the pH concentration is 
sufficient, so the pH solenoid valve should be closed. Moreover, the EC solenoid valve should be 
opened owing to insufficient EC, and the water solenoid valve remains open to replenish the 

Fig. 6.	 Individual diagram of the ontological model of hydroponic vegetables established by Owlready2.

Fig. 5.	 Category diagram of the ontological model of hydroponic vegetables established by Owlready2.
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water supply. These inference results are then stored back in the database and sent to the IoT 
device, which controls the solenoid valves accordingly. As a result, the EC and water level are 
adjusted and increased through the control commands issued to the solenoid valves, as 
demonstrated in Fig. 12.
	 While general MCUs can be used to capture sensor data and control devices, they are limited 
to simple input–output conversions. As environmental complexity increases, the control logic 
becomes exponentially more complicated, and MCUs, with their limited memory, cannot handle 
large amounts of data. In this study, the database serves as a central hub for recording and 
querying data, while the custom ontological description environment ensures a shared data 
foundation for collaboration. The ontology model processes this data to make inferences and 
then applies these results to the control system.
	 One of the key advantages of using an ontology model is its scalability. When new equipment 
is added or removed, only the relevant categories within the model need to be updated, leaving 
the existing framework and functionality unaffected. For example, if Vegetables A and B are 
rotated, only two vegetable types need to be classified within the model. If a third vegetable, 
type C, is introduced, an additional category can be easily added without affecting the previous 
settings. This flexibility and independence make ontology-based systems more adaptable and 
scalable than other intelligent systems.
	 Deep neural networks,(28) support vector machines,(29) random forest regression,(30) k-nearest 
neighbors algorithm,(31) and deep learning(32) exemplify the diverse and highly effective 

Fig. 7.	 Attribute diagram of the ontological model of hydroponic vegetables established by Owlready2.
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applications of AI in hydroponic agriculture. The application of AI in hydroponic agriculture 
introduces transformative advantages in precision control and intelligent management, 
significantly enhancing the operational efficiency and accuracy of hydroponic systems. AI 
technologies enable real-time parameter adjustments, effectively reducing the waste of water and 
fertilizers. Their data-driven nature empowers systems with robust decision-making capabilities, 
leveraging the analysis of extensive environmental datasets to optimize cultivation conditions. 
Furthermore, AI facilitates improved crop health management, allowing for the early detection 
of diseases and rapid responses, thereby considerably advancing the sustainability and 
productivity of agriculture. These characteristics position AI not only as a pivotal driver of 
hydroponic agriculture but also as a cornerstone for the future development of smart agriculture.
	 Nevertheless, AI-based models exhibit inherent limitations. They primarily operate within 
localized learning domains and model existing data with high precision but struggle to 
extrapolate to scenarios beyond the known parameter ranges.(33) By contrast, ontology-based 
intelligent agricultural systems overcome these limitations. Ontology, as a flexible and scalable 
knowledge representation approach, organizes and describes knowledge through the structure of 

Fig. 8.	 Rule diagram of the ontological model of hydroponic vegetables based on Owlready2.
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classes, individuals, and properties. Its core advantage lies in its high scalability; when 
environmental conditions or task requirements change, only the relevant classes need to be 
added or adjusted without requiring model retraining or parameter tuning. For instance, 
integrating a new vegetable type into the system merely involves adding a corresponding class 

Fig. 9.	 (Color online) (a) pH, EC, temperature, and water level of hydroponic nutrient solution stored in cloud 
database. (b) Graphs of pH, EC, and water level of hydroponic nutrient solution over time.

(a) (b)

Fig. 11.	 (Color online) Inferred results based on the current status of hydroponic systems.

Fig. 10.	 (Color online) Control commands of the solenoid valve stored in the cloud database.
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or instance, a process that is both efficient and nondisruptive to the existing framework and 
functionality.
	 Historically, numerous scholars have explored the application of ontologies in agriculture. For 
example, Aminu et al.(34) focused on knowledge management for maize crops, whereas 
Abbasi et al.(35) developed an ontology model for aquaculture and hydroponic systems in vertical 
farming. Alharbi et al.(36) proposed an ontology model for managing plant diseases and pests. 
However, these studies primarily concentrated on the theoretical aspects of ontology modeling 
and semantic reasoning, rather than its practical implementation with IoT technologies.
	 In contrast, the contribution of this study lies in the development of a scalable intelligent 
agricultural system based on IoT technologies, integrating ontology modeling with hardware 
control. This system not only offers semantic reasoning capabilities for knowledge management 

Fig. 12.	 (Color online) EC and water level records before and after the ontological model inference.
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but is also successfully applied to hydroponic agricultural scenarios, enabling the real-time 
monitoring, inference, and automated control of environmental data. Compared with previous 
studies focusing on knowledge representation, the experimental results of this study demonstrate 
the system’s precise regulation of pH, EC, and water level in the hydroponic environment, 
effectively transforming semantic reasoning outputs into actionable physical behaviors.

6.	 Conclusion

	 With advancements in science and technology, IoT is gradually being introduced into 
agriculture to modernize traditional farming practices. This shift aims to boost productivity 
while reducing the need for manual labor, thus moving towards smart agriculture. A key factor 
in achieving this transformation is establishing a seamless connection between the physical 
world and the cyberspace. However, coordinating and optimizing the interaction between these 
two domains, especially given the large number of sensors and devices involved, present a 
significant challenge.
	 In this study, we designed an IoT data collection circuit to address the connectivity issue 
between the real world and the cyberspace, enabling real-time data transmission to the network. 
The collected data are directly uploaded to a database for storage, which eliminates the 
inefficiencies caused by different transmission protocols and data types, ensuring that the data 
can be effectively utilized for future applications.
	 The use of ontology in our system provides significant scalability, allowing for flexible 
adaptation to changes in scenarios or tasks. New categories can be easily added to the model 
without disrupting existing services and functionalities. Furthermore, the low cost of the 
hardware and software used makes it more accessible for farmers, lowering the entry barrier for 
adopting smart agriculture solutions.
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