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	 Embedded devices, crucial components in various industries, often operate independently, 
executing specific tasks efficiently. Their compact size, low maintenance, and energy 
consumption make them highly desirable. With the ability to connect to networks, these devices 
facilitate communication with other devices, forming a robust computing system. However, 
image transmission on these devices poses a challenge, requiring a delicate balance between 
efficiency and cybersecurity. In this paper, we propose a novel solution, a depthwise separable 
convolutional autoencoder (DSCAE) network model, which is unique in its ability to address 
image compression and encryption simultaneously. This model incorporates the high-efficiency 
depthwise separable convolution (DSC) of the Xception network into the convolutional 
autoencoder (CAE) model, optimizing image transmission. It also utilizes the Xception middle 
flow structure to synthesize more features, thereby enabling the decoder to reconstruct the 
predicted image with greater accuracy and enhancing the model’s performance. The output of 
the encoder is in ciphertext format to ensure the confidentiality of transmitted images, effectively 
safeguarding them and reducing the risks associated with unauthorized access during image 
communication. The experimental results demonstrate the efficacy of this approach, with the 
original photos transmitted by the proposed deep learning image encoding method retaining 
image quality and encryption by transferring only one-sixtieth of the original image size. On the 
receiver site, the reconstructed images can achieve an average peak signal-to-noise ratio (PSNR)  
of 29 dB compared with the actual image at the transmitter, thereby significantly improving the 
efficiency and security of image transmission on embedded devices.
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1.	 Introduction

	 Embedded devices are widely implemented in various industries and independently execute a 
particular task or a series of tasks. They are designed with small size and require less 
maintenance and lower energy consumption in comparison to other computational equipment. 
Nowadays, most embedded devices have the capability of network connection to provide 
communication with other devices or powerful equipment and form a more extensive computing 
system. Developing embedded devices and network technologies has enabled real-time image 
transmission to be widely used in various applications. However, in image transmission, two 
critical aspects need to be considered: image transmission efficiency and cybersecurity. These 
two items have a trade-off relationship in device-sharing resources. Balancing them is an 
essential subject, particularly in embedded devices. With the increasing concern regarding data 
security and privacy, it is necessary to ensure that images are encrypted before they are 
transmission to prevent unauthorized access. Moreover, the efficiency of image transmission 
plays a pivotal role in real-time applications, exerting a direct effect on the delivery time and 
quality of the transmitted images. However, the embedded device can only execute specific 
tasks without complex computing compared with a full-featured computer because their key 
drawbacks are their designed size and limited capabilities. Hence, the limited computing 
resources must be well used to improve the performance of image transmission and security.
	 Traditionally, some methods have been employed to improve the efficiency of image 
transmission. Images can be compressed first, and many approaches can be adopted to reduce 
the transmitted size. Secondly, downscaling the image resolution can also help reduce the 
amount of data transmitted. Lastly, optimizing the Internet Protocol (IP) used for transmission 
can further enhance the efficiency of the transmission process. The image size can be reduced 
by downscaling its spatial resolution. Still, the restored image may produce noise, be intolerably 
blurred, and have jagged effects after resizing to the original size at the receiver site. Some 
researchers even apply super-resolution approaches to reconstruct the higher-resolution image, 
but the process is more complex and not guaranteed to restore the original image.(1–3) 
Transmission performance can be improved by optimizing network-level accelerated progress 
protocols, such as enlarging the transmission window size and adopting advanced traffic 
congestion control. However, these optimizations the require modification of the network 
interface firmware and must obey the same rules in the routing path. Image compression is a 
prevalent technique for implementing data compression on digital images, with the objective of 
decreasing image size. This method, including traditional computer vision approaches and 
learning-based models with lossy or lossless algorithms, is the most effective and can instantly 
provide better outcomes. Many researchers have proposed numerous approaches to compress 
images for transmission and storage.(4–7) Nevertheless, conventional compression methods using 
open standard algorithms without encryption are easy to reveal and steal. Methods based on the 
deep learning network model are applied to improve image transmission performance and 
address data security problems due to the image being encoded by its feature maps. This type of 
codec has been used increasingly recently. 
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	 Learning-based image compression, designed using deep learning neural networks, is an 
emerging technology to transform image pixels from high dimensions to low dimensions. Many 
sample images are used to train the networks and learn the feature selection knowledge applied 
to generate a compressed code of the original image that reduces the transmission size. On the 
other hand, the receiver site uses the trained reconstructive network, which is part of the whole 
network, to produce a predicted image that approximates the original image. Learning-based 
compression models are broadly divided into four types: convolutional neural network (CNN), 
recurrent neural network (RNN), generative adversarial network (GAN), and autoencoder 
network.(7–9) The CNN-based image compression includes two flexible nonlinear components: 
the analysis encoder and synthesis decoder modules. The analysis module uses convolution, 
division, and down-sampling stages to produce downscaled feature maps. These maps are then 
adjusted and normalized using a subsequent normalization layer. Generalized divisive 
normalization (GDN) is often applied to normalize feature maps and has shown superior results. 
The synthesis decoder uses inverse modules (e.g., iGDN, up-sampling) to reconstruct the 
image.(10,11) Recent approaches have focused on developing deeper layers to enhance network 
performance.(12) However, this significantly increases network complexity and computing 
resource usage. 
	 In GAN-based image compression, the GAN structure is introduced into the decoder of the 
CNN-based method to improve the restored image quality. This model comprises an encoder, a 
decoder, and a discriminator. The encoder is used to capture input image features, and then the 
decoder becomes the GAN generator applied to reconstruct an image close to the original from 
the input features. The discriminator performs the loss function to determine the difference 
between the decoder output and the ground truth to update the decoder weight parameters. The 
output of the generator is optimized to restrain some visual artifacts, such as blurring or 
blocking, making it close to the natural image. This compression method performed better than 
the CNN-based approach, which improves the restored image quality, especially at a low bit rate. 
However, the compression artifacts produced by the decoder have been shown to reduce the 
realism of the restored image, even if it appears natural. Galteri et al. applied an ensemble of 
conditional GAN and selected an appropriate module using the quality predictor of the 
compressed image to reconstruct a sharper and more realistic image; they efficiently reduced the 
mosquito noise and ringing artifacts.(13) Kudo et al. used a regularization method that optimizes 
relationships between the coding features and the restored images to maximize mutual 
information and obtain a reconstructed image that retains the same appearance as the original 
image.(14) Wu et al. proposed a masking algorithm to generate the importance map for 
compensating restored image distortion at a low bit rate.(15) They applied a symmetrical 
multiscale structure, which is adaptable to different object sizes, to the decoder and 
discriminator. Wang et al. designed a semantic-perceptual residual compensation block and a 
U-shaped encoder–decoder structure with a dense residual connection on the GAN framework 
to obtain higher visual quality.(16) 
	 The RNN-based model performs better in video stream compression and variable bit-rate 
coding structures. In this approach, a pixel-level RNN, long short-term memory (LSTM), or 
gated recurrent unit (GRU) network was applied to find continuously adjacent pixel relationships 
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of images and reduce the coded feature map size. Toderici et al. used repetitive pixel-level RNN 
and binary RNN structures to form the entropy encoder and induce variable bit-rate compression. 
The obtained results were superior to those of competing methods in the field of full-resolution 
lossy image compression.(17) Ororbia et al. applied a nonlinear RNN estimator for iterative 
decoding that uses spatial context information to generate images from a decoder with low 
reconstruction error and high perceptual quality. Still, their method only focuses on single-
channel grayscaled images.(18)  Hu et al. proposed a progressive spatial RNN for video codecs to 
deal with intraprediction learning. The bit-rate reduction can be improved, and the image 
restoration quality can be the same as that of high-efficiency video coding.(19) Islam et al. 
applied a LSTM network as an encoder to reduce the unnecessary image data for variable rate 
compression and used the pixel-level RNN for quantization.(12) However, the RNN-based model 
uses the iterative method to train networks using sequential pixels in the sample images. This 
model relies heavily on CPU computation processing and memory usage, and hence requires a 
longer training time and a complicated inference process.
	 The existing learning-based image compression methods need extra network layers designed 
on the encoder and decoder to reduce artifact effects and improve restored image quality. These 
methods make the neural network larger and require additional information added to the bit 
stream for the decoder. However, these methods do not adapt to embedded devices with limited 
resources. In this paper, we propose a depthwise separable convolutional autoencoder (DSCAE) 
network model for simultaneously processing image compression and encryption. The DSCAE 
applies the DSC structure of Xception to perform spatial and channel learning processes, which 
reduce weight parameters and improve network efficiency, respectively. The image encryption 
approach bears a similarity to visual cryptography. Traditional visual cryptography can be 
decrypted using human vision. The DSCAE model is decoded using variable compact feature 
maps. Furthermore, this model can extract the image to a small feature map size. It can 
effectively achieve the desired image compression effect to improve image transmission 
efficiency. Our proposed approach also ensures the confidentiality of transmitted images, 
effectively safeguarding them.

2.	 Proposed Method

	 In this section, we present our proposed DSCAE image compression method and introduce a 
data augmentation approach to train networks to enhance the performance and efficiency of 
image transmission for embedded devices. We also describe the cropped augmentation image 
method, which focuses on augmenting the training dataset by cropping image regions, to 
improve network model generalization and robustness.

2.1	 System framework

	 Figure 1 shows the overall system framework. Our proposed DSCAE network model 
compresses pictures taken by a camera set in the embedded device. This reduces the image size 
to improve transmission efficiency and decrease storage space. The DSCAE model is divided 
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into two parts: encoder and decoder. The encoder module of DSCAE is presented in the 
embedded device of the transmission site and used as a codec to extract and encode the feature 
maps of images, which reduces the coded length. The receiver site applies the decoder module to 
reconstruct the actual pictures as close to the original image as is feasible using the compact 
feature codes.

2.2	 Proposed network

	 The traditional convolution neural network applies a convolutional kernel to extract object 
features of cross-channel and spatial correlations simultaneously. For more complex images, 
where there is a greater variety of subtler visual characteristics, it is necessary to include more 
layers of the CNN in order to extract additional features for processing at subsequent layers. 
This results in more parameters in the network and introduces additional complexities. 
	 The DSC structure can completely segregate the channel and spatial feature extraction 
processes. The Xception network, constructed by the DSC structure, exhibits superior 
performance in image classification compared with traditional convolutional networks.(20) It 
separates the feature extraction processes into two distinct procedures. First, depthwise 
convolution is used to capture spatial information, and then, pointwise convolution is used to 
obtain the correlation information of the channels. This network structure reduces the number of 
weight parameters and speeds up the process compared with the traditional CNN model.
	 The conventional CNN methodology determines the number of weight parameters by 
applying Eq. (1). For comparison, it is assumed that the DSC model employs an identical kernel 
size for depthwise convolution and an equivalent filter number for pointwise convolution in 
relation to the traditional CNN network. Equations (2) and (3) are employed to calculate the 

Fig. 1.	 (Color online) System framework of the proposed DSCAE network.
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parameters associated with the depthwise and pointwise convolution structures, respectively. 
The DSC parameter can be estimated by summing the values obtained from Eqs. (2) and (3). 
Equation (4) presents the method of calculating the DSC parameters. The DSC structure has 
fewer weight parameters than the traditional convolution structure, as illustrated in Eq. (5).  
Consequently, the DSC model can perform better and has a lighter module with faster 
computation.

	 Traditional CNN parameter sizes f fD D M N= ⋅ ⋅ ⋅ 	 (1)

	 Depthwise convolution parameter sizes f fD D M= ⋅⋅ 	 (2)

	 Pointwise convolution parameter sizes 1 1 M N= ⋅ ⋅ ⋅ 	 (3)

	 DSC parameter sizes f fD D M M N= ⋅ ⋅ + ⋅ 	 (4)

	
2

1 1f f

f f f

D D M M N
D D M N N D

⋅ ⋅ + ⋅
= +

⋅ ⋅ ⋅
	 (5)

Here, Df represents the width and height of the kernel size in the convolutional layer and 
depthwise convolution. M denotes the number of input channels or depth for the input feature 
map, and N refers to the number of output channels or depth for the output feature map.
	 In this paper, we propose a novel network, DSCAE, which is constructed by transferring 
some DSC components of the Xception network into the CAE structure. The DSCAE mainly 
provides image compression to enhance transmission efficiency and encryption for the 
embedded device simultaneously. Figure 2 shows the DSCAE network structure. The CAE is 
commonly used to rebuild the target image from the input. It extracts features through the 
encoder and decrypts information via the decoder. The CAE operation is defined by Eqs. (6) and 
(7). Also, the encoder and decoder processes are calculated as shown in Eq. (8). In this study, we 
use the mean-squared error (MSE) as the loss function for backpropagation during the CAE 
training stage. The MSE loss function is shown in Eq. (9).

	 ( ) 2
, ,, arg min X Xψ ϕψ ϕ ϕ ψ′= − 

	 (6)

	 ψ: X → F, φ: F → X'.	 (7)

	 The input vector is denoted as X, the feature vector is F, and the target vector is X'. The 
extraction of feature vectors from the input images is represented by ψ, while the reconstruction 
of the feature vectors into target images is represented by φ. The φ øϕ  ψ calculation expression 
means the total CAE calculation process.
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	 2 2( , ) ( ( ( ))L x X x X x W Wx b bσ σ′ ′= − − += ′ ′ + ′ 	 (9)

Here, x represents the input vector, situated within a d-dimensional real space designated as d . 
Similarly, h denotes the output vector located within a p-dimensional real space denoted as p . 
The encoder activation function is denoted by σ, the decoder activation function by σ', the 
encoder weight by W, the decoder weight by W', the encoder weighting bias by b, and the decoder 
weighting bias by b'. The input x is linearly transformed by the weight matrix W and bias b and 
then activated by σ to produce the output h of the hidden layer, followed by linear transformation 
by the weight matrix W' and bias b' and activation by σ' to produce the final output X'.
	 Our proposed model applies the high-efficiency DSC of Xception to the autoencoder module 
and improves the performance.  The optimized Xception Entry flow is imported into the encoder 
and the output is then quantized into compact feature maps, which are used to compress images 
for transmission or storage. The decoder part consolidates the Xception Middle flow to the top 

Fig. 2.	 (Color online) DSCAE structure.
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layers, which can synthesize finer feature information. Multiple DSC-structured convolution 
layers with skipped transpose convolutions are then concatenated to restore the predicted image 
close to the truth. 
	  
2.3	 Data augmentation method

	 In this paper, we propose a cropped augmentation image method, which utilizes a particular 
cropping strategy combined with image processing technologies to enhance the training samples 
based on the DIV2k dataset.  This method ensures the extraction of clear and relevant image 
regions while maximizing the utilization of available data.
	 Every 2k pixel image in the DIV2k dataset is cropped to a designated size of 320 × 480 × 3. 
This size selection ensures consistency in the dimensions of the cropped images and facilitates 
efficient training and model interpretation. If the original picture is not divisible by the specific 
width or height size, the last cropped piece is compensated by the preceding section to gather a 
whole sample. Although this approach may result in some repeated image regions, it ensures that 
valuable data is well spent and provides additional features for network training. Figure 3 shows 
the augmentation results.
	 The original dataset size of 800 images in the DIV2k dataset is expanded to 19448 images by 
our proposed method, effectively diversifying the training samples. Then, these sample images 
undergo horizontal and vertical flipping to represent different orientations of objects or scenes to 
augment more training data. This augmentation expands the training dataset to 77792 instances. 
This augmentation process introduces variations in the visual appearance of the input images 
and diversifies the dataset, allowing the model to learn robust and invariant features. This not 
only improves the network generalization ability but also prevents the overfitting issue, resulting 
in better overall performance.

3.	 Experimental Results and Discussion

	 To assess the efficiency and capacity of the proposed approach, we present the training 
process results along with two alternative methods used to evaluate performance and conduct a 
comparative analysis. In this section, the peak signal-to-noise ratio (PSNR) is used to estimate 
the reconstruction fidelity of the output image for each trained model. The objective is to 

Fig. 3.	 (Color online) Data augmentation results.
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identify the optimal model that can be implemented in an embedded device for image 
compression and transmission. Wireless transmission of image files generated by the above-
mentioned methodologies is undertaken to validate this. 

3.1	 Given target map to the encoder output training method

	 Traditionally, U-net is an excellent choice for image reconstruction. This model applies a set 
of CNN structures with residual skip connections between the encoder and decoder components, 
demonstrating remarkable performance. However, this work focuses on reducing the image size 
for efficient transmission. U-net needs to send the output feature maps of many layers in the 
encoder to the corresponding decoder layer, even if it performs better. To achieve smaller-size 
image transmission, we intentionally designed all layer outputs of the CAE without residual 
connection between the encoder and the decoder. 
	 In the first experiment, we utilize two target images to train the CAE network. The input 
image is resized to one-sixtieth of the original size as the desired output of the encoder. 
Simultaneously, the original input image is used as the target output for the final decoder. The 
encoder plays a crucial role in this approach by extracting features from the input image and 
resizing the input image to match the desired output of the encoder. The encoder architecture 
comprises 13 convolutional layers, three of which employ a stride of 2 to extract image features 
and generate smaller feature maps efficiently. Additionally, the encoder structure incorporates 
the internal skip connection architecture inspired by ResNet to improve feature extraction 
capabilities. The expected target output of the encoder is acquired by resizing the original image 
using the binary interpolation method.
	 The network model is constructed on the basis of the progressive upsampling architecture in 
the decoder component. It comprises 13 transposed convolutional layers, three of which utilize a 
stride of 2, to replace the upsampling layer and intelligently reconstruct the small-size feature 
maps. The schematic flow chart and structure of this experimental model structure are shown in 
Figs. 4 and 5, respectively. We evaluate the model performance and quality of the reconstructed 
images using MSE and PSNR. MSE is used as the indicator of the loss function. PSNR is the 

Fig. 4.	 (Color online) Schematic flow chart of the given target map method.
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most commonly used metric for evaluating the performance of a reconstruction-type model. The 
PSNR and MSE values are obtained using Eqs. (10) and (11). Figure 6 shows the trajectory of the 
loss function and PSNR metrics during training; they become stable after approximately 50 
epochs. The loss value gradually converges to a final value of 0.0042. In terms of image quality 
assessment, PSNR achieved a value of 23.9538 dB.

	
2 2

10 1010*log 20*logMax MaxPSNR
MSE MSE

   
= =      

   
	 (10)

	 

2

1

1 ( )
n

i i
i

MSE Y Y
n =

−= ∑ 	 (11)

The variable Max represents the maximum value of the digital image, which is 1 in this case 
since the image has been normalized. Equation (11) for MSE introduces the following notations: 
n denotes the total number of pixel points, Yi represents the original pixel value, and iY  indicates 
the predicted pixel value of the image.
	 The result from the encoder serves as a specific representation of the image while preserving 
essential features in this model. The designed progressive upsampling architecture enables the 
decoder to effectively reconstruct the original image from the extracted feature maps. 
Nevertheless, this method has limitations regarding image reconstruction quality and raises 
security concerns owing to the visibility of the encoder outputs.

Fig. 5.	 (Color online) Experimental CAE structure.
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3.2	 CAE direct training method

	 This approach directly trains the CAE network proposed in the last section. During training, 
the neural network automatically finds the optimum solution for the encoder outputs.  These 
intricate features and patterns are extracted to be feature maps as a transmission object, 
equivalent to a shrunken image. Figure 7 shows the schematic flow chart of the direct training 
method. The output of the encoder, in the form of feature maps, is observed. It is notable that 
these maps, which are used for transmission purposes, appear as an unstructured vision that is 
invisible to the human eye. Figure 8 illustrates the encoder output feature maps in relation to the 
corresponding originals. The encoder output can achieve the encryption effect, thereby ensuring 
secure transmission.
	 The MSE and PSNR metric curves for this training method are presented in Fig. 9. While this 
model demonstrates successful encryption, the utilization of a mere three channels in the 
encoder output for the middle layer represents a limitation in terms of PSNR, with a value of 
approximately 24.684 dB. To address this limitation and further enhance the performance, the 
DSCAE method is proposed to improve the CAE network.

3.3	 Direct training method for the proposed DSCAE network

	 The direct training method ensures that the output of the encoder is in ciphertext format to 
enhance secure transmission. This approach is highly suitable for training our proposed DSCAE 
method, which leverages the characteristics of the encoder architecture and defines different 
target outputs in the model layers for improved feature map representation and final image 
reconstruction. The DSCAE training results for the MSE and PSNR metric trajectories are 
shown in Fig. 10. The value curves show gradually stabilizing convergence after the 40th 
training epoch. Upon the completion of training, the DSCAE model exhibits a remarkably low 
loss of 0.0011, demonstrating its capacity to match the original input images during  
reconstruction with high fidelity. Moreover, the corresponding PSNR is a high level of 29 dB, 
indicating a substantial improvement in preserving image details and reducing distortion. 

(a) (b)
Fig. 6.	 (Color online) Training trajectory for the first experiment. (a) Loss function. (b) PSNR metrics. 
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Fig. 7.	 (Color online) Schematic flow chart of the direct training method.

Fig. 8.	 (Color online) Feature maps of the encoder output. (a) Original pictures. (b) Feature maps.

Fig. 9.	 (Color online) Training trajectory for the second experiment. (a) Loss function. (b) PSNR metrics.

(a) (b)

(a) (b)
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3.4	 Comparisons with different models and discussion
		
	 Two distinct training methods are employed to train two different types of network models. 
The efficacy of these methods is evaluated through three experiments in which the encoder 
compresses images that are then reconstructed by the decoder. Figure 11 presents decoder 
outcomes for different training models. The resulting graph illustrates that the DSCAE model 
demonstrates the most favorable performance, exhibiting the highest PSNR. 
	 The results of the first experiment indicate that the lack of encryption in the encoder output 
of the proposed CAE structure results in security vulnerabilities and a low PSNR, and produces 
a final image of poor quality. In the second experiment, the encoder output is observed to 
contain coded feature maps that are invisible to the naked eye. In this experiment, the direct 
training method is employed to train the designed CAE structure. However, PSNR still needs 
improvement, and the decoder cannot generate an image of high quality. Our proposed DSCAE 
model is trained using the direct training method in the final experiment, and the results 
demonstrate satisfactory PSNR values. The output image synthesized by the decoder exhibits a 
remarkable resemblance to the original. Furthermore, the encoder output is utilized as an 
encrypted map for transmission and storage, ensuring secure transmission.
	 To facilitate comparison with the traditional image scaling, the original images are reduced 
to 1/64 of their original size using bilinear interpolation, with the resulting photos having the 
same size as the encoder output of DSCAE. These images are then enlarged to their original size 
using the same interpolation method. The results are shown in Fig. 12. The results of this test 
demonstrate that the output image produced by the traditional scaling method, after enlargement 
at the receiving side, exhibits the blurring and distortion of details and a relatively low PSNR. 
	 Table 1 shows the different image transmission and processing times for the various 
methodologies presented in this paper. The configuration of the test environment is illustrated in 
Fig. 13. Raspberry Pi 4 functions as a server for image transmission and is equipped with 4 GB 
memory and Raspberry Pi OS version 11. The computer is configured as a client to receive 
images and utilizes an Intel(R) Core(TM) i5-10400 CPU, 16 GB of RAM, and the Microsoft 
Windows 11 operating system. A D-Link AX5400 dual-band wireless access point is a packet-

Fig. 10.	 (Color online) Training trajectory throughout DSCAE training. (a) MSE loss function. (b) PSNR metrics.
(a) (b)
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Fig. 11.	 (Color online) Reconstruction images of decoder output in different training models. (a) Ground truth. (b) 
DSCAE outputs. (c) Direct training method outputs. (d) Given target method outputs.

(a) (b) (c) (d)
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forwarding router. A comparison is performed by sending images from the Raspberry Pi module 
to a computer via wireless transmission. The transfer and processing times displayed in this 
table have been calculated by averaging over 100 images. The DSCAE model exhibits the 

Fig. 12.	 (Color online) Reconstruction images obtained with various resizing methods. (a) DSCAE method. (b) 
CAE method. (c) Ground truth. (d) Traditional resizing method.

Fig. 13.	 (Color online) Architecture of image transmission experiment.

Table 1
Transmission and processing times. 

Processing time Image processing model
Without encoding CAE model DSCAE model Traditional scaling

Encoding (shrinking) time (s) X 1.8453 0.7847 0.531
Decoding (enlarging) time (s) X 1.3509 1.0181 0.467
Transmission image scale 320 × 480 40 × 60 40 × 60 40 × 60
Transmission time (s) 0.0320 0.0133 0.0133 0.0141

(a) (b) (c) (d)
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shortest transmission time. Despite the longer processing time for the encoding and decoding of 
the two neural network models, when the original image is considered together with the 
encryption processing time, it can be shown that the deep learning model offers a relatively 
advantageous solution. This is due to the fact that the deep learning model optimizes the 
transmission bandwidth and ensures the security of the image transmission, which is achieved 
through an end-to-end procedure. 
	 The experimental results demonstrate that the proposed DSCAE model markedly enhances 
its performance in image transmission tasks. The DSCAE network shows promise in improving 
the image reconstruction quality, supporting encrypted transmission, and offering computational 
efficiency. Consequently, it is a potentially valuable component for enhancing various image 
processing and transmission systems.

4.	 Conclusions

	 We proposed a novel DSCAE network model that incorporates the DSC structure of the 
Xception network into the CAE model for embedded devices. The proposed model was designed 
to reduce the number of weight parameters and enhance the efficiency of the network, thereby 
overcoming the significant limitations of embedded devices concerning computing resources. 
The feature map of the encoder output was compressed to one-sixtieth of the original image size, 
resulting in a shorter transmission time and an optimized transmission efficiency. Furthermore, 
the reconstructed image produced by the decoder showed a high degree of resemblance to the 
original image and achieved an average PSNR of more than 29 dB. The experimental results 
demonstrated that the DSCAE model achieves superior performance, effectively preserving the 
quality of transmitted images with encryption transmission. Moreover, the DSCAE model 
exhibited superior computational efficiency compared with other traditional networks, rendering 
it suitable for deployment in embedded devices with limited computational resources.
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