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 Gait phase recognition plays a key role in the motion control of exoskeleton robots. Surface 
electromyography (sEMG) is predictive and contributes to accurate gait phase recognition. To 
address the challenge of low accuracy of intention recognition in exoskeleton robots, a hybrid 
algorithm using an improved cuckoo-search-based support vector machine (ICS-SVM) was 
proposed to achieve accurate gait phase recognition. First, the raw sEMG signals from ten 
subjects were collected through gait experiments. Second, time-domain features including mean 
absolute value, waveform length, variance, and root mean square were extracted from the sEMG 
signals. Third, the support vector machine (SVM) used in this study is the most common model 
for intention recognition. However, the SVM has the problem of being sensitive to parameter 
tuning. A cuckoo search (CS) algorithm was applied to optimize the penalty factor and kernel 
function parameter of the SVM to accelerate convergence. An information-sharing mechanism, 
a local enhancement operator, and a new way to build a bird’s nest are introduced to overcome 
the low search efficiency of the original algorithm and its tendency to fall into local optimal 
solutions. Experiments showed that the algorithm model combines the advantages of the ICS 
algorithm and the SVM model, and can accurately distinguish seven gait phases, with an average 
recognition accuracy of 95.125%, which is higher than those of the SVM (92.177%) and CS-
based SVM (CS-SVM) (94.170%) models. This study will provide technical support for the 
development of intelligent medical and exoskeleton robotics fields.

1. Introduction

 Walking in humans represents a complex, periodic motion. This process is predominantly 
governed by the interaction of muscles, joints, and bones, orchestrated by the nervous system,(1,2) 
which mirrors the motion dynamics inherent to the human anatomy. The assessments of the 
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locomotor performance and control of exoskeletons rely significantly on the analysis of gait 
phases,(3) especially crucial in the motion control of exoskeleton robots, which is the basis for 
developing control strategies and realizing human–robot integration.(4) Currently, researchers 
collect and detect gait information through a variety of sensors, such as photoelectric sensors,(5–7) 
inertial measurement units,(8) vision sensors,(9) joint angle sensors,(10–12) force platforms,(13) and 
foot pressure insoles.(14)

 Surface electromyography (sEMG) signals consist of the temporally and spatially integrated 
superposition of muscle fiber motor unit action potentials,(15) which contain movement-related 
information such as muscle activity intensity(16,17) and activity time.(18) sEMG signals are 
generated before limb movement, which compensates for the delay problem in data processing 
and pattern recognition.(19) In addition, changes in sEMG signals are directly related to the levels 
of muscle contraction and activation, accurately reflecting the intent of the movement.(20,21) The 
use of human gait recognition technology using sEMG signals in exoskeleton research has been 
a hot research topic in recent years.(22) However, the non-smooth, weak, and low-frequency 
characteristics of sEMG signals, as well as the effects of various factors such as sensor noise and 
cardiac interference on signal quality, increase the difficulty of gait phase recognition.(23–25)

 In this context, a variety of algorithmic models have been developed for processing and 
recognizing sEMG-based gait information. These models include neural networks,(26) hidden 
Markov models,(27) and linear discriminant analysis (LDA).(28) In particular, gait recognition 
approaches using the support vector machine (SVM) have shown remarkable effectiveness. 
SVM has been shown to outperform neural networks and other classifiers such as nonlinear 
logistic regression, multilayer perceptron (MLP), and LDA in classifying a wide range of gait 
patterns, demonstrating its superior classification ability.(29,30)

 SVM algorithms have attracted attention for their excellent performance in classifying small 
samples and motion intentions, as well as for their strong generalizing ability. However, how to 
optimize the parameters of SVM is still a challenge. Several researchers have attempted to 
optimize the parameters and improve the classification accuracy using genetic algorithms, 
quadratic discriminant analysis, and other methods. For example, Zheng and Wang recognized 
the lower limb motion states by the SVM method, and in order to reduce the problem of 
recognition error during the motion state transition process, the quadratic discriminant analysis 
method was introduced, which was used to recognize the motion patterns in the state transition 
stage.(31) Zhang et al.(32) suggested the use of a genetic algorithm to refine the parameters of the 
SVM method, which improved the local search capabilities and convergence of the algorithm, 
and address the issue of low SVM classification accuracy. However, the fusion algorithm has 
difficulty in parameter tuning, which increases the complexity of the optimization process. In 
contrast to other methods, the cuckoo search (CS) algorithm has several advantages, including 
fast convergence, a minimalistic parameter set, and easy implementation. Research scholars 
optimize the parameters of SVM by introducing the CS optimization algorithm, and the gesture 
recognition experiments show that the average correctness rate reaches 90.28%, which solves 
the problems of the SVM algorithm, such as low convergence speed and low optimization 
accuracy. In addition, current research in the area of motor intent recognition mostly focuses on 
the analysis of upper limb movements. Compared with the hand and arm, the dynamics of lower 
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limb movements usually exhibit higher redundancy, which poses additional challenges for 
recognition and classification. The performance of existing lower limb motion intent recognition 
algorithms is not always satisfactory, owing to the more complex biomechanical properties of 
lower limb movements, as well as the signal noise and variability problems encountered in 
acquiring and processing lower limb electromyographic signals.
 In this study, a new hybrid algorithm [improved CS-based SVM (ICS-SVM)] combining the 
improved CS and SVM is proposed to enhance the recognition accuracy of seven phases on the 
basis of lower limb sEMG signals. By applying the CS algorithm to optimize both the penalty 
and kernel function parameters (C and σ) of the SVM, the generalization capabilities and 
classification performance of the model were significantly improved. This study provides 
valuable technical insights and new perspectives for the application of exoskeletons and 
rehabilitation robots.

2. Materials and Methods

2.1 Gait phase segmentation

 Human gait typically consists of two primary phases:(33) the stance phase and the swing 
phase. On the basis of the gait cycle outlined by Condie,(34) the gait phase can be subdivided into 
load response (LR), midstance (MST), terminal stance (TST), pre-swing (PSW), initial swing 
(ISW), mid-swing (MSW), and terminal swing (TSW).(35) This partitioning of gait temporal 
phases preserves rich gait information, which helps to provide a deeper understanding of gait 
variations during the gait cycle and, in turn, provides more fine-grained guidance for formulating 
robot control strategies. Therefore, in this study, we divide the gait cycle into seven phases and 
base the gait cycle on the displacement trajectories of the toe and heel. Figure 1 demonstrates the 
gait phase recognition based on marker displacement. The transition conditions for each gait 
phase are as follows: the LR to MST phase transition occurs when the right toe (R-toe) reaches a 
local minimum. When the right heel (R-heel) leaves the ground, it marks the transition from 
MST to TST. The TST to PSW phase transition occurs when the L-heel reaches a local minimum. 
The PSW phase transition occurs when the R-heel reaches a local minimum, and the ISW phase 
transition occurs when the R-heel reaches a local maximum. The MSW phase transition occurs 
when the R-toe is at the same level as the R-heel in the vertical direction. Finally, when the 
R-heel reaches a local minimum again, the TSW transitions to the LR phase of the next gait 
cycle.

2.2 Processing of sEMG signals

 The sEMG is a nonstationary, time-varying signal whose frequency characteristics are 
mainly concentrated in the low frequency range. To obtain high-quality sEMG information, 
several preprocessing steps must be performed on the raw signal, including filtering, denoising, 
and eliminating sources of noise that may be introduced during the acquisition process. This 
process typically involves a number of key steps: first, a bandpass filter (cut-off frequency 20–
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400 Hz, 4th-order Butterworth filter) is applied to remove noise outside the frequency range; 
second, the mean value of the signal is reduced by removing the mean value of the signal and 
performing full-wave rectification; third, a low-pass filter (cut-off frequency 6 Hz, 4th-order IIR 
filter) is used to further smooth the signal. The signal envelope was then normalized to allow 
objective feature comparisons between different individuals or muscles. A variety of 
normalization methods for sEMG signals have been proposed in the literature. In this study, the 
method described in the literature(36) was used, i.e., the normalization was based on the average 
amplitude of the rectified signal for each individual at a speed of 1.35 m/s.
 In classification and recognition based on sEMG signals, the length of the signal data has a 
direct impact on the accuracy of the classification model.(37) To effectively segment sEMG 
signals, the neighborhood and overlapping windowing methods are commonly used.(38) In this 
study, we used a sliding analysis window with a length of 60 ms and an increment of 15 ms to 
continuously extract the feature set.(39) As shown in Fig. 2, the preprocessing of tibialis anterior 
(TA) muscle sEMG signals is demonstrated, which can effectively extract key features for 
subsequent analysis.
 In the field of motor intention recognition, the feature selection and extraction of EMG 
signals are the core aspects of the whole recognition process.(40) The features of EMG signals are 
usually categorized into three main types: time-domain features, frequency-domain features, 
and time-frequency-domain features. Considering the computational efficiency, the time-
domain features with low computational cost are selected as the input feature set of the 
classification model in this study. The selected time-domain features include the following:
Mean Absolute Value (MAV): reflects the contraction level of the muscle.(41)

Fig. 1. (Color online) Recognition of gait phases based on marker displacements.
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Waveform Length (WL): represents the amplitude, i duration, and frequency of the sEMG signal. 
It is a measure of signal complexity.
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Variance (VAR): indicates the power of the measured sEMG signal.
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Root Mean Square (RMS): reveals the strength produced by muscles.
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Here, L represents the length of the sliding analysis window, xk represents the k-th sample in the 
i-th window, M is the total number of collected sEMG signal samples, x  is the average value, and 
L represents the sample length.

Fig. 2. (Color online) Preprocessing flowchart of TA muscle sEMG signals.



1058 Sensors and Materials, Vol. 37, No. 3 (2025)

2.3	 ICS-SVM	gait	classification	algorithm

2.3.1 CS algorithm

 A new metaheuristic search algorithm, the CS algorithm, was proposed by Yang and Deb in 
2009, which was inspired by the brooding behavior of cuckoos and the Levy flight behavior of 
fruit f lies.(42,43) Studies have shown that CS algorithms have advantages such as high 
convergence speed and stability in solving optimization problems compared with traditional 
genetic and particle swarm algorithms.(44) However, CS algorithms may encounter low 
convergence speed and insufficient local search accuracy in some cases. To overcome these 
limitations, researchers have proposed some adaptive parameter tuning strategies.(45) These 
strategies can dynamically adjust the algorithm parameters according to the current search state 
to improve the global search capability and local search accuracy of the algorithm. For example, 
Meng et al.(46) used a dynamic step factor function whose value is associated with the distance to 
the current optimal solution, which can effectively guide the search process to evolve toward a 
more optimal solution, thus rapidly improving the quality of the non-optimal solution and 
enhancing the overall search efficiency. The ICS algorithm proposed in this paper is presented 
below.
 In the process of nest searching, the random walk search method in Levy’s flight mode is 
introduced into the CS algorithm and updates the nest position on the basis of these three rules.

 ( 1)
0( ) ( ) ( )t t t t

i i i iz z L z z best Lβ λ β λ+ = + ⊗ = + ⋅ − ⋅  (5)

Here, ( 1)t
iz +  and t

iz  are the positions of the i-th cuckoo nest in the t-th and t + 1 generations, 
respectively. β represents step control. ⊗ represents the entry-wise multiplications. L(λ) is the 
Lévy distribution. best is the current optimal position. β0 is constant, and in this paper, it is set to 
0.01 for the parameter optimization in the CS algorithm. 
 The random number of the Lévy distribution is expressed as [35].
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Here, Γ is the gamma function. u and v are independent random variables that follow a normal 
distribution with a mean of zero and a variance of one. 
 After the nest position is updated, the optimal degree of the nest is calculated by comparing 
the discovery probability with a random number. If the discovery probability is less than the 
random value, the worse nest is discarded and the nest position is reconstructed. The same 
number of new solutions is generated using a form of preference wandering.

 ( 1) ( )t t t t
i i j kz z r z z+ = + ⋅ −  (7)

Here, r ∈ (0,1), and t
jz  and t

kz  are the positions of two random nests at the t-th iteration.
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2.3.2 ICS algorithm

 In the CS algorithm, although Lévy flight is effective in exploring the global solution space, 
the traditional nest position update strategy relies mainly on the comparison between the current 
solution and the optimal solution, which limits the exploration of the diversity of the population 
in the early iteration phase of the algorithm, leading to a decrease in diversity. As the algorithm 
progresses into the middle and late iterations, the likelihood of convergence to a local optimum 
increases owing to the greater similarity between individuals. Similar search strategies can lead 
to a decrease in sample diversity, as described in the literature.(47) To overcome this problem, we 
introduced an information sharing mechanism while preserving the Levy flight properties. This 
mechanism enhances the diversity of the population by incorporating diverse interaction 
information into the position updating strategy and exploiting the information exchange between 
multiple solution sets of different evolutionary operators. Moreover, the periodicity and 
oscillation of the sine-cosine function are used to prevent convergence to local optima. The 
specific strategy is to randomly select three nest positions from the entire population and then 
reorganize each individual after each iteration, with the positive cosine function introduced 
during the reorganization process. The updating of the nest positions follows Eq. (9).

 2 2 itermaxb t= − ×  (8)

 3 1

1 2

0( 1)

0

sin(2 ) ( ) ( )

cos

if 0.

f(2

5

i  0.) ( ( ) ) 5

t t
p pt

i t t
p p

z b r L best z
z

r

z b r be z rst L

β λ

β λ
+

 + ⋅ π ⋅ ⋅ ⋅ −= 
+ ⋅ π ⋅ − ⋅ ⋅

<

≥
 (9)

Here, 
1

t
pz , 

2
t
pz , and 

3
t
pz  represent the three positions randomly selected from all nested positions in 

the t-th iteration. itermax represents the maximum number of iterations.
 Although the CS algorithm can escape local optima in late iterations using the Lévy flight 
strategy, its search precision depends primarily on the accumulation of small step sizes. This 
reliance limits the algorithm’s accuracy and convergence rate, especially when tackling complex 
problems. A localized enhancement operator has been incorporated into the algorithm to allow 
for a more refined search around the local optimum. This is achieved by applying a perturbation 
strategy to the population, which helps to explore a wider solution space and potentially avoid 
premature convergence to a suboptimal result. The design of the perturbation step size is based 
on the difference between the global optimal solution and the current nest position. Specifically, 
the perturbation step size is set as follows.

 1 2( )t t
i is best zξ ξ= × ⋅ −  (10)

 1 12b r bξ = −  (11)

 2 12rξ =  (12)
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 At this time, the position of the nest can be updated using Eq. (13).

 ( 1)t t
i iz best s+ = −  (13)

 In addition, the method of generating new solutions in the algorithm was also improved in 
this study. The traditional CS algorithm uses a random wandering strategy to increase the 
diversity of new nest positions, but this method fails to preserve the optimal positions in the 
current population, leading to a decrease in search efficiency. To address this problem, we 
redefine Eq. (7) to ensure that the tracking and use of the current optimal solution are maintained 
while exploring the new solution space.

 ( 1)
1 2( ) ( )t t t t t

i i j k iz z r z z r best z+ = + ⋅ − + ⋅ −  (14)

 In summary, the proposed ICS algorithm, by introducing the information sharing mechanism, 
the local enhancement operator, and the new nest generation strategy, aims to increase the 
population diversity, strengthen the local search ability, and accelerate the convergence of the 
algorithm. The core procedures of the ICS algorithm are encapsulated in the pseudo code shown 
in Table 1.

Table 1 
ICS algorithm.
Algorithm 1 Improve CS Algorithm

1: Set the initial value of n, itermax, Pa, and current iteration count t
2: Calculate the fitness value of each solution and retain the optimal solution.
3: Set t := 0 
4: for each i∈ [1,n] do
5:     Generate initial population t

iz ;
6:     Evaluate the fitness function ( )t

if z
7: end for
8: repeat
9:     Execute Eq. 8 to calculate b, generate a random number r, and select 3 positions in the nest randomly.

10:         if r ≤ 0.5 then
11:             Execute the Eqs. 10–13 to generate a new 1t

iz +

12:         else
13:             Execute Eq. 9 to generate a new 1t

iz +

14:         end
15:             Evaluate the fitness function and keep the best solution.
16:                 if ( 1( )t

if z +  > ( )t
if z ) then 

17:                      Replace the solution t
iz  with the solution 1t

iz +  the subscript j is used only to distinguish between 
the results of previous and subsequent steps};

18:                 else if (random number r1 > Pa)
19:                     Build new nest with Eq.13
20:                     Keep the best solution;
21:                     Set t = t + 1.
22: until (t < itermax).
23: Output final solution.
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2.3.3 ICS performance analysis

 To comprehensively evaluate the optimization efficiency of the ICS algorithm, we selected 
several standard functions (Table 2) for benchmarking and comparative analysis. Among them, 
the Ackley, Rastrigin, and Griewank functions, which are characterized by multiple peaks and 
local minima, are used to evaluate the algorithm’s ability to escape local extremes and prevent 
bogging down in suboptimal solutions, whereas the Schwefel’s 2.2 function, the sphere function, 
and the sum of squares function are single-peak functions and primarily test the algorithm’s 
optimisation accuracy and convergence speed. 
 Experiments were conducted on a Windows 10 operating system with an Intel® Xeon® 
Silver 4108 CPU @ 1.80GHz, and simulations were performed in the MATLAB 2022b 
environment. In terms of parameter settings, n = 30, itermax was set to 500, and the probability 
parameter Pa was set to 0.25. Each algorithm was run independently 20 times to ensure the 
reliability of the results, and the results of the experiments are expressed as the mean and 
standard deviation of the 20 runs; the detailed data are shown in Table 3. The convergence 
curves of the algorithms are shown in Fig. 3.
 By analyzing the data in Table 2 and Fig. 3, we found that the ICS algorithm significantly 
outperforms the traditional CS algorithm in terms of convergence speed, stability, and 
computational accuracy. In addition, the ICS algorithm exhibits a stronger global optimization 
search ability and can effectively avoid falling into local optimal solutions, which indicates that 
the ICS algorithm has potential advantages in solving complex optimization problems.

Table 2 
Benchmark test functions.
Function Expression Domain Best

Ackley 2

0 0

1 1( ) 20exp 0.2 exp cos(2 ) 20
n n

i i
i i

f x x x e
n n= =

   
   = − − − π + +
   
   

∑ ∑ [−32,32] 0
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1
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n

i i
i

f x x x
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1 1
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nn

i i
i i

f x x x i
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= − +∑ ∏ [−600,600] 0

Schwefel’s 2.2
1 1
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i i

f x x x
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Sphere 2
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1
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i
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f x ix
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Table 3
Comparison results between ICS and CS algorithms (mean ± standard deviation).
Function ICS algorithm CS algorithm
Ackley 8.8818 × 10−16 ± 0 0.6684 ± 0.6102
Rastrigin 0 ± 0 12.3984 ± 3.0452
Griewank 0 ± 0 0.1071 ± 0
Schwefel’s 2.2 6.0115 × 10−75 ± 0 0.9196 ± 0.1215
Sphere 0 ± 0 8.6927 ± 4.0793
Sum square 1.12 × 10−142 ± 0 0.7917 ± 0.4251

(a)

(c) (d)

(e) (f)

(b)

Fig. 3. (Color online) Convergence curve of the function optimization function.
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2.3.4 ICS-SVM

 First, the ICS algorithm is used to optimize the penalty and kernel function parameters of the 
SVM to obtain the optimal parameters (Fig. 4). Second, sEMG features are used to train the 
SVM with optimal parameters. Finally, the trained model is used to predict and recognize 
different gait phases.
 The specific steps can be expressed as follows:
(1)  The sEMG signal data from the lower limbs are collected and preprocessed, and time-domain 

features are extracted and then divided into the training and test datasets.
(2)  The settings of C, σ, n, itermax, and Pa are initialized.
(3)  Training and error calculation are carried out using the training dataset to find and maintain 

the optimal nest position.
(4)  When the random value r is evaluated against 0.5 and found to be less than or equal to this 

threshold, the nest position is updated using Eq. (9), followed by an error comparison with the 
previous nest to ensure that the most favorable nest location and its associated parameters are 
maintained. Conversely, if r is greater than 0.5, the nest position is updated using Eq. (13). 

(5)  If the random number r1 > Pa, then we discard the worse nest and update the nest position 
using Eq. (14). Otherwise, we keep the current nest position unchanged, compute the optimal 
position of the nest, and compare the error with that of the previous nest to maintain the best 
possible position and its relevant parameters.

Fig. 4. (Color online) Flowchart of the ICS-SVM algorithm.



1064 Sensors and Materials, Vol. 37, No. 3 (2025)

(6)  The error of the optimal nest position is compared with the preset accuracy standard. If the 
error is within an acceptable accuracy range, the parameters C and σ are output. Otherwise, 
return to (5) and continue iteration.

(7) The SVM model is trained using the training dataset to obtain the prediction model.

3. Experimental Protocol

3.1 Experimental subjects

 Ten male volunteers (age: 24 ± 3 years old, height: 173 ± 6 cm, weight: 67.5 ± 8.59 kg, and 
lower limb height: 900.30 ± 34.96 mm) were recruited from Tianjin University of Science and 
Technology for this study. All the volunteers had no history of joint or neurological disease or 
injury. All participants signed a written informed consent form in accordance with the policies 
of Tianjin University of Science and Technology before participating in the formal experiment.

3.2 Experimental setups and muscle selection

 In this study, the raw sEMG signals were recorded using twelve electrodes (Noraxon, 
Scottsdale, USA). These sEMG signals were recorded at a sampling frequency of 1500 Hz. The 
Vicon motion capture system (Vicon Motion Systems Ltd., Oxford, UK), operating at a sampling 
frequency of 100 Hz, was used to capture foot trajectories. In addition, the experimental setup 
consisted of several electrodes, reflective markers, a treadmill, and a computer.
 Human lower extremity muscle groups are critical for activities such as walking, running, 
and jumping, including rectus femoris (RF), biceps femoris (BF), semitendinosus, TA, 
gastrocnemius, and gastrocnemius medialis (GM).(48) In this study, seven key muscles were 
selected as targets for sEMG acquisition on the basis of their anatomical locations and 
biomechanical roles (Fig. 5). These target muscles included RF, vastus lateralis (VL), BF, TA, 
GM, gracilis, and right external oblique (REO). Their specific functions are as follows: RF and 
BF are key muscles primarily involved in the movements of knee and hip joints. VL plays a key 
role in maintaining knee stabilization and promoting its extension. TA is responsible for 
controlling ankle dorsiflexion and foot valgus. GM plays an important role in knee and ankle 
dorsiflexion. Gracilis muscles are mainly involved in hip adduction and internal rotation. REO 
is associated with lateral trunk flexion and rotation.

3.3 Experimental protocol

 According to the requirements and purpose of the experiment, we placed the sEMG sensors 
and reflective markers on each subject according to the anatomical location. Ten subjects were 
asked to walk on a treadmill at three different speeds (0.5, 1.35, and 1.8 m/s). Each speed lasted 
20 s and was repeated five times. To minimize possible fatigue-related errors in EMG signal 
acquisition, subjects were allowed to rest for 10 min before each experiment. Gait phase 
recognition in this study consisted of three main steps: signal collection, feature extraction, and 
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gait recognition. First, sEMG and foot mark trajectory data were collected during the gait 
experiment. Then, four time-domain features were extracted from the preprocessed sEMG 
signals, i.e., MAV, WL, VAR, and RMS. Finally, these features were introduced into the ICS-SVM 
classifier for gait recognition. To increase the reliability of the experimental results, each model 
was independently trained three times. The entire process is shown in detail in Fig. 6.

4. Results

4.1 Recognition results of ICS-SVM model

 In this study, 200 datasets were collected from each subject. These datasets were integrated 
into a total dataset of 10 × 200, which was segmented using the k-fold cross-validation method 
(k = 10) to improve the robustness of the model. At each iteration, the data sample of one subject 
was selected as the test dataset for the recognition model, and the data samples of the other nine 
subjects were used as the training dataset. The cross-validation was repeated 10 times, each 
subject was validated once, and the results of the average of 10 iterations were a single estimate. 
The kernel function of the SVM model was set to the Gaussian kernel function, the value range 
of the parameters σ and C was set to [2−10,210], the number of iterations was set to 500, and the 
number of populations was set to 25. The ICS algorithm was used to optimize the σ and C of the 
SVM model. The ICS algorithm was set to 25 nests in this optimization, with a discovery 

Fig. 5. (Color online) Layout diagram of the collection equipment.
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particular, the LR, MST, MSW, and TSW phases were recognized with the highest accuracy, 
with an average recognition accuracy of more than 95%. In contrast, the TST and PSW phases 
had lower recognition accuracies, whereas the ISW phase had the lowest recognition accuracy, 
and this phase was the most prone to misclassification. In addition, the model had the highest 
overall average recognition accuracy of 95.29% when the motion speed was 1.35 m/s.

4.2 Comparing model performance

 Table 4 and Fig. 8 show the results of the comparative analysis of the ICS-SVM model with 
the SVM model and CS-based SVM (CS-SVM) models for the recognition of seven gait phases. 
We can see that when the SVM model is used directly for gait phase recognition, the accuracy is 
92.177%. After the optimization of both the CS and ICS algorithms, the average accuracy rate 
became more than 94%, which indicates that SVM parameter optimization can significantly 
increase the accuracy of gait phase detection. Overall, the recognition performance of the ICS-
SVM model in different gait phases is significantly higher than those of the SVM and CS-SVM 
models, and the average recognition accuracy is improved by 3.2 and 1.01%, respectively. In 
terms of gait phase recognition time, the ICS-SVM model has an average recognition time of 
only 15.6 ms, significantly shorter than those of both the SVM and CS-SVM models. According 
to the standard deviation data of recognition accuracy for each gait phase in Fig. 8, the ICS-SVM 
model shows a greater stability and precise adaptability to changes in gait phases. The 
experimental results show that the ICS-SVM model outperforms both the SVM and CS-SVM 
models in terms of both recognition accuracy and time. This makes it highly effective for gait 
analysis applications within lower limb rehabilitation exoskeletons.

Fig. 6. (Color online) Overall flowchart of the experiment.
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probability of 0.25, and after a maximum of 500 iterations, the kernel function parameter was 
obtained as 2.475, and the penalty factor was obtained as 0.034. We then used the ICS-SVM 
model to perform gait phases at different walking speeds for recognition. The corresponding 
confusion matrix is shown in Fig. 7. We can observe that the ICS-SVM classifier successfully 
recognizes seven gait phases with an average recognition accuracy of more than 94%. In 

(b)

(c)

Fig. 7. (Color online) Recognition of gait phase confusion matrix of the ICS-SVM model: (a) 0.5, (b) 1.35, and (c) 
1.8 m/s.

Table 4
Results of the performance comparison of the models.

Model Recognition Accuracy (%) Average Accuracy (%) Recognition time (ms)0.5 m/s 1.35 m/s 1.8 m/s
SVM 90.03 93.14 93.36 92.177 64.2
CS-SVM 92.66 95.02 94.83 94.170 36.7
ICS-SVM 94.39 95.53 95.45 95.125 15.6
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5. Discussion

 In this study, we explored the use of the ICS-SVM model to recognize the gait phase at three 
walking speeds and obtained that the overall average recognition accuracy can reach 95.125%. 
The average recognition accuracies obtained were 94.39, 95.53, and 95.45% for walking speeds 
of 0.5, 1.35, and 1.8 m/s, respectively, and the highest recognition accuracies were obtained for 
the gait phases of LR, MST, MSW, and TSW (Fig. 8). To test the recognition performance of the 

Fig. 8. (Color online) Recognition of gait phases (mean ± standard deviation): (a) 0.5, (b) 1.35, and (c) 1.8 m/s.

(a)

(b)

(c)
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ICS-SVM model for seven gait phases, we compared it not only with the SVM and CS-SVM 
models, but also with the existing sEMG-based gait recognition models.
 Zhang et al.(49) used a convolutional neural network model to detect and recognize five 
different gait phases, with an average recognition accuracy of 93.40%. Di Nardo et al.(50) 
completed the classification and recognition of gait phases using the MLP model with the feature 
values extracted from the sEMG signals with an accuracy of 93.4 ± 2.3%. Gao et al.(51) 
distinguished four different gait phases by using extreme learning machine (ELM) and LDA 
classification algorithms, and the average recognition accuracies of the gait phases were 87.60 
and 92.105%, respectively. When using the separate time domain features of sEMG, the average 
recognition accuracies of the gait phases were 87.60 and 92.105%, respectively. Yun et al.(52) 
used CS-SVM to recognize seven different gait phases, and the average accuracy of gait phase 
recognition at non-voting was 94.05%. In addition, Yun et al. validated generalized regression 
neural networks, product-based neural networks, and ELM classification models for gait phase 
recognition and found that the recognition accuracies were all low (less than 75%). Zhang(53) 
introduced an SVM model for human posture recognition with an average accuracy of about 
90.80%.
 In contrast to the previous studies, the ICS-SVM model we present can capture more gait 
information. Moreover, the predictive results of this model are consistent with the pattern 
observed in the progression of gait phases. This model has a higher recognition accuracy than 
the existing traditional recognition classification models. Furthermore, an examination of Table 
3 and Fig. 8 reveals that variations in walking speed significantly affect the accuracy of gait 
phase identification. Notably, the accuracy of gait phase recognition reaches its peak when the 
walking speed is set to 1.35 m/s. From the recognition results of each gait phase, we can see that 
the ISW phase has the lowest recognition accuracy and that the recognition error mainly occurs 
in the transition between the temporal gait phases.
 To investigate the effectiveness of ICS for SVM optimization, we compared the differences 
between the ICS-SVM and CS-SVM algorithms (Table 3). We found that the accuracy of SVM 
models optimized with the ICS algorithm was generally higher than those of the CS-SVM 
models, with the average recognition accuracy increasing from 94.170 to 95.125%. This also 
indicates that the ICS-SVM model has some advantages in recognizing the gait phase of the 
lower limbs.
 After analyzing the gait phase detection data, it was determined that there was no potential 
for further improvement in classification accuracy. This phenomenon may be due to the 
synchronization problem between the sEMG signal and the data acquisition of the Vicon motion 
capture system. Since the acquisition frequency of the Vicon motion capture system is 100 Hz 
and the sEMG signal is 1500 Hz, this resulted in a mismatch between each frame of optical data 
and up to 15 frames of EMG data. This mismatch inevitably affects the accurate identification of 
the gait phase when using the Vicon data to verify the sEMG output. In addition, by analyzing 
the confusion matrix of the ICS-SVM model, the recognition error was most significant in the 
ISW phase. Specifically, there is a miscalculation of the toe-off event when converting the PSW 
gait to the ISW gait. Inaccuracies were observed in the identification of the toe-off event during 
the transition from the PSW to the ISW phase. Second, a significant challenge was the transition 
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from the ISW to the MSW phase, where the complexity lies in determining the perpendicularity 
of the shank to the ground. However, there are greater challenges in accurately discriminating 
this transition event on the basis of EMG signals. Therefore, these two transition stages are the 
main reasons for the reduced accuracy of ISW gait recognition.
 Despite the excellent performance of the ICS-SVM model in the gait recognition task, this 
study has several limitations. The motion capture technology is recognized as an effective tool 
for capturing accurate 3D motion data, but its accuracy is still affected by marker position, 
camera calibration, and soft tissue motion artifacts between the marker and the skin. Therefore, 
the focus of future research should be extended to testing more relevant field environments and 
further validating the accuracy of motion capture data. Finally, although the ICS-SVM algorithm 
shows potential in motion intent recognition experiments, further validation is needed to 
determine its superiority over other optimization methods. In addition, we explored a more 
precise synchronization of data acquired by the Vicon motion capture system with sEMG signals 
to reduce the negative effects of their asynchrony.

6. Conclusion 

 In this study, our objective was to improve the accuracy and efficiency of gait phase 
recognition. To achieve this, a classification recognition model based on ICS-SVM was proposed 
to complete the recognition of seven gait phases. Ten subjects performed a walking task on a 
treadmill at speeds of 0.5, 1.35, and 1.8 m/s. The results showed that the ICS-SVM model 
outperforms the traditional recognition algorithms in terms of accuracy, especially at a walking 
speed of 1.35 m/s, where it achieves the highest accuracy for gait phase recognition, reaching 
95.53%. This result demonstrates the performance of the optimized SVM recognition algorithm. 
The gait phase recognition method based on the ICS-SVM model can be applied to the fields of 
intelligent medical treatment and lower limb rehabilitation training.
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